基于节理组构的应变分析及其在碎屑岩褶皱中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本次研究针对脆韧性域中岩石应变量定量分析的难题,采用了以组构分析为基础的节理研究方法,在川西盆地北东走向褶皱带中详细的节理测量和分析。在建立了对褶皱中节理的样式和成因的清楚认识的基础上,以节理阶段式发育的现象为依据实现了脆韧性褶皱变形中的岩石应变进行了定量计算。
     本次研究采用的以节理组构为基础的野外测量和节理分析方法相对传统的工作方式具有先进性。野外节理测量支持系统是包含露头中的复杂节理测量、节理组构图的建立、节理模式确定以及节理分期配套的综合操作。利用露头中节理及其在组构中的投影的对应关系,指导复杂露头中的节理识别和测量工作。从而能够在野外测量过程中提高工作的效率和准确性。通过具有统计特征的节理组构进行节理分析,更具有统计分析的准确性、数据的全面性和图式分析的直观性,有效地提高了节理分析的精度,为脆-韧性域中以节理为基础的应变分析提供了良好的基础。
     以此为基础完成了研究区内褶皱中不同变形阶段地层中的节理样式调查,发现背斜变形过程中主要依次发育平面共轭剪节理、纵张节理以及层间剪节理,建立了区域内节理在连续褶皱变形过程中的发育规律模型。并发现区域内节理发育类型和密度的控制因素主要为构造位置(变形模式)、地层倾角(变形程度)、地层厚度以及岩性。
     通过地层连续变形过程中节理组构样式节的对比分析,发现在岩石发生破裂之后,随着应变量的继续增加会再次破裂并产生新的节理,即节理的幕式发育。通过幕式发育过程中的节理统计和计算,简单剪切和纯剪剪切过程中岩石破裂前的应变量均为30%左右。通过相关讨论,认为在埋藏条件下岩石破裂之前除弹性变形外又经历了大量的塑性变形;破裂后的岩石的变形方式由均匀的单剪变形转变为由碎裂块体沿层间剪节理滑动和块体本身的剪切变形两部分组成。节理的幕式发育为岩石破裂后的应力应变分析提供了新的依据,并为脆-韧性域中的复杂变形分析提供了依据。
     除此之外,新发展的组构分解的方法为难以观察到节理交切关系的区域的节理分期配套提供了解决途径。通过节理组构分析和节理特征验证发现研究区内存在两个期次的节理,并对各期次中应力场方向进行了分析。通过以节理为指示的应力场分析和有限元模拟发现先存断层和背斜组成的构造边界会导致非正交方向的应力发生方向偏转。并发现先存节理会造成节理间岩石块体内部的应力变化,导致产状不规律的非系统性节理的产生。
Focusing on the topic of quantitative analysis of strata strain in brittle-ductile deformation, the fracture patterns of a NE striking fold belt in the western Sichuan foreland basin, China, were analyzed based on detailed field fracture measurement according to the method of fracture fabrics analysis. Based on the precise understanding of the patterns and mechanism interpretations of fractures in anticlines, we took the phenomenon of the episodic development of fractures as evidence and realized the quantitative calculation of strata strain in brittle-ductile folding deformation.
     Compared to operating methods in previous studies, the field measuring and analyzing method based on fracture fabrics in this study have many advantages. The field fracture survey supporting system is an integrated operation including measuring complex fractures in folded strata, creating a polar stereonet of fracture fabrics, analyzing the deformation mode of the fractures, and fracture divided period coordination. Based on the corresponding relationship between fractures in the outcrops and their poles in the fracture fabrics, the identification of fractures was more convenient and accurate and field observation was more targeted. Therefore with the system the efficiency and accuracy of field work could be improved. The statistics analysis of fracture fabrics is more accurate, comprehensive and intuitive, which effectively improves the precision of strain analysis and provide basis for the quantitative analysis of strata strain in brittle-ductile deformation.
     With this method the survey of fracture patterns in different stages of fold evolution were accomplished. It was found that the plane conjugate shear fractures, tensile fractures parallel to fold axis, and stratabound shear fractures caused by layer parallel shear were mainly developed, and a model of the relationship between fracture development and successive folding deformation was established. According to the comparison of fracture patterns at different sampling sites, the position in folds (deformation modes), dip angle of strata (deformation degree), thickness of strata and lithology were considered as the principal controlling factors on fracture patterns and densities in the study area.
     Based on comparison of fracture fabrics in the successive folding process, it was discovered that a second failure often occurred in the continuous increase of strain after the rock was firstly cracked, that was, the episodic development of fractures. Based on the orientation variation of the fractures and the dip angle of strata when failure occurred, the longitudinal strain between the two episodes was equally about30%in both pure shear and simple shear deformation. According to related discussion, it was inferred that a large ductile deformation happened before the rocks were cracked under burial conditions. After the development of stratabound shear fractures, the layer parallel shear of the folded strata was through the sliding of blocks along fractures and associated shear deformation near sliding faces, rather than uniform simple shear. The episodic development of fractures proposed a new model of fracture development and stress-strain relationship after rock failure, which could be used to trace complex brittle-ductile deformation process in the field. Moreover, the decomposition of fracture fabrics provided a new method for the relative timing of fracture formation in areas where no clear abutting relationships could be observed. According to analysis of fracture fabrics and re-examination from fracture features, it was proved fracture sets of two periods were developed in the study area, and the direction of stress field of each period was discussed. Based on fracture evidence and finite element simulation it was discovered that pre-existing fault and anticline would induce a rotation to the direction of a stress which was oblique to them. It was also found under the effect of pre-existing fractures, the stress direction in blocks between fractures would change diversely, and the non-systematic fractures were developed.
引文
Ahlgren, S.G., The nucleation and evolution of Riedel shear zones as deformation bands in porous sandstone [J]. Journal of structural geology,2001,23:1203-1214.
    Amrouch, K., Lacombe, O., Bellahsen, N., Daniel, J.M., Callot, J.P., Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline:Sheep Mountain Anticline,Wyoming [J]. Tectonics,2010,29:TC1005.
    Anastasio, D.J., Fisher, D.M., Messina, T.A., Holl, J.E., Kinematics of decollement folding in the Lost River Range, Idaho [J]. Journal of Structural Geology,1997,19:355-368.
    Angelier, J., Tectonic analysis of fault slip data sets [J]. Journal of Geophysical Research, 1984,89:5835-5848.
    Atkinson, B.K., Experimental deformation of polycrystalline pyrite:effects of temperature, confining pressure, strain rate, and porosity [J]. Economic Geology,1975,70(3): 473-487.
    Barton, C., Moos, D., Tezuka, K., Geomechanical wellbore imaging:Implications for reservoir fracture permeability [J]. AAPG Bulletin,2009,93(11):1551-1569.
    Bartlett, W.L., Friedman, M., Logan, J.M., Experimental folding and faulting of rocks under confining pressure. Part IX. Wrench faults in limestone layers [J]. Tectonophysics,1981, 79:255-277.
    Bellahsen, N., Fiore, P., Pollard, D.D., The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming [J]. Journal of Structural Geology,2006, 28:850-867.
    Bergbauer, S., Pollard, D.D., A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming [J]. Geological Society of America Bulletin,2004,116:294-307.
    Bergbauer, S., Testing the predictive capability of curvature analyses [M]. in S. J. Jolley, D. Barr, J. J. Walsh, and R. J. Knipe, eds., Structurally complex reservoirs. Geological Society (London) Special Publication,2007,292:185-202.
    Blenkinsop, T.G., Relationships between faults, extension fractures and veins, and stress [J]. Journal of Structural Geology,2008,30(5):622-632.
    Brady, B.T., A mechanical equation of state for brittle rock Part Ⅰ--The pre-failure behavior of brittle rock [J]. International Journal of Rock Mechanics & Mining Sciences,1970, 7:385-421.
    Burchfiel, B.C., Chen, Z.L., Yupinc, L., Royden, L.H., Tectonics of the Longmen Shan and adjacent regions, central China [J]. International Geology Review,1995,37(8):661-735.
    Busetti, S., Mish, K., Reches, Z., Damage and plastic deformation of reservoir rocks:Part I. Damage fracturing [J]. AAPG Bulletin,2012,96(9):1687-1709.
    Casini, G., Gillespie, P.A., Verges, J., Romaire, I., Fernandez, N., Casciello, E., Saura, E., Mehl, C, Homke, S., Embry, J.-C, Aghajari, L., Hunt, D.W., Sub-seismic fractures in foreland fold and thrust belts:insight from the Lurestan Province, Zagros Mountains, Iran. Petroleum Geoscience,2011,17 (3):263-282.
    Chamlagain, D., Hayashi, D., Neotectonic fault analysis by 2D finite element modeling for studying the Himalayan fold-and-thrust belt in Nepal [J]. Journal of Asian Earth Sciences, 2007,29(2-3):473-489.
    Cheng, W.Q., Yang, K.G., Kusky, T.M., Xiao, H., Kinematic and thermochronological constraints on the Xincheng-Huangpi fault and Mesozoic two-phase extrusion of the Tongbai-Dabie Orogen Belt [J]. Journal of Asian Earth Sciences,2012,60:160-173.
    Chu, Y., Faurea, M, Lin, W., Wang, Q.C., Early Mesozoic tectonics of the South China block: Insights from the Xuefengshan intracontinental orogen [J]. Journal of Asian Earth Sciences,2012,61:199-220.
    Cooke, M.L., Mollema, P.N., Pollard, D.D., Aydin, A., Interlayer slip and joint localization in the East Kaibab Monocline, Utah:field evidence and results from numerical modeling [M]. In:Cosgrove, J.W., Ameen, M.S. (Eds.), Forced Folds and Fractures. Geological Society, London, Special Paper,2000,169:23-49.
    Couzens, B.A., Dunne, W.M., Displacement transfer at thrust terminations:Saltville thrust and Sinking Creek anticline, Virginia, U.S.A [J]. Journal of Structural Geology,1994, 16:781-793.
    Deng, B., Liu, S.G., Jansa, L.B., Cao, J.X., Cheng, Y., Li, Z.W., Liu, S., Sedimentary record of Late Triassic transpressional tectonics of the Longmenshan thrust belt, SW China [J]. Journal of Asian Earth Sciences,2012,48:43-55.
    Diabat, A., Fracture systems of granites and Quaternary deposits of the area east of Aqaba: indicators of reactivation and neotectonic activity [J]. Arabian Journal of Geosciences, 2013,6(3):679-695.
    Dirks, P., Wilson, C.J.L., Chen, S., Luo, Z.L., Liu, S., Tectonic evolution of the NE margin of the Tibetan Plateau:Evidence from the central Longmen Mountains, Sichuan Province, China [J]. Journal of Southeast Asian Earth Sciences,1994,9:181-192.
    Donath, F.A., Faill, R.T., Tobin, D.G., Deformational Mode Fields in Experimentally Deformed Rock [J]. Geological Society of America Bulletin,1971,82:1441-1462.
    Dresen, G., Stress distributioin and the orientation of Riedel shears [J]. Tectonophysics,1991, 188:239-247.
    Dunne,W. M., Mesostructural development in detached folds:An example from West Virginia: Journal of Geology,1986,94:473-488.
    Dyer, R., Using joint interactions to estimate paleostress ratios [J]. Journal of Structural Geology,1988,10:685-699.
    Engelder, J.T., Cataclasis and the generation of fault gouge [J]. Geological Society of America Bulletin,1974,85:1515-1522.
    Engelder, T., Peacock, D.C.P., Joint development normal to regional compression during flexural-flow folding:the Lilstock buttress anticline, Somerset, England [J]. Journal of Structural Geology,2001,23:259-277.
    Eyal, Y., Gross, M.R., Engelder, T., Becker, A., Joint development during fluctuation of the regional stress field in southern Israel [J]. Journal of Structural Geology,2001,23(2-3): 279-296.
    Eyal, Y., Osadetz, K.G., Feinstein, S., Evidence for reactivation of Eocene joints and pre-Eocene foliation planes in the Okanagan core-complex, British Columbia, Canada [J]. Journal of Structural Geology,2006,28:2109-2120.
    Ferrill, D.A., Morris, A.P., McGinnis, R.N., Crossing conjugate normal faults in field exposures and seismic data [J]. AAPG Bulletin,2009,93(11):1471-1488.
    Fischer, M.P., Wilkerson, M.S., Predicting the orientation of joints from fold shape:Results of pseudo-three-dimensional modeling and curvature analysis [J]. Geology,2000, 28(1):15-18.
    Garcia-Navarro, E., Fernandez, C., Palaeostress perturbations near the El Castillo de las Guardas fault (SW Iberian Massif) [J]. Journal of Structural Geology,2010,32(5): 693-702.
    Gray, M.B., Mitra, G., Migration of deformation fronts during progressive deformation: evidence from detailed structural studies in the Pennsylvania Anthracite region, USA [J]. Journal of Structural Geology,1993,15:435-449.
    Groshong, R.H., Strain, fractures and pressure solution in natural single-layer folds [J]. Geological Society of America Bulletin,1975,86:1363-1376.
    Gudmundsson, A., Rock fractures in geological processes [M]. Cambridge University Press, New York,2011:133-141.
    Guiton, M.L.E., Sassi, W., Leroy, Y.M., Gauthier, B.D.M., Mechanical constraints on the chronology of fracture activation in the folded Devonian sandstone of the western Moroccan Anti-Atlas [J]. Journal of Structural Geology,2003,25(8):1317-1330.
    Hajiabdolmajid, V., Kaiser, P.K., Martin, C.D., Modeling brittle failure of rock [J]. International Journal of Rock Mechanics & Mining Sciences,2002,39:731-741.
    Hall, S.A., Kendall, J.M., Fracture characterization at Valhall:Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean bottom data set [J]. Geophysics,2003,68:1150-1160.
    Haimson, B., Chang, C., A new true triaxial cell for testing mechanical properties of rock [J]. International Journal of Rock Mechanics and Mining Sciences,2000(1-2),37:285-296.
    Hancock, P.L., Brittle microtectonics:Principles and practice [J]. Journal of Structural Geology,1985,7:437^57.
    Hennings. P., AAPG-SPE-SEG Hedberg research conference on "The Geologic Occurrence and Hydraulic Significance of Fractures in Reservoirs" [J]. AAPG Bulletin,2009, 93(11):1407-1412.
    Homberg, C., Hu, J.C., Angelier, J., Bergerat, F., Lacombe, O., Characterization of stress perturbations near major fault zones:insights from 2-D distinct-element numerical modeling and field studies (Jura Mountains) [J]. Journal of Structural Geology,1997, 19(5):703-718.
    Inigo, J.F., Laubach, S.E., Hooker, J.N., Fracture abundance and patterns in the Subandean fold and thrust belt, Devonian Huamampampa Formation petroleum reservoirs and outcrops, Argentina and Bolivia [J]. Marine and Petroleum Geology,2012:1-18.
    Islam, M.S., Shinjo, R., Kayal, J.R., The tectonic stress field and deformation pattern of northeast India, the Bengal basin and the Indo-Burma Ranges:A numerical approach [J]. Journal of Asian Earth Sciences,2011,40(1):121-131.
    Ismat, Z., Mitra, G., Folding by cataclastic flow at shallow crustal levels in the Canyon Range, Sevier orogenic belt, west-central Utah [J]. Journal of Structural Geology,2001, 23(2-3):355-378.
    Ismat, Z., Mitra, G., Folding by cataclastic flow:evolution of controlling factors during deformation [J]. Journal of Structural Geology,2005,27(12):2181-2203.
    Ismat, Z., Benford, B.A., Deformation in the core of a fold:Unraveling the kinematic evolution of tight, multilayer folds developed in the upper crust. Journal of Structural Geology,2007, 29:497-514.
    Ismat, Z., Folding kinematics expressed in fracture patterns:An example from the Anti-Atlas fold belt, Morocco [J]. Journal of Structural Geology,2008,30:1396-1404.
    Jia, D., Wei, G.Q., Chen, Z.X., Li, B.L., Zeng, Q., Yang, G., Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights from hydrocarbon exploration [J]. AAPG Bulletin,2006,90(9):1425-1447.
    Jia, Q.P., Jia, D., Zhu, A.L., Chen, Z.X., Hu, Q.W., Luo, L., Zhang, Y.Y., Li, Y.Q., Active tectonics in the Longmen thrust belt to the eastern Qinghai-Tibetan Plateau and Sichuan Basin:evidence from topography and seismicity (in Chinese with English abstract) [J]. Chinese Journal of Geology,2007,42:31-44.
    Jia, Q.P., Jia, D., Luo, L., Chen, Z.X., Li, Y.Q., Deng, F., Sun, S.S., Li, H.B., Three-dimensional evolutionary models of the Qiongxi structures, southwest Sichuan Basin, China:Evidence from seismic interpretation and geomorphology [J]. Acta geologica sinica,2009,83(2):372-385.
    Jin, W.Z., Tang, L.J., Yang, K.M., Wan, G.M., Lu, Z.Z., Segmentation of the Longmen Mountains thrust belt, Western Sichuan Foreland Basin, SW China [J]. Tectonophysics, 2010,485(1-4):107-121.
    Kantian von Th, Festigkeits Versuche unter allseitigem Druck, Z. Verhandl (in German) [J]. Deut. Ingr.,1911,55:1749-1759.
    Kattenhorn, S.A., Aydin, A., Pollard, D.D., Joints at high angles to normal fault strike; an explanation using 3-D numerical models of fault perturbed stress fields [J]. Journal of Structural Geology,2000,22:1-23.
    Katz, Y.,Weinberger, R., Aydin, A., Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah [J]. Journal of Structural Geology,2004, 26:491-501.
    Lacazette, A., Paleostress analysis from image logs using pinnate joints as slip indicators [J]. AAPG Bulletin,2009,93(11):1489-1501.
    Lemiszki, P.J., Landers, J.D., Hatcher, R.D., Controls on hinge-parallel extension fracturing in single-layer tangential-longitudinal strain folds [J]. Journal of Geophysical Research, 1994,99:22027-22041.
    Lewis, H., Hall, S.A. Couples, G.D., Geomechanical simulation to predict open subsurface fractures [J]. Geophysical Prospecting,2009,57(2):258-299.
    Li, Z.W., Luo, Y.H., Liu, S.G., Gong, C.M., Shan, Y.M., Liu, W.G., Liu, S., Yong, Z.Q., Sun, W., The experimental analysis of mechanical properties of compact reservoir rocks under formation conditions, northeast of Sichuan basin, China [J]. Journal of Mineralogy and Petrology,2005,25(4):52-60.
    Lisle, R.S., Predicting patterns of strain from three-dimensional fold geometries:Neutral surface folds and forced folds [M], in J.W. Cosgrove and M. S. Ameen, eds., Forced folds and fractures:Geological Society (London) Special Publication,2000,169: 213-221.
    Liu, F.S., Borja, R.I., An extended finite element framework for slow-rate frictional faulting with bulk plasticity and variable friction [J]. International journal for numerical and analytical methods in geomechanics,2009,33:1535-1560.
    Masaferro, J.L., Bulnes, M., Poblet, J., Casson, N., Kinematic evolution and fracture prediction of the Valle Morado structure inferred from 3-D seismic data, Salta Province, northwest Argentina [J]. AAPG Bulletin,2003,87:1083-1104.
    McLennan, J.A., Allwardt, P.F., Hennings, P.H., Farrell, H.E., Multivariate fracture intensity prediction:Application to Oil Mountain anticline, Wyoming [J]. AAPG Bulletin,2009, 93(11):1585-1595.
    Mercier, J.L., Armijo, R., Tapponnier, P., Carey-Gailhardis, E., Lin, H.T., Change from late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia collision [J]. Tectonics,1987,6(3):275-304.
    Misra, S., Mandal, N., Chakraborty, C., Formation of Riedel shear fractures in granular materials:Findings from analogue shear experiments and theoretical analyses [J]. Tectonophysics,2009,471:253-259.
    Mobasher, K., Babaie, H.A., Kinematic significance of fold-and fault-related fracture systems in the Zagros mountains, southern Iran [J]. Tectonophysics,2008,451:156-169.
    Moore,D.E., Byerlee, J., Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California[J]. Tectonophysics,1992,211(1-4):305-316.
    Mynatt, I., Seyum, S. Pollard, D.D., Fracture initiation, development, and reactivation in folded sedimentary rocks at Raplee Ridge, UT [J]. Journal of Structural Geology.2009, 31:1100-1113.
    Narr, W., Suppe, J., Joint spacing in sedimentary rocks [J]. Journal of Structural Geology, 1991,13:1037-1048.
    Nickelsen, R.P., Sequence of structural stages of the Allegheny orogeny, at the Bear Valley strip mine, Shamokin, Pennsylvania [J]. American Journal of Science,1979, 279:255-271.
    Olson, J.E., Natural fracture pattern characterization using a mechanically-based model constrained by geologic data—Moving closer to a predictive tool [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34:171.el-171.e12.
    Olson, J.E., Sublinear scaling of fracture aperture versus length:An exception or the rule [J]. Journal of Geophysical Research,2003,108(B9),2413.
    Pollard, D.D., Segall, P., Theoretical displacements and stresses near fractures in rocks:with applications to faults, joints, veins, dikes, and solution surfaces [M]. In:Atkinson, B.K.(Ed.), Fracture Mechanics of Rock. Academic Press, London,1987:277-349.
    Pollard, D.D., Aydin, A., Progress in understanding jointing over the past century [J]. Geological Society of America Bulletin,1988,100:1181-1204.
    Ragan, D.M., Deng, H.Q., Structural Geology:An Introduction to Geometrical Techniques (In Chinese) [M]. Geological Publishing House,1984:62-64.
    Ramsay, J.G., Folding and fracturing of Rocks [M]. New York, Mcgraw-Hill,1967:84-85.
    Ramsay, J.G., Huber, M.I., The techniques of modern structural Geology:Volume 1:Strain Analysis [M]. Academic Press Inc, London LTD,1983:30.
    Ramsay, J.G., Huber, M.I., The techniques of modern structural Geology:Volume 2:Folds and Fractures [M]. Academic Press Inc, London LTD,1987:445-447.
    Rawnsley, K..D., Rives, T., Petti, J. P., Hencher, S.R., Lumsden, A.C., Joint development in perturbed stress fields near faults [J]. Journal of Structural Geology,1992,14:939-951.
    Reif, D., Decker, K., Grasemann, B., Peresson, H., Fracture patterns in the Zagros fold-and-thrust belt, Kurdistan Region of Iraq [J]. Tectonophysics,2012,576-577:46-62.
    Riedel, W., Zur mechanik geologischer brucherscheinungen [J]. Centralblatt fur Minerologie, Geologie und Paleontologie 1929B:354.
    Sanderson, D.J., Models of strain variation in nappes and thrust sheets:A review [J]. Tectonophysics,1982,88:201-233.
    Sanderson, D.J., Marchini, W.R.D., Transpression [J]. Journal of structural geology,1984, 6(5):449-458.
    Sanz, P.F., Pollard, D.D., Allwardt, P.F., Borja, R.I., Mechanical models of fracture reactivation and slip on bedding surfaces during folding of the asymmetric anticline at Sheep Mountain, Wyoming [J]. Journal of Structural Geology,2008,30:1177-1191.
    Savage, H.M., Shackleton, J.R., Cooke, M.L., Riedel, J.J., Insights into fold growth using fold-related joint patterns and mechanical stratigraphy [J]. Journal of Structural Geology, 2010,32:1466-1475.
    Smart, K.J., Ferrill, D.A., Morris, A.P., Impact of interlayer slip on fracture prediction from geomechanical models of fault-related folds [J]. AAPG Bulletin,2009, 93(11):1447-1458.
    Stearns, D.W., Friedman, M., Reservoirs in fractured rocks [J]. American Association of Petroleum Geologists Memoir,1972,16:82-100.
    Stewart, S.A., Podolski, R., Curvature analysis of gridded geological surfaces [M], in M. P. Coward, T. S. Daltaban, and H. Johnson, eds., Structural geology in reservoir characterization:Geological Society (London) Special Publication,1998,127,133-147.
    Storti, F., Salvani, F., Fault re-activation, fracture patterns, and cataclasite development in the carbonate rocks of the Narni Anticline. The evolution of a model trap structure in the Apennines, Italy [J]. Journal of Structural Geology,2001,24:171-190.
    Takahashi, M., Koide, H., Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m [M]. In: Maury V, Fourmaintraux D, editors. Rock at Great Depth. Rotterdam, Balkema, 1989:19-26.
    Tavani, S., Storti, F., Fernandez, O., Munoz, J.A., Salvini, F.,3-D deformation pattern analysis and evolution of the Anisclo anticline, southern Pyrenees [J]. Journal of Structural Geology,2006,28:257-275.
    Tavani, S., Mencos, J., Bausa, J., Munoz, J.A., The fracture pattern of the Sant Corneli Boixols oblique inversion anticline (Spanish Pyrenees) [J]. Journal of Structural Geology, 2011,33:1662-1680.
    Vitale, S., Dati, F., Mazzoli, S., Ciarcia, S., Guerriero, V., lannace, A., Modes and timing of fracture network development in poly-deformed carbonate reservoir analogues, Mt. Chianello, southern Italy [J]. Journal of Structural Geology,2012,37:223-235.
    Tiwari, R.P., Rao, K.S., Post failure behavior of a rock mass under the influence of triaxial and true triaxial confinement [J]. Engineering Geology,2006,84:112-129.
    Wang, Y.J., Fan, W.M., Sun, M., Liang. X.Q., Zhang, Y.H., Peng, T.P., Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block:A case study in the Hunan Province [J]. Lithoslogy, 2007,96(3-4):475-502.
    Yang, Y.S., Shen, X.H,, Zou L.J., Finite Element Simulation on Control Effect of Deformation Stress Field of Folds on Fractures [J]. Bulletin of Science and Technology,2006, 22(5):616-621.
    Zahm, C.K., Hennings, P.H., Complex fracture development related to stratigraphic architecture:Challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming [J].AAPG Bulletin,2009,93(11):1427-1446.
    Zeng, L.B., Li, X.Y., Fractures in sandstone reservoirs with ultra-low permeability:A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China [J]. AAPG Bulletin,2009,93(4):461-477.
    Zhu, R.K., Zhao, X., Liu, L.H., Wang, X.S., Zhang, N., Guo, H.L., Song, L.H., Depositional system and favorable reservoir distribution of Xujiahe Formation in Sichuan Basin [J]. Petroleum exploration and development,2009,36(1):46-55.
    Zou, L.J., Shen, X.H., Zhang, H., Fang, D.J., The application of Fn index method in fracture distribution pattern of complex structure [J]. Journal of Zhejiang University (Science Edition),2001,28(1):112-118.
    陈竹新,贾东,张惬.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,2005(2),79(1):38-43.
    李忠全,刘顺.构造地质学[M].地质出版社,2010:108-110.
    刘殊,前陆褶皱冲断带构造特征研究—以米仓山、龙门山前陆盆地及其褶皱带为例[D].中国地震局地质研究所,2007:31-34.
    王绳祖.高温高压岩石力学-历史、现状、展望[J].地球物理学进展,1995,10(4):1-4.
    徐旭辉.川西龙门山前缘地质地球物理解释[J].石油实验地质,1993(3),15(1):60-73.
    张国君,冯晅,王典,王世煜,刘财.裂隙性油气藏发展现状[J].吉林大学学报(地球科学版),2008,38:44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700