热、气、固两相流耦合在管式干燥系统中的应用及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题针对高温管式膨胀设备开发中,热、流体、结构等复杂工况耦合作用下,流场、温度分布及结构优化等开展了研究工作。
     本课题的解决,在理论上可归结为热、流体(气、固两相)、结构耦合的CAE分析问题,涉及多个学科。建立包含各种因素的数学模型以及确定相应的边界及初始条件、筛选和测试相应的物性系数,并考虑物性系数随温度的变化,根据计算精度和设计要求,对流体和结构选取合适的单元类型,将其网格化,并引入有限元分析软件进行数值计算是本研究的关键所在。
     本文根据所研究对象工作的物理环境(热、流场),综合考虑气固两相流理论、计算流体动力学理论以及气力输送理论,确定其影响的主要因素,建立了数学模型和控制方程;对研究问题的数学模型,利用ANSYS程序中的FLOTRAN CFD进行了有限元分析计算,得出整个三维模型流场的温度、速度、压力及气固两相的分布。利用ANSYS软件强大的后处理功能从各个方面对数值计算结果进行分析,并和2400kg/h的高温管道式膨胀设备的一些参数的实测值进行了比较。另外,在企业设计参数的基础上,建立6400kg/h的高温管道式膨胀设备的数学模型,并利用反复试算分析得出的高温气体以及烟丝混合气体两种介质的物性参数,对其进行了有限元分析计算,验证了其模型的合理性。在以上分析的基础上,还提出了几种结构形式的高温管式膨胀设备的几何模型,对它们也进行分析以及结果比较,得出了一种较为理想的结构形式。
     通过详细的分析比较,本课题对高温管道式膨胀系统的数值模拟基本能够真实地反映出高温管式膨胀设备对烟丝的整个处理过程。这为该产品设计提供了可靠的仿真工具和良好的思路,同时为进一步的开发设计提供了理论依据。提出的结构形式的优化,为该系列产品拥有独立的知识产权奠定了一定的基础。该研究成果为该系列产品的研发及系列化解决了理论问题,为CAE技术在该工程领域的实际应用和推广打下了基础。其理论研究成果将对变物性气固两相流的理论和数值计算有一定的学术价值。
This subject studies some content about fluid field, distribution of temperature and optimization of structure . The content is studied about high temperature expansion canal under the coupling function of complication operating mode about heat, fluid and structure.
    The solution of this subject comes down to the analysis issue of computer aid engineer about the coupling of heat, fluid (gas-solid two-phase) and structure in principle. And this subject concerns many disciplines . It builds up mathematical model including all sorts of factors ; ensures the homologous borderline and initial condition ; pulsates and tests homologous physical property coefficient; selects suitable unit type about fluid and structure according to computation precision , requisition of design and the variation of physical property coefficient according as temperature; divides grids and proceeds number value calculation adopting finite element analysis software. All the above-mentioned content is the key of this paper.
    This text ensures the dominant influence factor according to the work physical environment of the research object and considering the theory of gas-solid two-phase, the theory of hydrodynamic and the theory of guts transportation . It also builds up the mathematical model and the control equation . To the mathematical model of the research object, the paper analyses and calculates by finite element of FLOTRAN CFD of ANSYS software .It obtains the distribution of temperature , velocity, stress and gas-solid two-phase of the whole three dimension model. By the powerful after-treatment of ANSYS software , this text analyses the result of the numerical calculation from every aspect and compares with the actual measured value about some parameters of the high temperature expansion canal of 2400kg/h. On the other hand , It establishes the mathematical mode of high temperature expansion canal of 6400kg/h on the basis of design parameter of enterprise. Then the text obtains the physical property
    
    
    
    coefficient of high temperature gas and the mixture gas of tobacco refuse by examination calculating over and over . It calculates by finite element and verifies the reasonableness of the model . On the basis of above-mentioned analysis, it also brings up the geometry models for some high temperature expansion canals with different structural form. For the geometry models above-mentioned , this text analyses and compares the results too. It concludes a better ideal structural form finally.
    By the detailed analysis and comparation , this subject simulates the number value about the high temperature expansion canal, which reflects concretely the whole disposal process of tobacco refuse within the high temperature expansion canal. It offers the reliable emulation tool and good way of thinking for the design of the product , at the same time , it offers the theory reliance for the further exploitation design. The optimization of structural form establishes certain foundation for the independent knowledge property right of the series products, lays foundation for the practical application and promotion at the aspect of engineering of the technology of computer aid engineer. The fruit of the theory research has certain academic value about the theory of variant physical property of gas-solid two-phase and calculation of number value .
引文
[1] 胡正媛.工程流体力学导论及其应用.上海:复旦大学出版社,1992
    [2] 倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用.北京:科学出版社,1991
    [3] 林宗虎.气液两相流和沸腾传热.西安:西安交通大学出版社,1987
    [4] 徐济鋆.沸腾传热和气液两相流.北京:原子能出版社,1993
    [6] 鲁钟琪.两相流与沸腾传热.北京:清华大学出版社,2002
    [7] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991
    [8] 沈天耀,林建忠.叶轮机械的气固两相流基础.机械工业出版社.1994.2
    [9] 陈未名,鄂加强.多股流粉煤—空气喷枪在圆管内射流三维微分方程的数值处理.长沙大学学报,2001,15(4):18—21
    [10] 王文琪.两相流动.北京:水利电力出版社,1989
    [11] 程克勤,陈宏勋.气力输送装置.北京:机械工业出版社,1993
    [12] 李涛文,周晓里.气力输送理论与应用.北京:机械工业出版社,1992
    [13] 黄标编译.国外气力输送进展.上海:上海科学技术情报研究所,1974
    [14] 余州生编译.气力输送及其应用.北京:人民交通出版社,1989
    [15] 黄标.气力输送.上海:上海科学技术出版社,1984
    [16] 傅德熏.流体力学数值模拟.北京:国防工业出版社,1986
    [17] 吴子牛.计算流体力学基本原理.北京:科学出版社,2001
    [18] 吴江航,韩庆书.流体力学的理论、方法及应用.北京:科学出版社,1988
    [19] 王承尧,王正华,杨晓辉.计算流体力学及其并行算法.长沙:国防科技大学出版社,2000
    [20] Cramp W, Priestly A. Pneumatic Crrain Conreyers. Engineer, 1924, 137(64)
    [21] Cham S M, Rempl D. A One-Dimension Model of Plug Flow Pneumatic Conveying. The Can. J. Chem. Engng, 1983, 60
    [22] Gibson M M, Dafa Aua.A A. Two-Equation Model for Turbulent Wall Flow. AIAA J, 1995, 33(8)
    [23] Crowe C T, Sharma M P. The Particle Source in Cell Model for Gas-Droplet Flows. ASME J. Fluid Eng, 1997, 99(12)
    
    
    [24] Crowe C T. On Modelling Spray Air Contact in Spray-Drying System. Advance in Drying, Hemisphere Pub,1980
    [25] Alper R L, Mathews M K. Calculation of large Scale Folw Fidlds Induced by Droplet Sprays. Proc. Of ployphose Flow and Transport Technology. ASME, edited by R. Bajura, 1980
    [26] EI-Bainhavy B, White Law J H. The Calculation of The Floe Properties of a Confined Kerosine-Spray Flame. AIAAJ, 1980, 18(12)
    [27] Lee J, Crowe C T. Scaling laws for Metering the Flow of Gas-Particle Suspension Through Venturi. Proc of Polyphase Flow and Transport Tech. Conference. ASME, edited by R. Baiura, 1980
    [28] 岑可法,樊建人.气固两相射流的数值模拟.浙江大学学报,1987,12(6)
    [29] 张善荣.散料输送与贮存.北京:化学工业出版社,1994
    [30] 秦霁光,屠之龙,方慈芬等.气力输送管的压降—密相和稀相垂直恒速段压降的通用关联式.化工机械,1977(3):22—31
    [31] Rautiainen A, Stewart G, Poikolainen V, et al. An experiment study of vertical pneumatic convey. Powder Technology, 1999,104:139—150
    [32] Li H, Tomita Y. Particle velocity and concentration characteristics in a horizontal dilute swirling flow pneumatic converying. Powder Technology.2000, 107:144—152
    [33] Huber N, Sommerfeld M. Modelling and numerical calculation of dilute phase pneumatic conveying in pipe system. Powder Technology, 1998,99:90—101
    [34] Sinclair J L, Jackson R. Gas-particle flow in a vertical pipe with particle-particle interactions. AICHE Journal,1989,35(5):1473—1486
    [35] Samuelsberg A, Hjertaer B H. An experiment and numerical study of flow patterns in a circulating fluidized bedreactor. Int J Multiphase Flow, 1996,22(3):575—591
    [36] Boemer A, Qi H,Renz U. Verification of Eulerian simulation of spontaneous bubble formation in a fluidized bed. Chemical Engineering Science, 1998,63(10):1835—1846
    [37] G.鲁丁格著,张远君译.气体—颗粒流基础.北京:国防工业出版社,1986
    [38] 刘大有.二相流体动力学.北京:高等教育出版社,1993
    
    
    [39] H Schlichting. Boundary Layer Theory. 6th edn.New York:McGraw-Hill, 1968
    [40] Liu D Y., Anders K, Forhn A. Drag coefficients of single droplets moving in an infinite droplet chain on the axis of a tube. Int.J.of Multiphase Flow, 1998,14:217—232
    [41] Ingebo RD. Drag coefficients of droplets and solid spheres in clouds accelerated in air streams. NACA TN, 1956,28:3762
    [42] Rudinger G.. Effective drag coefficient for gas-particle flow in shock tubes. Trans. ASME, J. Basic Eng, 1970,92D:165—172
    [43] R G. Boothroyd. Flowing Gas-Solids Suspensions. London:Chapman and Hall, 1971
    [44] Pai S L. A Review of Fundamental Equation of The mixture of Gas with Small Solid Particles. U.S.A:College Park Marland,1970
    [45] Julian F M, Dulker A E. An Eddy Viscosity Model for Fraction in Gas-solids Flow. AICHE J,11(5)
    [46] Besnanc D C. Harlow F H. Turbulence in Multiphase Flow. Int.J.Multiphase Flow, 1980,14(6)
    [47] Soo S L. Dynamics of Charged Suspensions. Topics in Curent Aerosol Research, Pergamon, 1971
    [48] Drew D A Stud. Appl. Math, 1971, 5(3)
    [49] 岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990
    [50] 谢灼利,张政.气体输送的数值模拟研究.北京化工大学学报,2001,28(1):22—27
    [51] 李皓月,周田朋,刘相新.ANSYS工程计算应用教程.北京:中国铁道出版社,2003
    [52] 刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002
    [53] 夸克工作室.有限元分析基础篇—ANSYS与Mathematica.北京:清华大学出版社,2002
    [54] 美国ANSYS公司北京办事处.ANSYS计算流体力学分析指南.1998
    [55] 王国强.实用工程数值模拟技术及其在 ANSYS 上的实践.西安:西北工业大学出版社,1999
    
    
    [56] 龚曙光.ANSYS 基础应用及范例分析.北京:机械工业出版社,2003
    [57] 陈精一,蔡国忠.电脑辅助工程分析—ANSYS 使用指南.北京:中国铁道出版社,2001
    [58] 张家荣,赵廷元.工程常用物质的热物理性质手册.北京:新时代出版社,1986
    [59] 马庆芳,方荣生,项立成等.实用热物理性质手册.北京:中国农业出版社,1987
    [60] 《实用化学手册》编写组.实用化学手册.北京:化学工业出版社,2001
    [61] 陈则韶,贾磊,谭洋等.烟草导热系数与含水率的变化关系.中国科学技术大学学报,2003,33(1):92—96
    [62] 陈则韶,郭俊成,贾磊等.用平面热源过渡态平板法同时测定烟叶的λ、α和C_p三种热物性.中国科学技术大学学报,2002,32(3):309—313
    [63] 美国 ANSYS公司北京办事处.ANSYS热分析指南.1998
    [64] 唐兴伦,范群波.ANSYS 工程应用教程—热与电磁学篇.北京:中国铁道出版社,2003
    [65] 博嘉科技.有限元分析软件—ANSYS 融会与贯通.北京:中国水利水电出版社,2002
    [66] 谭建国,张朝军.使用 ANSYS 6.0进行有限元分析.北京:北京大学出版社,2002
    [67] 洪庆章,刘清吉,郭嘉源.ANSYS 教学范例.北京:中国铁道出版社,2002
    [68] 嘉禾工作室.ANSYS5.7有限元实例分析教程.北京:机械工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700