汽车针刺地毯复合材料热成形性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料成形性能的研究,源于工业生产实践中的迫切需求,近年来受到日益广泛的关注。作为机制地毯一种较新的制造技术,汽车针刺地毯复合材料在其实际热成形过程中,经常出现拉破、起皱、定形不良等种种制品缺陷。面对当前针刺地毯实际生产中的这些问题,全球的各汽车地毯生产企业依然处于依靠经验、反复试错以获得解决方案的阶段。这导致了汽车针刺地毯新产品的开发周期延长,已有产品的质量波动。在我国,现有的汽车专用地毯生产能力满足不了当前国内迅速发展的汽车工业的需求,导致了汽车地毯每年都需要大量的进口。因此,本文在国家自然科学基金委的项目资助(项目编号:50305020)下,首次以汽车针刺地毯复合材料的热成形性能为中心,进行了比较系统和深入的研究。
     通过高温拉伸实验参数的确定以及多种实验设计方案的实施,本文积累了针刺地毯复合材料的基本力学性能数据。对三种汽车针刺地毯复合材料进行了不同传热条件下(恒温绝热和自然对流传热)的大量高温力学实验,总结了针刺地毯复合材料高温力学行为的共同特点;应用聚合物材料的粘弹性基本原理,分析了拥有典型结构的两类针刺地毯复合材料(1.针刺毯坯层涂覆背胶层的双层结构,2.针刺毯坯层涂覆聚丙烯(PP)热定形层再添加衬垫层的三层结构)在不同温度条件下的变形机理。
     基于复合材料宏观力学的观点,从不可逆热力学基本原理出发,本文推导出了针刺地毯复合材料非线性热力耦合粘弹性本构模型的框架。为了使提出的材料模型能够体现温度效应在不同传热方式下的差异性,按照不可逆热力学本构理论框架中关于温度的定义,描述了温度对针刺地毯复合材料力学行为的影响。
     针对汽车针刺地毯复合材料热成形时各个阶段不同的实际传热方式,本文将单面冷却传热模型和大空间自然对流大平板模型分别引入本构模型框架,并采用Laplace变换、Laplace逆变换的方法,得到了针刺地毯复合材料在三种换热条件(恒温绝热、自然对流传热和热传导)下粘弹本构关系的具体表达式。在这些不同传热条件下本构关系的具体表达中,模型参数只需通过基本力学实验和热学实验即可确定,使得建立的该材料模型便于工业应用。
     利用通用型非线性有限元分析软件ABAQUS/Explicit中的用户自定义材料模型接口VUMAT,编程实现了本文提出的材料模型。进行了两种针刺地毯复合材料在不同传热条件下单向拉伸变形和半球冲压变形过程的数值模拟,得到的数值结果同针刺地毯的实验数据基本吻合,验证了材料模型的有效性;选择ABAQUS材料库中自带的Marlow材料模型,完成了单向拉伸和半球冲压过程的对比数值运算,将两类材料模型的数值结果同实验结果进行对比,进一步证明了本文所提材料模型在热力耦合条件下的精确性。
     最后,依据针刺地毯复合材料高温拉伸时的特有变形特征,结合建立的材料模型,本文提出了评价针刺地毯材料热成形性能的三个指标。通过与相应实验结果的对比,各指标的有效性获得了验证。这些指标可以分别从极限强度、变形能力和温度敏感性的角度,对汽车针刺地毯复合材料的热成形性能进行评价,从而为汽车针刺地毯在实际生产时的材料选择、稳定工艺条件设置等方面提供参考。
Studies of material formability, which comes from pressing demand of practical forming processes, have gained more attentions during the past years. As a relatively newly emerging manufacturing technology in modern carpet industry, automotive needlepunched carpet composites usually happen to be tearing, wrinkling and crushing during their practical thermoforming processes. By far the globe automotive carpet manufacturers have applied their engineers’experiences and trial and error method to solve these problems. This leads to postponement of new products and quality fluctuation of current products. In China, current production capability of automotive carpets has still remained far behind that of domestic automotives, which results in numerous automotive carpets import every year. So with the financial support of national science fund (project item: 50305020), we firstly focus on thermo formability of automotive needlepunched carpet composites, have a systemic and in-depth study.
     By parameters ascertainment of extensile experiment in high temperature and execution of many test schemes, basic mechanical data of automotive needlepunched carpet composites have been accumulated. With a large number of extensile experiments of automotive needlepunched carpets under different heat transferring conditions (isothermal condition, natural heat convection condition), the common mechanical characters of automotive needlepunched carpets in high temperature have been summarized. With the application of viscoelastic principle about polymer materials, the deformative mechanisms under different temperature conditions about two typical automotive needlepunched carpets (1. a needlepunched fabric layer plus a latex layer, 2. a needlepunched fabric layer, a polypropylene (PP) thermo figuration layer plus a mat layer. ), have been analyzed, respectively.
     With the viewpoint of composite macroscopic mechanics, a nonlinear viscoelastic constitutive framework, including temperature effect, for automotive needlepunched carpets has been proposed from thermodynamics of irreversible processes. In order to characterize the difference of temperature effect with different heat transferring conditions, the description on temperature effect in our model is based on the definition of temperature in thermodynamics of irreversible process.
     According to the specific heat transferring modes corresponding to the different thermoforming process stages in practice, a single side cooling model and a natural convection model of spaceless plate have been introduced our proposed model framework, respectively. Then with a method of Laplace transform and Laplace inverse transform, the specific expressions of viscoelastic constitutive equations for automotive needlepunched carpet composites for the three heat transferring cases (isothermal, heat convectional, and heat conductive), have been archived. Model parameters among these obtained constitutive equations can be characterized just by basic mechanical experiment and thermal test, which makes our proposed model convenient for industrial applications.
     Applying the user-defined subroutine interface VUMAT of general purposed nonlinear finite element analysis software ABAQUS/Explicit to code our proposed model for automotive needlepunched carpets, numerical simulations of uniaxial extensile deformation and stamping deformation with a hemisphere punch are implemented, respectively for the different heat transferring cases. Verification of our proposed model is proved by the comparison between the numerical results and the experimental data. To gain a relatively objective evaluation on the proposed model, the Marlow model, which is a built-in material model in ABAQUS, is selected to implement the similar numerical simulations for comparison. Comparisons between these numerical results and the actual experimental data have further proved verification and efficiency of our proposed model.
     Finally, depending on the deformation characteristic of automotive needlepunched carpets in high temperature, three formability indexes are proposed based on our built model. By comparisons with corresponding experimental data, these indexes verifications are proved. Each of them evaluates the thermo formability of automotive needlepunched carpets from different aspects, which are ultimate strength, deformation ability and temperature sensitivity, respectively. By the applications of them, helpful references to a steady and robust thermal forming operation for automotive needlepunched carpet composites in practice are able to be archived.
引文
[1] R.Lebovitz, Shedding new light on interiors, Automotive & Transportation Interiors, 1998,(3):4
    [2] P.Nunn, Japan’s rational revolution, FT World Automotive Manufacturing, 1998,(6):14-16
    [3] [英]冯庆祥,麦克·哈德卡斯特尔著,宋广礼等译,汽车用纺织品,北京:中国纺织出版社,2004:1-10
    [4]罗瑞林,织物涂层技术,北京:中国纺织出版社,2005:3-12
    [5]王成,汽车内装饰物的现状和展望,产业用纺织品,2003(10):5-8
    [6] J.H.Cox, Tufted Carpet for auto use, Automotive Textile(ed. M Ravnitsky), SAE PT-51, Warrendale, PA, SAE Inc., 1995:145-150
    [7]薛士鑫,机制地毯,北京:化学工业出版社,2004:1-84, 320-384, 386-397
    [8]宋强,汽车用非织布地毯及其发展趋势,纺织科技进展,2006,(1):19-21
    [9]梁炳文等,板金成形性能,北京:机械工业出版社,1999:3-8
    [10]沈豫立,工艺金属学译文集,北京:机械工业出版社,1982:12-35
    [11]瞿国华,新世纪中国汽车工业用纤维的发展,合成纤维工业,2003,26(3):1-4
    [12]邓泽英,汽车材料应用发展趋势,汽车材料,2001,(10):26-29
    [13]赵志军,王存编译,汽车用聚丙烯地毯,产业用纺织品,2003,12(1):39-40
    [14]谷宪,张文光,地毯用复合材料,产业用纺织品,2002,(12):34-35
    [15] Esling, Robert, New developments in injection-mold lamination for automotive applications, Society of Plastics Engineers,1998,12(2):75-79
    [16] P.R.Berthevas, A.Fanget, G.Gatouillat, The development of a sound insulation package for car floor coverings using a combination of polyurethane technologies, J Coated Fabrics,1988(10):124-141
    [17] J.Mischke, G.Bagusche, Carpets and film by injection molding,Kunststoffe-German Plastics,1991, 81(3):14-16
    [18] L.Creasy, The cover-up, Automotive & Transportation Interiors, 1997(8):16-22
    [19] Stamper, Kelvin, Overview of carpet laminates, Journal of coated fabrics, 1996,25(1):257-267
    [20]刘欢胜,簇绒地毯技术的发展现状,北京纺织,2002,(3):5-11
    [21]戴钧明,黄象,地毯业现状与发展前景,国际纺织导报,1999,(2):14-16
    [22] F.Sassi, R.Albach, Carpet Thermoforming: The use of Simulation in a Design Process, EURP-PAM’99, Darmstadt 7-8, October
    [23] M.Zimmermann, Textiles for motor car interior fibers, Technical Textiles, 1999(4):42
    [24] Anon, EU applies pressure to reduce noise, PRW, April 1999(30):12-18
    [25] P.Saha, R.N.Baker, Sound adsorption study for auto carpet materials, Automotive Textile (ed. M. Ravnitsky), SAE PT-51, Warrendale, PA, SAE Inc., 1995:199-203
    [26] V.Ozsanlav, Specific applications for jute/synthetic blends, World Textile Congress, Huddersfield, Huddersfield Universit
    [27]王延熹,非织造布生产技术,中国纺织大学出版社,1998:34-57,77-101y, 1998,7:15-16
    [28]张丽颖.非织造布在汽车制造工业中的应用.非织造布,2004,12(1):36-38
    [29] Frank, Roni, The Use of Simulation in Carpet Thermoforming, EUROPAM′99 Darmstadt:48-53
    [30] A.Schurian, Industrial Automotive Carpet Forming, EUROPAM’99 Darmstadt:72-74
    [31] G.Frontini, G.Salaa, Numerical-Experimental Validation of Thermoforming Processes, EUROPAM′99 Darmstadt:12-16
    [32] V.V.Vasiliev, E.V.Morozov, Mechanics and analysis of composites materials, ELSEVIER, 2001:1-28, 271-362
    [33] L.Tong, A.P.Mouritz, M.K.Bannister, 3D fiber reinforced polymer composites, ELSEVIER, 2002:107-133
    [34] T.E.Matikas, N.J.Pagano, Recent advances in composite science, Composites Part B, 1998, 29(2):91-92
    [35] C.C.Chamis, Mechanics of composite materials: past, present and future, J. Comp. Tech. Res., ASTM, 1989, 11:3-14
    [36] R.Hill, A self-consistent mechanics of composite materials, J. Mech. & Phys. Solids., 1965, 13(4):213-222
    [37] A.E.Bogdanovich, R.L.Sierakowski, Composite materials and structures: science, technology and applications– a compendium of books, review papers, and other sources of information, Appl. Mech. Rev., 1999, 52(12): 351-366
    [38] K.Subhash, the Nonwoven Fabrics Hand Book, Association of Nonwoven Fabrics Industry, 1992
    [39] J.W.S.Hearle, Physical Properties of Textile Fibers (3rd version), Manchester, the textile institute, 1993
    [40] V.V.Vasiliev, E.V.Morozov, Mechanics and analysis of composites materials, ELSEVIER, 2001:1-28, 271-362
    [41] R.Hill, Theory of mechanical properties of fiber-strengthened materials, In: Elastic behavior, J. Mech. & Phys. Solids., 1964, 12(12):199-212
    [42] Z.Hashin, B.W.Rosen, The elastic moduli of fiber-reinforced materials, J. Appl. Mech., 1964, 31:223-232
    [43] Z.Hashin, On elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry, J. Mech. Phys. Solid, 1965,13:119-134
    [44] R.Y.Kim, In-plane tensile strength of multidirectional composite laminate, In: failure analysis of composite laminates, Lancaster: Technomic Publishing Co., Inc., 1985: 13-65
    [45] M.W.Hyer, Stress analysis of fiber-reinforced composite materials, WCB, Boston, McGraw-Hill, 1997: 120-124
    [46] G.S.Padhi, R.A.Shenoi, Progressive failure and ultimate collapse of laminated composite plates in bending, Composite structures, 1998, 40:277-291
    [47] J.N.Reddy, J.N.Pandey, A first-ply failure analysis of composite laminates, Composite structures, 1987, 25:271-393
    [48] P.D.Soden, M.J.Hinton, A.S.Kaddour, Lamina properties, lay-up configurations and loading conditions for a range of fiber-reinforced composite laminates, Comp. Sci. & Tech., 1998, 58:1011-1022
    [49] ZH.M.Huang, Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model, Composites: part A, 2001,(32): 143-172
    [50] ZH.M.Huang, A unified micromechanical model for the mechanical properties of two constituent composite materials, Part 1: elastic behavior, J. thermoplastic Comp. Mater., 2000, 13(4):252-271
    [51] ZH.M.Huang, A unified micromechanical model for the mechanical properties of two constituent composite materials, Part 2: plastic behavior, J. thermoplastic Comp. Mater., 2000, 13(5):344-362
    [52] ZH.M.Huang, A unified micromechanical model for the mechanical properties of two constituent composite materials, Part 3: strength behavior, J. thermoplastic Comp. Mater., 2001, 14(1):54-69
    [53] T.Ishicawa, T.W.Chou, One-dimensional micromechanical analysis of woven fabric composites, AIAA J. 1983,21:1714-1721
    [54] T.Ishicawa, T.W.Chou, Stiffness and strength behavior of woven fabric composites, J. Mater. Sci. 1982, 17:3211-3220
    [55] T.Ishicawa, T.W.Chou, Elastic behavior of woven hybrid composites, Journal of Composite Materials, 1982, 16: 2-19
    [56]燕瑛,编织复合材料弹性性能的细观力学模型,力学学报,1997,29(3):429-439
    [57] W.R.Yu, F.Pourboghrat, K. Chung, etc. Non-orthogonal constitutive equations for woven fabric reinforced thermoplastic composites, Composites, Part A, 2000, 33:1095-1105
    [58] P.Xue, X.Q.Peng, J.Cao, A non-orthogonal constitutive model for characterizing woven composites, Part A, 2003,34:183-193
    [59] J.P.Coulter, S.Guceri, Resin impregnation during the manufacturing of composite materials subject to prescribed injection rate, J. Reinforced Plastics and Composites, 1988(7): 200-219
    [60] M.K.Um, W.I.Lee, A study on the mold filling process in resin transfer moulding, Polymer Engineering and Science, 1991(31):765-771
    [61] A.W.Chan, S.Hwang, Modeling resin transfer moulding of axisymmetric composite parts, J. Materials Processing and Manufacturing science, 1992(1): 105-118
    [62] A.S.Verheus, J.H.A.Peeters, The role of reinforcement permeability in resin transfer moulding, Composites Manufacturing, 1993, 4(1):33-38
    [63] P.Ferland, D.Guitttard, F.Trochu, Concurrent methods for permeability measurement in resin transfer molding, Polymer Composites, 1996, 17(2):149-158
    [64] Z.Cai, Estimation of the permeability of fibrous performs for resin transfer moulding processes, Composites Manufacturing, 1992, 3(4):251-257
    [65] Z.Cai, Simplified mold filling simulation in resin transfer moulding, J. Composite Materials, 1992, 26: 2606-2630
    [66] F.Trochu, R.Gauvin, D.M.Gao, Numerical analysis of resin transfer molding process by the finite element method, Advances in Polymer Technology, 1993(12): 329-342
    [67] C.D.Rudd, E.V.Rice, L.J.Bulmer, A.C.Long, Process modeling and design for resin transfer moulding, Plastics, Rubber and Composites Processing and Applications, 1993, 20:67-76
    [68] R.Gauvin, F.Trochu, Comparison between numerical and experimental results for mold filling in resin transfer molding, Plastics, Rubber and Composites Processing and Applications, 1993, 19:151-157
    [69] W.B.Young, Three-dimensional nonisothermal mold filling simulations in resin transfer molding, Polymer Composites, 1994(15): 118-127
    [70] D.M.Gao, F.Trochu, R.Gauvin, Heat transfer analysis of non-isothermal resin transfer molding by the finite element method, Material and Manufacturing Processes, 1995(10): 57-64
    [71] M.K.Kang, W.I.Lee, J.Y.Yoo, S.M.Cho, Simulation of mold filling process during resin transfer molding, J. Materials Processing and Manufacturing science, 1995(3): 297-313
    [72] B.Liu, S.Bickerton, S.G.Advani, Modeling and simulation of resin transfer molding (RTM)– Gate control, venting and dry spot prediction, Composite: Part A, 1996(27): 135-141
    [73] C.L.Tucker, Heat transfer and reaction issues in liquid composite molding, Polymer Composites, 1996(17): 60-72
    [74] J.P.Chick, C.D.Rudd, P.A.Van Leeuwen, T.I.Frenay, Material characterization for flow modeling in structural reaction injection molding, Polymer Composites, 1996(17): 124-135
    [75]匡震邦,非线性连续介质力学,上海:上海交通大学出版社,2002:221-249,236
    [76]于同隐,高聚物的粘弹性,上海:上海科学技术出版社,1986:9-24
    [77]古大治,高分子流体动力学,成都:四川教育出版社,1988:12-45
    [78]方建农,范西俊,力学进展,1999,29(1): 112-120
    [79] W.N.Findly, J.S.Lai, K.Onaran, Creep and Relaxation of Nonlinear Viscoelastic Material, New York: Dover Publication, Inc., 1989:1-78
    [80] H.Leaderman, Elastic and Creep properties of filamentous materials and other high polymers, The Textile foundation, Washington DC, 1943:1-33
    [81] A.E.Green, R.S.Rivlin, the Mechanics of Nonlinear Materials with Memory, Part 1, Archive for Rational Mechanics and analysis, 1957,(1):1-7
    [82] A.E.Green, R.S.Rivlin, the Mechanics of Nonlinear Materials with Memory, Part 1, Archive for Rational Mechanics and analysis, 1959,(3):82-87
    [83] A.E.Green, R.S.Rivlin, Spencer, the Mechanics of Nonlinear Materials with Memory, Part 1, Archive for Rational Mechanics and analysis, 1960,(4):387-392
    [84] A.C.Pipkin, Small Finite Deformations of Viscoelastic Solids, Review of Modern Physics, 1964, (36): 1034-1045
    [85] F.J.Lockett, Creep and Stress Relaxation Experiments for Nonlinear Material, International Journal of Engineering Sciences, 1965, (3):383-397
    [86] W.Noll, A Mathematical Theory of the Mechanical behavior of Continuous Media, Archive for rational Mechanics and analysis, 1958,(2):197-205
    [87] B.D.Coleman, W.Noll, Foundations of Linear Viscoelasticity, Reviews of Modern Physics, 1961, (33):239-253
    [88] B. Bernstein, E.A.Kearsley, L.J. Zapas, A Study of Stress Relaxation with Finite Strain, Transaction of Society of Rheology, 1963, (7):391-402
    [89] R.A.Schapery, A Theory of Non-Linear Thermoviscoelasticity Based on Irreversible Thermodynamics, Proceeding of Fifth U.S. National Congress of Applied Mechanics ASME, 1966:511-530
    [90] R.A.Schapery, Further Developments of a Thermodynamic Constitutive Theory: Stress Formulation, Purdue Univ. Report, 1969(2):69-80
    [91] R.A.Schapery, An Engineering Theory of Nonlinear Viscoelasticity With Applications, International Journal of Solids and Structures, 1966, (2): 407-425
    [92] R.A.Schapery, On the charecterization of Nonlinear Viscoelastic Materials, Polymer Engineering and Science, 1969, (9):294-310
    [93] Y.C.Lou, R.A.Schapery, Viscoelastic Characterization of A Nonlinear Fiber-Reinforced Plastic, Journal of composite materials, 1971,(5): 208-234
    [94] D.Peretz, Nonlinear Viscoelastic Characterization of FM-73, Adhesive, Journal of Rheology, 1982, (26) 3:244-261
    [95] D.Peretz, Y.Weitsman, The Nonlinear Thermoviscoelastic Characterization of FM-73 Adhisives, Journal of Rheology, 1983, (27) 2:97-114
    [96] R.Mohan, D.F.Adams, Nonlinear Creep-Recovery Response of a Polymer Matrix and its Composites, Experimetal Mechanics, 1985(25)3:262-271
    [97] M.E.Tuttle, H.F.Brinson, Prediction of the Long-Term Creep Compliance of General Composite Laminates, Experimental Mechanics, 1986, (26):387-398
    [98] S.K.Ha, G.S.Springer, Time Dependent Behavior of Laminated Composites at Elevated Temperatures, Journal of Composite Materials, 1989, (23):1159-1197
    [99] D.E.Wairath, viscoelastic Response of a Unidirectional Composite Containing Two Viscoelastic Constituents, Experimental Mechanics, 1991, (31)2:111-117
    [100] A.Horoschenkoff, Characterization of the Creep Compliances J22 and J66 of Orthotropic Composites with PEEK and Epoxy Matrices Using the Nonlinear Viscoelastic Response of the Neat Resins, Journal of Composite Materials, 1990, (24): 879-891
    [101]张淳源,张为民,非线性粘弹性理论及其应用研究进展,湘潭大学自然科学学报,2003,25(4):28-32
    [102] Henriksen, Mogens, Nonlinear Viscoelastic Stress Analysis-A finite element Approach, Computers & Structures, 1984, (18)1: 133-139
    [103] S.Roy, J.N.Reddy, A Finite Element Analysis of Adhesively Bonded Composite Joints with Moisture Diffusion and Delayed Failure, Computers & Structures, 1988, (29)6: 1011-1031
    [104] S.Yi, H.H.Hilton, M.F.Ahmad, Nonlinear Thermo-Viscoelastic Analysis of Interlaminar Stresses in Laminated Composites", Journal of Applied Mechanics, 1996, 63:218-224
    [105] T.C.Kennedy, M.Wang, Three Dimensional, Nonlinear Viscoelastic Analysis of Laminated Composites, Journal of Composites Materials, 1994, (28)10:18-33
    [1]袁才登,乳液胶粘剂,北京:化学工业出版社,2004:382
    [2]王汝敏,郑水蓉,郑亚萍,聚合物基复合材料及工艺,北京:科学出版社,2004:112-237
    [3]魏邦柱,胶乳乳液应用技术,北京:化学工业出版社,2003:946
    [4]曹同玉,刘庆普,胡金生,聚合物乳液合成原理,北京:化学工业出版社,1997:516
    [5]李广宇,李子东,于敏,胶黏剂原材料手册,北京:国防工业出版社,2004:118
    [6]郭秉臣,非织造布,北京:中国纺织出版社,2002:78~79
    [7]方征平,宋义虎,沈烈,高分子物理,杭州:浙江大学出版社,2005:34-63
    [1]匡震邦,非线性连续介质力学,上海:上海交通大学出版社,2002:221-249,236
    [2]何曼君,陈维孝,董西侠等,高分子物理(修订版),上海:复旦大学出版社,1990:358
    [3]张开,高分子物理学,北京:化学工业出版社,1981:128
    [4] R.A.Schapery, Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics, Mechanics of Time-Dependent Materials, 1997(1):209-240
    [5] R.A.Schapery, Nonlinear viscoelastic solids, Int. J. Solids Structures, 2000(37):359-366
    [6] R.A.Schapery, Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media, J. Appl. Phys. 1964(35):1451-1465
    [7] R.A.Schapery, On the characterization of nonlinear viscoelastic materials, Polymer Eng. Sci. 1969(9):294-310
    [8] Y.C.Lou, R.A.Schapery, Viscoelastic characterization of a nonlinear fiber-reinforced plastic, J. Comp. Mat. 1971(5):208-234
    [9] K.Ha, R.A.Schapery, A three dimensional viscoelastic constitutive model for particulate composites with growing damage and its experimental validation, Int. J. Solids Structures, 1998(35):3497-3517
    [10] R.A.Schapery, Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media, Int. J. Fracture, 1984(25):194-223
    [11] S.W.Park, R.A.Schapery, A viscoelastic constitutive model for particulate composites with growing damage, Int. J. Solids Structures, 1997(34):931-947
    [12] R.M.Hinterhoelzl, R.A.Schapery, FEM implementation of a viscoelastic constitutive model for particulate composites with damage growth, Mechanics of Time-Dependent Materials, 2004(8):64-94
    [13]曾丹岑,工程非平衡热力学,北京:科学出版社,1991:66-100
    [14]黄克智,固体本构关系,北京:清华大学出版社,1999:183-185,193-194,197
    [15]叶其孝等,实用数学手册(第2版),北京:科学出版社,2006:636,633,635
    [16]麦华生,汽车地毯热力塑形成形传热过程研究与仿真[硕士论文],上海:上海交通大学,2004
    [17]屠传经,沈珞婵,胡亚才,高温传热学,浙江:浙江大学出版社,1997:65-69
    [18]杨强生,高等传热学,上海:上海交通大学出版社,1996:51-59
    [19]杨世铭,传热学,北京:人民教育出版社,1981:216~218
    [1]匡震邦,非线性连续介质力学,上海:上海交通大学出版社,2002:221-249
    [1]庄茁译,连续体和结构的非线性有限元,北京:清华大学出版社,2002:1-268
    [2]黄克智,固体本构关系,北京:清华大学出版社,1999:1-288
    [3]匡震邦,非线性连续介质力学,上海:上海交通大学出版社,2002:221-249
    [4] ABAQUS Theory Reference. HKS. Software Corpoation. 2006
    [5]石亦平,周玉蓉,ABAQUS有限元分析实例详解,北京:机械工业出版社,2006:1-225
    [6]庄茁等,ABAQUS非线性有限元分析与实例,北京:科学出版社,2005:1-405,489-533
    [1]梁炳文等,板金成形性能,北京:机械工业出版社,1999:12-49
    [2]胡世光,陈鹤峥,板料冷压成形的工程解析,北京:北京航空航天大学出版社,2004:263-298
    [3]匡震邦,非线性连续介质力学,上海:上海交通大学出版社,2002:221-249
    [4] Hasan O A, Boyce M C, A constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers, Polymer Eng. Sci. 1995;35:331-344
    [5] R.A.Schapery, Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics, Mechanics of Time-Dependent Materials, 1997(1):209-240
    [1]叶其孝等,实用数学手册(第2版),北京:科学出版社,2006:636,633,635
    [2]张少良,庄茁,复合材料与粘弹性力学,北京:机械工业出版社,2005:183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700