龙门山推覆构造带新生代热演化历史研究及其对青藏高原东缘隆升机制的约束
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Cenozoic Thermal History of the Longmenshan Thrust Belt: Implication for the Uplift Mechanism in the Eastern Margin of the Tibetean Plateau
  • 作者:谭锡斌
  • 论文级别:博士
  • 学科专业名称:构造地质学
  • 学位年度:2012
  • 导师:徐锡伟
  • 学科代码:070904
  • 学位授予单位:中国地震局地质研究所
  • 论文提交日期:2012-06-01
摘要
龙门山作为青藏高原的东边界,是一个从青藏高原到四川盆地的陡直的过渡地带,其新生代的造山运动受到约50Ma年前印度板块和欧亚板块碰撞的影响。2008汶川地震及其后续的研究证明了其晚更新世以来的活跃性,但是对于龙门山推覆构造带及其邻近地区的新生代的演化过程的认识还较缺乏。另外前人对于青藏高原东缘的隆升起始时间以及隆升机制等问题,做了大量研究,但仍存在不一致的看法。高原东缘隆升起始时间主要有两类观点:一、高原东缘隆升开始于20-30Ma,并经历过几次冷却事件;二、约10Ma以来高原东缘开始隆升,之前处于稳定状态。对于青藏高原东缘龙门山推覆构造带的隆升机制存在两种截然不同的看法:一、刚性块体的侧向挤出;二、下地壳流动。
     本研究采用锆石和磷灰石裂变径迹法,对龙门山推覆构造带不同地区的岩石进行系统的新生代以来的热演化历史研究。结合前人已有的热年代学数据,揭示龙门山推覆构造带及其邻近构造单元的岩石新生代剥露过程以及其与断层活动的关系,并对青藏高原东缘的隆升机制进行了讨论。
     龙门山推覆构造带整体表现为从南往北裂变径迹年龄逐渐变老的特征,表明新生代平均剥蚀速率从南往北逐渐降低的趋势。南段断层上盘离断层较近的位置样品锆石裂变径迹(ZFT)年龄大多为11-14Ma,随着离断层距离的增加,年龄增大到25-35Ma,高原内部的样品的ZFT年龄进一步增大到200Ma左右;中段的ZFT最年轻年龄出现在位于汶川-茂县断层上盘的雪隆包杂岩,为10.6Ma,其余样品均大于(或等于)40Ma;北段ZFT则全部大于60Ma,表明其新生代未发生退火。对于磷灰石裂变径迹(AFT)年龄来说,南段大部分样品年龄分布在1.9-5Ma之间,高原内部的样品年龄则大于10Ma;中段最年轻的样品仍出现在雪隆包杂岩,为2.1Ma,其它AFT年龄大多在8Ma附近,盆地内的AFT年龄则大多30Ma;北段AFT年龄明显较老,分布在30-189Ma之间。南段最快剥蚀速率达约2.1mm/yr(约1.9Ma以来),中段最快剥蚀速率达约1.9mm/yr(2.1Ma以来),北段最快剥蚀速率为0.1mm/yr(33Ma以来)。另外,南段、中段、北段多条断层表现出上盘年龄较小、下盘年龄较大的现象,表明新生代以来断层两侧存在差异剥蚀,且全部断层表现为逆冲性质。南段和中段断层两侧的差异剥蚀量较大,而北段较小,表明南段和中段的断层逆冲运动速率大于北段。龙门山推覆构造带中段的总剥蚀宽度明显较大,揭示出其主断层的低倾角(约30°)特征。南段断层活动有逐渐向盆地迁移的特征,青藏高原和四川盆地现今的运动差异主要被山前断裂和盆地内的隐伏断层所吸收。
     位于龙门山推覆构造带西南的贡嘎山岩体新生代晚期快速冷却,也表现出南快北慢的特征。南端约1Ma以来的隆升速率超过3.3±0.8mm/a,北端隆升速率约1.0-1.9mm/a (约6Ma以来)。岩体周边的三叠系地层剥蚀较慢,表明青藏高原在整体横向挤出、缓慢隆升的基础上,还存在着一些特殊的局部快速隆升区域。通过对川滇地块水平运动的矢量分析,我们认为贡嘎山花岗岩体是鲜水河断裂至安宁河断裂间挤压弯曲段吸收、转换青藏高原块体向东、向南东水平运动,导致局部快速隆升的产物。
     位于龙门山推覆构造带南段西侧的丹巴背斜,出露了一套从前寒武杂岩到三叠系变质岩的完整地层,为研究松潘-甘孜褶皱带中生代-新生代的变质、构造变形的重要“窗口”。前人做了大量研究,但是30Ma以来冷却历史仍然模糊不清。本研究在丹巴背斜获得了30个AFT和ZFT年龄,给出了丹巴背斜不同部位新生代以来的冷却历史。研究显示丹巴背斜地区的岩石从约25Ma开始持续冷却至今,平均冷却速率从核心部位的13.0±1.2℃/Ma,降低到次核心的10.5±1.1℃/Ma,进一步降低到背斜边缘的6.0±1.0℃/Ma,约25Ma以来的总剥蚀量从核心的13-15千米降低到边缘的5-7千米。根据岩石的最高变质温度以及新生代的冷却量,新生代以来丹巴背斜的变形占总变形的1/4-1/2。研究表明丹巴背斜地区约25Ma开始受到印度板块和欧亚板块碰撞的影响,表现为北东向缩短,且新生代的构造变形受到中生代或更老的构造背景所影响。
     龙门山推覆构造带北段西侧的岷山为新生代晚期快速抬升的山体(Kirby etal.,2002)。本研究在岷山地区获得了12个AFT年龄和径迹长度分布。通过HeFTy软件,对这些数据进行热历史模拟,获得了10个样品的冷却历史,揭示出其新生代经历了两次冷却事件,时间分别为30-50Ma和5-0Ma。5-0Ma的总冷却量约40℃,对应的剥蚀量约1-2千米,剥蚀速率0.2-0.4mm/yr。岷山地区的断层活动也表现出随时间向东转移的特征。GPS资料揭示的岷山地区2-3mm/yr的缩短速率,可以造成岷山0.2-0.4mm/yr的隆升,不需要下地壳流动假说的支持。
     通过对以上不同构造单元的冷却历史研究,揭示出研究区约30Ma开始受到印度板块和欧亚板块碰撞的影响而开始抬升,冷却速率总体表现为南快北慢的特征。龙门山推覆构造带以及岷江断裂带的断层活动均表现出向盆地转移的趋势。本研究所揭示的上地壳变形样式以及抬升的起始时间等结论,均不支持下地壳流动假说对青藏高原东缘隆升机制的解释。主要表现在以下五个方面:
     (1)龙门山推覆构造带汶川—茂县断层表现为逆冲运动性质,并非下地壳流动所认为的正断性质;剥蚀量最大的区域位于后山断裂上盘,与下地壳流动假说所认为的剥蚀量最大的区域(宝兴杂岩和彭灌杂岩)有所不同。
     (2)龙门山推覆构造带中段的汶川-茂县断裂、北川-映秀断裂以及彭灌断层控制的抬升区域很宽,表明其断层较缓,即断层倾角较低,而下地壳流动假说通常认为龙门山推覆构造带为高角度逆断层。
     (3)高原东缘龙门山区及其附近地区的抬升起始时间在30Ma左右,而下地壳流动假说通常认为高原东缘不同区域的抬升起始时间较一致,且非常年轻,距今约10Ma (Clark等,2005)。
     (4)丹巴背斜的变形,受到中生代老构造的控制,表明青藏高原并非均匀的连续变形的物质。丹巴背斜的变形表现出北东向上地壳挤压缩短,这种现象用下地壳流动假说无法解释。
     (5)岷山大部分地区的剥蚀速率较低,仅0.2-0.4mm/yr,GPS揭示的岷山2-3mm/yr的缩短速率可以通过虎牙断裂的逆冲运动控制岷山的隆升,无需下地壳流动的支持。
The Longmenshan (LMS) range which constitutes the eastern border of the Tibetanplateau is characterized by a steep topographic transition from the Sichuan Basin tothe plateau with about400km in length. The Cenozoic orogeny of this range wasresulted from the collision between the India plate and Eurasia since50Ma. The2008Wenchuan earthquake and the researches on the earthquake confirm the activity of theLMS since Late Pleistocene, but the Cenozoic evolution of the Longmenshan ThrustBelt (LTB) is still ambiguous, especially in the south segment. Furthermore,researchers have different views on the initial time and the mechanis of the uplift inthe eastern margin of the Tibetan plateau. For the initial time, there are two differentopinions: the first suggests that the eastern margin of the Tibet plateau uplift began20-30Ma, and expearenced several cooling event; the second contends that the theeastern margin of the Tibetan plateau remained stable from60-10Ma, and began touplift quickly from about10Ma to present. For the uplift mechanism, there are twoentirely different explanations: rigid lithospheric extrusion model and low-crustalchannel flow model.
     In this work, I use the zircon and apatite fission track method to research thethermal history of dozens of rocks at the LTB. Combining with previouslow-temperature thermochronology data, the fission track data reveal the Cenozoicexhumation process of the rocks and their relations with the activities of the faults atLTB. On that basis, I discuss the uplift mechanism of the eastern margin of theTibetan Plateau.
     In general, the fission track ages of the rocks at the LTB become older from southto north, which indicates that the average exhumation rate decreases from south tonorth of the LTB. In the southern segment, the Zircon Fission Track (ZFT) ages rangefrom11Ma to14Ma for the hanging wall of and close to the faults at south segmentof the LTB, and increase to about25-35Ma, following the increasing distance to thefault. In the middle segment, the youngest ZFT age of10.6Ma appeared at theXuelongbao Complex, the hanging wall of the Wenchuan-Maoxian fault, and the other ZFT ages are more than40Ma. In the northern segment, all the ZFT ages areover60Ma, which indicates all samples are not reset in the Cenozoic. Apatite FissionTrack (AFT) ages range from1.9Ma to5.0Ma in the southern segment. In the middlesegment, the youngest age also appears at same place with ZFT, and is in data of2.1Ma, while others are about8Ma. The AFT ages in the northern segment are obviousolder than that in the southern and middle segments, and range from30Ma to189Ma.The maximum average exhumation rates are2.1mm/yr from1.9Ma to present at thesouthern segment,1.9mm/yr from2.1Ma to present at the middle segment, and0.1mm/yr from33Ma to present at the northern segment, respectively. Moreover, thereare obvious differences in the ages cross faults, showing that the ages at the hangingwall are younger than the footwall, which indicates there are differential exhumationson the two sides of the faults, and all faults have thrust component in the Cenozoic.The differential exhumations are greater in the southern and middle segments thanthat in the northern segment, further indicating that the faults at the southern andmiddle segments have a larger thrust rate than that at the northern segment. Accordingto the width of the exhumation at the middle segment and the depth of the detachmentplane, I estimate the dip angles of the major faults, which are about30°, revealing thatthe faults at the middle segment are low dip angle faults. At the southern segment, theactivity of the faults migrate to the basin, and the present difference of movementbetween the Tibetan Plateau and the Sichuan Basin is mainly absorbed by front rangefaults and blind faults in the basin.
     The Gonggashan Granite located to the southwest of the LTB is cooling quicklyfrom late Cenozoic to present, and also shows the characteristics of a decreasing trendfrom south to north in the cooling rate. The biggest uplift rate from about1Ma topresent may equal or be more than3.3±0.8mm/a, while the uplift rate of the Triassicrocks is much smaller. The phenomena indicate that the partial area of the TibetanPlateau uplifted quickly when most of the plateau uplifted slowly. According to theresolution of vectors of the Sichuan-Yunnan Block’s horizontal movement, I think thatthe rapid uplift of the Gonggashan Granite is caused by the change of the strike of theXianshuihe fault, which absorbs and converts the eastward or southeastward horizontal movement of the Sichuan-Yunnan Block. The Gonggashan Granite may bethe product of this progress.
     The Danba Anticline to the west of the southern segment of the LTB is animportant region for research of Mesozoic-Cenozoic deformation, as it exposes arelated complete set of rocks, but the cooling history from30Ma to present is stillambiguous. In this work, I get16Apatite fission track and14Zircon fission trackages, and determine the cooling histories in different regions of the Danba Anticline.The result shows that the rocks in the Danba Anticline cooled quickly from ca.25Mato present, and the average cooling rates decreased from13.0±1.2℃/Ma at the core, tothe10.5±1.1℃/Ma at the subcenter, then to6.0±1.0℃/Ma at the periphery of theDanba Anticline. Supposing the paleo-geothermal gradient is25±5℃/km, thedenudation thicknesses from ca.25Ma to present decreased from13-15km at the coreto5-7km at the periphery of the Danba Anticline. According to the metamorphictemperature, the Cenozoic deformation takes up the1/4to1/2of the total deformationin the Danba Anticline. This research indicates that the Danba Anticline began to beaffected by the India-Asia collision at ca.25Ma and behaved as crustal shorteningtoward northeast.
     The Min Shan, located to the west of the north segment of the LTB, is also arange that uplifted quickly in late Cenozoic. I get12AFT ages and data of tracks’length, for thermal history modeling that shows that the Minshan range underwenttwo cooling events, which happened from50to30Ma and5Ma to present,respectively. The cooling amount in the later cooling event was about40℃, and theexhumation thickness and the exhumation rate were about1-2km and0.2-0.4mm/yr.Like the southern segment of the LTB, the activity of the faults in the Minshan regionalso moves east. The2-3mm/yr shortening revealed by GPS can cause the uplift witha rate of0.2-0.4mm/yr, and the low-crustal channel flow hypothesis is not needed forthe Minshan uplift.
     The thermal history research in different tectonic regions suggest that the easternmargin of the Tibetan plateau building, affected by the collision between the Indiaplate and the Eurasia plate, initialed at about30Ma, and the cooling rates decreased from south to north. The fault activity shows a tendency of moving to the Sichuanbasin. All of the phenomena revealed in this work, for example, the deformation styleof upper crust, and the initial time of the plateau building, don’t support thelow-crustal channel flow hypothesis. The reasons are mainly in the following fiveaspects:
     (1) The Wenchuan-Maoxian fault in the LTB is a thrust fault, while thelow-crustal channel flow hypothesis considers it as a normal fault. Themaximum exhumation regions are located on the hanging wall of theWenchuan-Maoxian fault, and not the Baoxing Complex and the PengguanComplex, which are thought to be the region with the biggest exhumation ratein the low-crustal channel flow explaination.
     (2) The Wenchuan-Maoxian fault, Beichuan-Yingxiu fault and Peng-Guan faultin the middle segment of the LTB control wide region uplift, which indicatesthat the ramps of those faults have slow slope. In other words, the faults havesmall dip angles, while the dip angles should be much bigger in thelow-crustal channel flow hypothesis.
     (3) The uplift of the Longmenshan and the other regions in the eastern margin ofthe Tibetan plateau initiated at about30Ma according to this research.However, the low-crustal channel flow hypothesis suggests that the easternmargin of Tibetan plateau uplifted quickly from about10Ma to present(Clark et al.,2005).
     (4) Cenozoic deformation of the Danba Anticline is controlled by Mesozoictectonics, which indicates the Tibetan plateau is not a homogeneous andcontinuous deformed material. The Danba Anticline behaves as upper crustalnortheast shortening, which is difficult to be explained by the low-crustalchannel flow hypothesis.
     (5) The uplift rates in most areas of the Min Shan are between0.2-0.4mm/yr, andthe2-3mm/yr shortening revealed by GPS can accomodate the uplift of theMin Shan, so the low-crustal channel flow hypothesis is not needed.
引文
Arne D, Worley B, Wilson C, et al.,1997.Differential exhumation in response to episodicthrusting along the eastern margin of the Tibetan Plateau.Tectonophysics,280:239~256
    Batt G. E. and Brandon M. T.,2002. Lateral thinking:2-D interpretation of thermochronology inconvergent orogenic settings, Tectonophysics,349:185–201
    Blisniuk, P.M., Hacker, B.R., Glodny, J., et al.,2001, Normal faulting in central Tibet since at least13.5Myr ago: Nature, v.412, p.628-632.
    Burchfiel, B. C., Z. Chen, Y. Liu, et al.,1995. Tectonics of the Longmen Shan and adjacentregions, central China, Int. Geol. Rev. v.37,661–735.
    Burchfiel, B. C.2004.2003presidential address: New technology, new geological challenges.GSA Today,14:4-9
    Burchfiel, B. C., L. H. Royden, R. D. van der Hilst, et al.2008. A geological and geophysicalcontext for the Wenchuan earthquake of12May2008, Sichuan, People’s Republic of China,GSA Today (GeologicalSociety of America),18,4–11.
    Brandon, M. T.1996. Probability density plot for fission-track-grain-age samples. Radiat. Meas.,26,663-676.
    Braun, J., Beek, P. van der, Batt, G.,2006. Quantitative thermochronology: Numerical methods forthe interpretation of thermochronological data: Cambridge University Press, p.5.
    Chen, S.F., Wilson, C.J.L.1996. Emplacement of the Longmen Shan Thrust–Nappe Belt along theeastern margin of the Tibetan Plateau. Journal of Structural Geology,18,413–440.
    Chen, Z., B. C. Burchfiel, Y. Liu, R. W. King, et al.,2000. Global Positioning Systemmeasurements from eastern Tibet and their implications for India/Eurasia intercontinentaldeformation, J. Geophys. Res.,105,16,215–16,227, doi:10.1029/2000JB900092.
    Chen, Z. X., D. Jia, Q. Zhang, et al.,2005. Balanced cross-section analysis of the fold-thrust beltof the Longmen Mountains (in Chinese with English abstract): Acta Geologica Sinica, v.79,p.38–45.
    Chung S.L., Lo C.H., Lee T.Y., et al.,1998. Diachronous uplift of the Tibetan plateau starting40Myr ago. Nature394,769-773.
    C.I.G.M.R.,1991. Chengdu Institute of Geology and Mineral Resourses, Geological, Map ofQinghai-Xizang (Tibet) Plateau and Adjacent Areas (1:1500000) and Explanation Note.Chengdu Cartographic Press.
    Clark M, Royden L H.2000. Topographic ooze: building the eastern margin of Tibet by lowercrustal flow. Geology,28(8):703~706
    Clark M.K., House M.A., Royden L.H., et al.,2005. Late Cenozoic uplift of southeastern Tibet.Geology,33(6):525~528
    Dirks P.H.G.M., Wilson C.J.L., Chen S., et al.,1994. Tectonic evolution of the NE margin of theTibetan Plateau: evidence from the central Longmen Mountains, Sichuan Province, China.Journal of Southeast Asian Earth Sciences,9,181-192.
    Donson,M. H.1973. Closure temperature in cooling geochronological and petrological systems.Contrib. Mineral. Petrol.40,259-274.
    Dunkl.2002. TRACKKEY: a Windows program for calculation and graphical presentation offission track data, Comput. Geosci.28:3–12.
    Enkin, R.J., Zhenyu, Y., Chen, Y., et al.1992. Paleomagnetic constraints on the geodynamichistory of the major blocks of China from Permian to the present. Journal of GeophysicalResearch,97,13953–13989.
    England P., Houseman G.1986. Finite strain calculations of continental deformation. Comparisonwith the India-Asia collision. Journal of Geophysical Research91,3364-3676.
    England, P., Houseman, G.,1989. Extension during continental convergence, with application tothe Tibetan Plateau. Journal of Geophysical Research94(B12),17561–17579.
    England, P., Molnar, P.,1990. Right-lateral shear and rotation as the explanation for strike-slipfaulting in eastern Tibet. Nature (London)344(6262),140–142.
    Fleischer, R. L. Price, P. B. and Walker, R. M.1975. Nuclear tracks in solids, principles andapplications. Univ. of California Press, Berkeley, Calif.,605P.
    Fleischer, R. L. Price, P. B. and Walker, R. M.1965. The ion explosion spike mechanism offormation of charged particle tracks in solids. Jour. Appl.Phy., v36, p.3645-3652.
    Gan, W., Zhang, P., Shen, Z.K., et al.,2007. Present-day crustal motion within the Tibetan Plateau.J. Geophys. Res.112, B08416. doi:10.1029/2005JB004120.
    Godard, V., R. Pik, J. Lavé, et al.,2009. Late Cenozoic evolution of the central Longmen Shan,eastern Tibet: Insight from (U-Th)/He thermochronometry, Tectonics28, doi10.1029/2008TC002407.
    Green, P.F.1985. Comparison of zeta calibration baselines for fission track dating of apatite,zircon, and sphene, Chem. Geol.,58,1-22.
    Green, P. F., I. R. Duddy, A. J. W. Gleadow, et al.,1989. Apatite fission-track analysis as apaleotemperature indicator for hydrocarbon exploration, in Thermal history of sedimentarybasins: Methods and case histories, edited by N. D. Naeser and T. H. McCulloh, pp.181-195,Springer, New York.
    Harkins N., Kirby E., Shi X., et al.2010. Millennial slip rates along the eastern Kunlun fault:Implication for the dynamics of intracontinental deformation in Asia. Lithosphere2(4),247-266, doi:10.1130/L85.1.
    Harrowfield, M.J., Wilson, C.J.L.,2005. Indosinian deformation of the Songpan-Garze fold belt,northeast Tibetan plateau. Journal of Structural Geology27,101–117.
    He H L, Ikeda Y, He Y L, et al.,2008. Newly-generated Daliangshan Fault Zone—Shortcutting onthe central section of Xianshuihe-Xiaojiang Fault systerm. Science in China (Series D),51(9):1248~1258.
    Huang, M.H., Buick, I.S., and Hou, L.W.,2003a, Tectonometamorphic evolution of the easternTibet Plateau: Evidence from the central Songpan-Garzê Orogenic Belt, western China:Journal of Petrology, v.44, p.255-278.
    Huang, M., Maas, R., Buick, I.S., and Williams, I.S.,2003b, Crustal response to continentalcollisions between the Tibet, Indian, South China and North China Blocks: geochronologicalconstraints from the Songpan-Garze Orogenic Belt, western China: J. metamorphic Geol.,21(3),223-240.
    Hubbard J, Shaw J H.2009. Uplift of the Longmen Shan and Tibetan plateau, and the2008Wenchuan (MS7.9) earthquake. Nature.458(12):194~197
    Hubbard J., Shaw J. H., and Klinger Y.2010. Structural Setting of the2008Mw7.9Wenchuan,China, Earthquake. Bulletin of the Seismological Society of America, Vol.100, No.5B, pp.2713–2735, November2010, doi:10.1785/0120090341
    Huerta, A.D., Rodgers, D.W.,2006. Constraining rates of thrusting and erosion: insights fromkinematic thermal modeling. Geology34(7),541–544.
    Hurford A. J. and Green P.F.,1982. The zeta calibration of fission track dating, Isotope Geosci.1,285-317.
    Hurford, A.J.1986. Cooling and uplift patterns in the Lepontine Alps South Central Switzerlandand an age of vertical movement on the Insubric fault line. Contrib. Miner. Petrol.,92,413-47
    Jia D., Wei G., Chen Z., et al.,2006. Longmen Shan fold-thrust belt and its relation to the westernSichuan Basin in central China: New insights from hydrocarbon exploration, AAPG Bulletin,v.90, no.9(2006), pp.1425–1447
    Jolivet, M., Ritz, J.F., Vassallo, R., et al.,2007. The Mongolian summits: an uplifted, flat, old butstill preserved erosion surface. Geology35(10),871–874.
    Jones L.M., Han W.B., Hauksson E., et al.,1984. Focal mechanisms and aftershock locations ofthe Songpan earthquakes of August1976in Sichuan, China. Journal of Geophysical Research89(B9),7697-7707.
    King, R. W., F. Shen, B. C. Burchfiel, et al.,1997. Geodetic measurements of crustal motion insouthwest China, Geology,25,179–182, doi:10.1130/0091-7613.
    Kirby E., Whipple K.X., Burchfiel B.C., et al.,2000. Neotectonics of the Min Shan, China:Implications for mechanisms driving Quaternary deformation along the eastern margin of theTibetan Plateau. GSA Bulletin112(3),375-393.
    Kirby E, Reiners P W, Krol M A, et al.2002. Late Cenozoic evolution of the eastern margin of theTibetan Plateau: Inferences from40Ar/39Ar and (U-Th)/He thermochronology. Tectonics,21(1):1~19.
    Kirby E, Harkins N, Wang E, et al.,2007. Slip rate gradients along the eastern Kunlun fault [J].Tectonics,26: TC2010
    Li C X, Xu Xiwei, Wen X Z, et al.,2011. Rupture segmentation and slip partitioning of themid-eastern part of the Kunlun Fault, north Tibetan Plateau. Sci China Earth Sci,54(1),1-16.doi:10.1007/s11430-011-4239-5
    Li Z., Liu S., Chen H., et al.2012. Spatial variation in Meso-Cenozoic exhumation history of theLongmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan basin:Constraints from fission track thermochronology. Journal of Asian Earth Sciences,47:185-203
    Li, Y., D. Jia, J. H. Shaw, et al.,2010. Structural interpretation of the co-seismic faults of theWenchuan earthquake: Three-dimensional modeling of the Longmen Shan fold-and-thrustbelt, J. Geophys. Res.115, doi10.1029/2009JB006824.
    Liu-Zeng, J., Zhang, Z., Wen, L., et al.,2009. Co-seismic ruptures of the12May2008, Ms8.0Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts alongthe eastern edge of Tibet: Earth and Planetary Science Letters, v.286, p.355-370.
    Lai Q Z, Ding L, Wang H W, et al.2007. Constraining the stepwise migration of the easternTibetan Plateau margin by apatite fission track thermochronology. Science in China (SeriesD),50(2):172-183
    Lock J. and Willett S.2008, Low-temperature thermochronometric ages in fold-and-thrust beltsTectonophysics456,147–162
    Meng Q R, Hu J M, Wang E, et al.2006. Late Cenozoic denudation by large-magnitude landslidesin the eastern edge of Tibetan Plateau. Earth and Planetary Science Letters,243(1-2):252-267
    Mock C., Arnaud N. O.,1995. Geochronological and geochemical data from sediments of theTarim basin (NW China). Characterization and quantification of the Kunlun uplift (N Tibet),from Miocene to present. In: Xth Himalaya-Karakoram-Tibet Workshop, Ascona, AbstractVolume. Italy.
    Mock C., Arnaud N.O., Cantagrel J.M.,1999. An early unroofing in northern Tibet? Constraintsfrom40Ar-39Ar thermochronology on granitoids from the eastern Kunlun range (Qinhai, NW,China). Earth and Planetary Science Letters,171,107-122.
    Molnar, P., Burchfield, B.C., Zhao, Z., et al.,1987. Geologic evolution of northern Tibet: resultsof an expedition to Ulugh Muztagh. Science235,257–396.
    Molnar P, England P, Martinod J.1993. Mantle dynamics, uplift of the Tibet Plateau, and theIndian monsoon.Reviews of Geophysics,31:357~396.
    Naeser C W, Faul H.1969. Fission track annealing in apatite and sphene.J Geophys Res.74(2):705~710.
    Naeser C.W., R.A. Zimmermann, G.T. Cebula,1981. Fission track dating of apatite and zircon: aninterlaboratory comparison, Nucl. Tracks5,65-72.
    Peltzer, G.F., Tapponnier, P.E.,1989. Magnitude of late Quaternary, left-lateral movement alongthe north edge of Tibet, Anonymous AGU1988fall meeting; late abstracts. Eos,Transactions American Geophysical Union, vol.70(20), p.599.
    Ran Y K, Chen L C, Cheng J W, et al.2008. Late Quaternary surface deformation and rupturebehavior of strong earthquake on the segment north of Mianning of the Anninghe Fault.Science in China (Series D),51(9):1224~1237.
    Reimer,G.M., Stozer, D. And Wagner, G. A.1970. Geometry factor in fission track counting. EarthPlant. Sci. Lett.,9,401-404.
    Reid, A.J., Wilson, C.J.L., Liu, S.,2005. Structural evidence for the Permo-Triassic tectonicevolution of the Yidun arc, eastern Tibetan plateau. Journal of Structural Geology27,119–137.
    Replumaz, A., Tapponnier, P.,2003. RE construction of the deformed collision zone betweenIndia and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research108(6),2285. doi:10.1029/2001JB000661.
    Reiners, P. W.2005. Zircons (U-Th)/He thermochrometry, in Low-TemperatureThermochronology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem.,vol.58, edited by P. W. Reinersand T. A. Ehlers, pp.151–179, Mineral. Soc. Of Am.,Chantilly, Va., doi:10.2138/rmg.2005.58.6.
    Richardson N.J., Densmore A.L., Sward D., et al.2008. Extraordinary denudation in the SichuanBasin: Insights from low-temperature thermochronology adjacent to the eastern margin ofthe Tibetan Plateau. Journal of Geophysical Research,113, B04409, doi:10.1029/2006JB004739.
    Richardson N.J., Densmore A.L., Seward D., et al.2010. Did incision of the Three Gorge begin inthe Eocene? Geology,38(6):551-554.
    Robert, A., Zhu, J. Vergne, J., et al.2009. Crustal structures in the area of the2008SichuanEarthquake from seismology and gravimetry. Tectonophysics.104~117.
    Roger F, Calassou S, Lancelot J, et al.1995. Miocene emplacement and deformation of KongaShan granite (Xianshuihe Fault Zone, west Sichuan, China): Geodynamic implications. EarthPlanet Sci Lett,130:201-216
    Roger, F., Arnaud, N., Gilder, S., et al.,2003. Geochronological and geochemical constraints onMesozoic suturing in East Central Tibet. Tectonics22(4),1037. doi:10.1029/2002TC001466.
    Roger F., Malavieille J., Leloup P.H., et al.2004. Timing of granite emplacement and cooling inthe Songpan-Garze fold belt (eastern Tibetan plateau) with tectonic implication. Journal ofAsian Earth Science22,465-481.
    Roger F., Jolivet M., Malavieille J.2010, Tectonic evolution of the Songpan-Garze (North Tibet)and adjacent areas rom Proterozoic to Present: A synthesis, Journal of Asian Earth Sciences39(2010)254–269
    Royden L H, Burchfiel B C, King R W, et al.1997. Surface deformation and the lower crustal flowin eastern Tibet. Science,294:1671~1677
    Royden, L.H., Burchfiel, B.C., Hilst R.D. van der,2008, The geological evolution of the TibetanPlateau: Science, v.321, p.1054-1058.
    Shen Z K, LüJ N, Wang M, et al.2005. Contemporary crustal deformation around the southeastborderland of the Tibetan Plateau. J Geophys Res,110(B11409).
    Shi, F., He H.L., Wei Z.Y.2012. Coseismic horizontal shortening associated with the2008Wenchuan Earthquake slong the Bashahe segment from high resolution satellite images,Journal of Asian Earth Sciences, doi:10.1016/j.jseaes.2012.01.001
    Stone, R.2008. Geophysics: An unpredictably violent fault, Science320,1578–1580.
    Suppe J.1983. Geometry and kinematics of fault-bend folding. American Journal of Science,283:684~721.
    Tapponnier, P., Peltzer, G., Ledain, A.Y., et al.,1982. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine. Geology10(12),611–616.
    Tapponnier P, Xu Z, Roger E et al.2001. Oblique stepwise rise and growth of the Tibet Plateau.Science,294:1671~1677
    Wagner G. A., Reimer G. M.,1972, Fission track tectonics: the tectonic interpretation of fissiontrack apatite age, Earth Planet. Sci. Lett.14,263–268.
    Wagner, G. A.1981. Fission-track ages and their geological interpretation, Nuclear Tracks,5,15-25.
    Wagner, G. and Van den haute, P.1992. Fission Track Dating. Kluwer Academic Publishers.
    Wallis, S., Tsujimori, T., Aoya, M., et al.,2003. Cenozoic and Mesozoic metamorphism in theLongmenshan orogen: Implications for geodynamic models of eastern Tibet: Geology, v.31,p.745-748.
    Wang, G.C., Cao, K., Zhang, K.X., Wang, A., Liu, C., Meng, Y.N., Xu, Y.D.,2011.Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic:Science China Earth Sciences, v.54, p.29-44.
    Wang, C-Y, Hai Lou, Paul G. Silver, et al.2010. Crustal structure variation along30°N in theeastern Tibetan Plateau and its tectonic implications, Earth Planet. Sci. Lett.289:367-376.
    Woerd J, Ryerson F, Tapponnier P, et al.2000. Uniform slip-rate along the Kunlun Fault:implication for seismic behaviour and large-scale tectonics [J]. Geophys Res Lett,27:2353~2356.
    Wilson, C.J.L., Harrowfield, M.J., Reid, A.J.,2006. Brittle modification of Triassic architecture ineastern Tibet: implications for the construction of the Cenozoic plateau. Journal of SoutheastAsian Earth Sciences,27,341–357.
    Wilson, C.J.L, and Fowler, W.P.,2011. Denudational response to surface uplift in east Tibet:Evidence from apatite fission-track thermochronology: GSA Bulletin, v.123, p.1966-1987.
    Xu G, Kamp P J.2000. Tectonics and denudation adjacent to the Xianshuihe Fault, eastern TibetanPlateau: Constrains from fission track thermochronology. J Geophys Res,105:19231~19251.
    Xu X W, Wen X Z, Yu G H, et al.2009. Coseismic reverse-and oblique-slip surface faultinggenerated by the2008Mw7.9Wenchuan earthquake, China. Geology,37(6):515~518.
    Yan, D.P., Zhou, M.F., Li, S.B., et al.,2011. Structural and geochronological constraints on theMesozoic-Cenozoic tectonic evolution of the Longmen Shan thrust belt, eastern TibetanPlateau: Tectonics, v.30, doi:10.1029/2011TC002867.
    Yin A., Harrison T.M..2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev.Earth Planet Sci,28,211-280.
    Zaun, P. E., Wagner, G. A.1985. Fission-track stability in zircons under geological conditions.Nucl.Tracks,10(3),303-307.
    Zhang P Z, Shen Z K, Wang M, et al.,2004. Continuous deformation of the Tibetan Plateau fromglobal positioning system data [J]. Geology,32(9):809-812.
    Zhang Y Q, Chen W, Yang N.,2004.40Ar/39Ar dating of shear deformation of the Xianshuihe faultzone in west Sichuan and its tectonic significance. Science in China (Series D),47(9):794~803.
    Zhang Z J, Wang Y H, Chen Y, et al.2009. Crustal structure across Longmenshan fault belt frompassive source seismic profiling. Geophysical Research Letters, vol.36, L17310, doi:10.1029/2009GL039580.
    Zhong D L, Ding L.1996. Rising process of the Qinghai-Xizang (Tibet) Plateau and itsmechanism. Science in China (Series D),39(4):369~379.
    Zhou, M.F., Yan, D.P., Vasconcelos, P.M. et al.,2008. Structural and geochronological constraintson the tectono-thermal evolution of the Danba domal terrane, eastern margin of the Tibetanplateau: Journal of Asian Earth Sciences, v.33, p.414-427.
    陈学波,吴跃强,杜平山等.龙门山构造带两侧速度结构特征[M].国家地震局科技监测司编.中国大陆深部构造的研究与进展.北京:地质出版社,1986.97~113.
    崔作舟.青藏高原深部地质特征及其形成机制的探讨[J].中国地质科学院院报,1987,17,1~17.
    陈文,张彦,张岳桥等.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报,2006,22(4):667~672.
    陈桂华,徐锡伟,于贵华等.2008年汶川Ms8.0地震多断裂破裂的近地表同震滑移及滑移分解,地球物理学报,2009,52(5):1384-1394.
    陈社发,邓起东,赵小麟等.龙门山中段推覆构造带及相关的演化历史和变形机制(一)[J].地震地质,1994,16(4):405~412.
    邓起东,陈社发,赵小麟.龙门山及其邻区的构造和地震活动及动力学.地震地质,1994,16(4):389-403.
    郭正吾,邓康龄,韩永辉.四川盆地形成与演化[M].北京:地质出版社,1996:48~138.
    国家重大科学工程“中国地壳运动观测网络”项目组. GPS测定的2008年汶川Ms8.0级地震的同震位移场,中国科学(D辑).2008,38(10):1195-1206.
    贾东,陈竹新,贾承造,等.龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育[J].高校地质学报,2003,9(3):402~410.
    贾承造,何登发,雷振宇,等.前陆冲断带油气勘探[M].北京:石油工业出版社,2000:1~351.
    嵇少丞,王茜,孙圣思等.亚洲大陆逃逸构造与现今中国地震活动.地质学报,2008,82(12):1644~1667.
    李勇,黎兵,周荣军等.剥蚀-沉积体系中剥蚀量与沉积通量的定量对比研究——以岷江流域为例[J].地质学报,2007,81(3):332~343.
    李康,徐锡伟,谭锡斌。龙泉山背斜的地壳缩短、隆升--来自河流阶地变形的证据.地震地质,2012.
    李勇,徐公达,周荣军,等.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].地质通报,2005,(12):20~32.
    李勇,周荣军,Alexander L等.映秀—北川断裂的地表破裂与变形特征[J].地质学报,2008,82(12):1689–1695.
    李勇,黄润秋,周荣军等.龙门山地震带的地质背景与汶川地震的地表破裂。工程地质学报,2009,17(1):0003-16.
    李智武,陈洪德,刘树根等.龙门山冲断隆升及其走向差异的裂变径迹证据。地质科学,2010,45(4):944-968.
    李智武,刘树根,陈洪德,等.龙门山冲断带分段—分带性构造格局及其差异变形特征[J].成都理工大学学报,2008,35(4):440~451.
    李立,金国元.攀西裂谷及龙门山断裂带地壳上地幔大地电磁测深研究[J].物探与化探,1987,11:161~169.
    鲁人齐,龙门山中段构造几何学、运动学及其对青藏高原东南缘隆升机制的约束。博士毕业论文,2011.
    罗志立,龙学明.龙门山造山带崛起和川西前陆盆地沉降[J]。四川地质学报,1992,12(1):1-17.
    刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993
    刘树根,赵锡奎,罗志立,等.龙门山造山带—川西前陆盆地系统构造事件研究[J].成都理工学院学报,2001,28(3):221~230.
    刘聪桂.台湾磷灰石、锆石、榍石之核飞迹研究与其在大地构造上之义.博士毕业论文,1982.
    刘启元,陈九辉,李顺成,等.汶川Ms8.0地震:川西流动地震台阵观测数据的初步分析[J].地震地质,2008,(3):584~596.
    刘树文,王宗起,闫全人等.折多山花岗岩时代、成因及其动力学意义.岩石学报,2006,22(2):343~352.
    刘殊.前陆盆地及其褶皱带隐蔽油气藏勘探方法研究—以米仓山、龙门山前陆盆地及其褶皱带为例,[博士毕业论文].北京:中国地震局地质研究所,2006.
    马保起,苏刚,侯治华,等.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,2005,27(2):234~242.
    冉勇康,徐锡伟,陈文山等.龙门山断裂带映秀-北川断裂的古地震及其复发间隔初步研究[J].国际地震动态,2010,6:28-29.
    司建涛,刘顺.青藏高原东缘岷江断裂构造特征、变形序列和演化历史[J].四川地质学报,2008,28(1):1~5.
    唐文清,刘宇平,陈智梁等.岷山隆起边界断裂构造活动初步研究[J].沉积与特提斯地质,2004,24(4):31-34.
    汤良杰,杨克明,金文正等.龙门山冲断带多层次滑脱带与滑脱构造变形[J].中国科学D辑,2008,38(增I):30~40.
    闻学泽,徐锡伟,郑荣章等.甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学D辑,2003,33:199~208.
    王椿镛,楼海,吕智勇,等.青藏高原东部地壳上地幔S波速度结构—下地壳流的深部环境[J].中国科学(D辑:地球科学),2008,(1):22~32.
    王庆良,崔笃信,王文萍等.川西地区现今垂直地壳运动研究[J].中国科学D辑,2008,38(5):598~610.
    徐锡伟,闻学泽,郑荣章等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学D辑,2003,33:151~162.
    徐锡伟,闻学泽,陈桂华等.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J].中国科学(D辑:地球科学),2008a,38(5):529-542.
    徐锡伟,闻学泽,叶建青,等.汶川M_S8.0地震地表破裂带及其发震构造[J].地震地质,2008b,30(3):597-629.
    徐锡伟,陈桂华,于贵华等.512汶川地震地表破裂基本参数的再论证及其构造内涵分析[J],2010,53(10):2321-2336.
    杨晓平,冯希杰,戈天勇,宋方敏,师亚芹,刘玉法,龙门山断裂带北段第四纪活动的地质地貌证据[J],地震地质,2008,30(3):644-657
    于贵华,徐锡伟,Klinger Y.,等.汶川Mw7.9级地震同震断层陡坎类型与级联破裂模型[J].地学前缘,2010,17(5):1-18.
    姚琪.汶川地震孕育机制及发震构造研究。博士后研究工作报告,2012.
    杨克明,谢用良,段文燊等.川西坳陷须家河组圈闭评价与深层天然气有利勘探目标优选.中国石化西南分公司.2003.
    殷建棠,代建全,何志国等.四川盆地逆掩推覆带天然气藏形成条件及勘探方向[J].地质矿产部西南石油地质局地质综合研究大队.1994.12.
    曾融生,朱介寿,周兵等.青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型[J].地震学报,1992,(S1):523~533.
    周荣军,蒲晓虹,何玉林等.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系[J].地震地质,2000,22(3):285-294.
    张培震,徐锡伟,闻学泽,等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,(4):1066~1073.
    赵小麟,邓起东,陈社发.岷山隆起的构造地貌学研究[J].地震地质,1994,16(4):429-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700