我国高中物理核心概念及其学习进阶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以上世纪90年代《国家科学教育标准》的颁布为标志,美国各州开展了基于标准的科学课程改革。然而十余年的课程改革效果不佳,尤其是美国学生在国际性的科学测试中表现不佳。对此,美国各界开展了深刻反思,普遍认为各州的科学课程内容标准及国家科学教育内容标准中包含的知识太宽泛,表浅地覆盖了诸多科学知识,导致“一公里宽一英尺深”的课程,学生无法随年级的增长而拓展和加深对核心科学概念的理解。而且,美国的科学课程、课堂教学、考试评价三者“各自为政”。针对这些弊端,华盛顿州、新泽西州率先修订了各自的课程标准。美国国家研究理事会也在2012年颁布了国家科学教育新标准的概念框架。这些新修订的科学课程标准都围绕少数的核心概念组织知识并对每个核心概念规定了12年一贯的学习进阶(即规定了各学段的学生对核心概念应达到的理解程度),使学生在小学、初中、高中各学段的学习中持续加深对核心概念的理解。围绕核心概念组织并整合学科知识、通过学习进阶发展学生对核心概念的理解,能帮助学生形成良好的知识结构、透彻理解核心概念、提高解决问题的能力,已成为当代基础教育科学课程改革的核心理念。目前,我国基于课程标准的物理课程改革已进行了10年左右,从小学到高中所设置的综合科学课程与分科课程在衔接上略显不足,影响了学生问题解决能力、思维能力的发展。因此,调查我国高中物理核心概念是什么并建构出核心概念的学习进阶,对于课程的衔接、学生的学习、教师的教学、考试评价的发展等具有重要意义。
     基于以上认识,本研究要解决的问题是:①我国高中物理核心概念(名称)是什么、其内涵是什么?②每个核心概念的学习进阶是什么,即小学、初中、高中各个学段的学生对高中物理核心概念应该达到怎样的理解程度?
     为达到以上研究目的,本研究主要包含两个内容。第一个研究内容是:我国高中物理核心概念的调查研究。通过对高中物理教科书进行文本分析,笔者对力学、电学、热学、光学及近代物理的内容进行了概念梳理,并进而概括出了高中物理核心概念。为验证其合理性,笔者用问卷调查了高中物理教师心目中最核心的知识,并统计了问卷中这些知识出现的频次,检验和调整了自己概括出的核心概念。第二个研究内容是:高中物理核心概念的学习进阶研究。笔者研读了国内外基础教育阶段的物理(或科学)课程标准中与核心概念直接相关的知识点,着重分析了这些标准中要求某个学段的学生就某一核心概念应学习的知识点,统计了这些知识点出现的频次并分析了这些知识点的内涵。此外,笔者还梳理了国内外学者对学生理解核心概念的情况的研究。着重分析了每一个学段的学生对某一核心概念的典型错误理解,以及某一核心概念在各学段的教学效果。综合课标比较及相关研究证据的梳理,笔者对“能量守恒”、“稳定的电场”、“力与运动”这三个核心概念分别构建了学习进阶。
     通过以上研究过程,得出了以下结论:
     (1)高中物理核心概念共有11个,分别是力与运动,能量、动量的守恒,稳定的电磁场,变化的电磁场,分子动理论,热力学定律,几何光学初步,物理光学初步,原子的结构,原子的变化,波粒二象性和相对论,笔者详述了每个核心概念的内涵。对高中物理教师的问卷调查显示,分布在力、电、热、光、近代物理五个领域中的这11个核心概念能很好地涵盖教师心目中的各领域的核心知识,且11个核心概念中有9个得到了较高的频次,说明被选择的核心概念及其内涵是基本合理的。“热力学定律”与“波粒二象性和相对论”这两个核心概念得到的频次相对最低。经分析,“波粒二象性和相对论”仍然应作为核心概念,但热力学定律是否要与其它核心概念合并是需要进一步研究的问题。
     (2)笔者对核心概念“能量守恒”构建出了学习进阶。
     在能量的定义和表现形式方面,小学生应学习常见形式的能量(光、电、热、声),也要认识到运动是能量的一种形式,不必学习能量的概念。初中生要开始明确地学习动能、势能、热的本质(不学内能)并初步学习核能,学习近似的、初步的能量概念。高中生应定量地理解动能、势能,开始学习内能、电势能,进一步理解核能,学习更加精确和抽象的能量概念(从守恒的角度);
     在能量的转移、转化和守恒方面,小学生仅学习能量转移和转化的典型现象,涉及光、电、热的转移以及电能、热能与其它能量间的转化。初中生应继续深入学习热的转移(热传递的方式、用分子动理论解释热传导)、电能的转化和转移,开始学习动能与势能间的相互转化并初步认识通过碰撞的动能传递,学习“能量可以转化和转移”这一观念及能量守恒定律的半定量表述。高中生应学习更加抽象复杂的能量转移和转化现象,涉及辐射及其本质、通过碰撞的动能传递和转化、原子能核能释放和转化的机制、电势能的转化等,要定量掌握机械能守恒和能量守恒定律;
     在做功与能量转化或转移的关系方面,从初中开始学习一些做功过程中发生能量转化的典型实例,高中生要定性和定量地掌握做功与能量变化间的关系,尤其是定量掌握做功与动能变化之间的关系以及做功与重力势能变化之间的关系。
     (3)笔者对核心概念“稳定的电场”构建了学习进阶。
     在静电场方面,小学生要知道物体经摩擦带电后,能隔一段距离吸引其它物体。在6年级时要区分静电和电流。初中生要知道电荷的种类以及正负电荷间的相互作用。高中生应学习物体带电的微观本质、库仑定律、静电场、电场强度、电势差、电势能、电场线的概念,不必学习电势的概念;
     在恒定电流方面,小学生要认识到完整的闭合回路是形成电流、电力元件正常工作的前提,能认识电路中的各元件及其功能,尤其是开关;初中生要开始学习电压、电流、电阻的概念,认识电压和电流之间的因果关系,区分电流与电能的概念。理解电路图、短路、电压表电流表的用法,定性掌握欧姆定律,认识到在简单串联电路中的任意位置新增加一个电阻都会对整个电路造成同样的影响,认识到外电路上电力元件的变化会对干路电流产生影响。识别串并联电路并知道其电压和电流的特点,尤其是电压在串联电路中的分配以及电流在并联电路中的分配。此外,还要定性掌握电功率和焦耳定律;高中生应从电场的观点来理解电路中产生电流的微观机制,定量掌握欧姆定律,知道局部电路的变化会对整个电路造成影响。定量掌握串、并联电路中电阻的特点,定性掌握电阻定律,定量掌握电功率和焦耳定律。
     (4)针对核心概念“力与运动”中的“运动学”和“动力学”,笔者分别构建了学习进阶。
     在运动学方面,小学生应学习物体运动的多种形式,认识到描述物体的位置需要相对于另一物体,描述物体的运动则要跟踪其位置的变化。初中生要定量掌握速度概念及其与路程和时间之间的关系。认识到物体的运动要通过其位置、运动方向和速度来描述,学习匀速直线运动,用距离-时间图像描述物体的运动。高中生要开始掌握加速度的概念,学习匀加速直线运动的相关规律。区分位移和距离、速度和速率等标量和矢量,区分瞬时速度和平均速度等瞬时值和平均值。用位移-时间图像、速度-时间图像来描述运动;
     在动力学方面,小学生要学习力能改变物体的运动和物体的形状。初步认识摩擦力的存在及其对运动的阻碍作用。初中生要认识到非平衡力对物体运动状态的影响,认识到生活中静止的物体往往受到一对平衡力。知道力的作用总是相互的。9年级时认识到物体不受力或受到一对平衡力时将保持静止或匀速运动。高中生应继续深入学习牛顿第一定律,对于惯性,知道物体保持的是失去力的一瞬间的速度。学习牛顿第二和第三定律,认识力与加速度产生的同时性以及加速度产生的真正原因。学习平抛运动、圆周运动及两者产生的原因,学习万有引力充当向心力的行星运动。
     根据以上结论,本研究对教师的教学、教科书的编制以及后续的研究提出了相关的建议。
U.S. has carried out a reform of standards-based science curriculum, symbolized by "National Science Education Standards" issued in the1990s. However, the curriculum reform over10years seems ineffective, especially students showed poor performance in the international scientific test. In this regard, the United States carried out a profound reflection, generally considered the knowledge contained in the state science curriculum standards and the National Science Education Content Standards to be too broad, superficially covering a lot of scientific knowledge, thus the courses of "one kilometer wide and a foot deep " exist and students cannot improve and deepen the understanding of scientific core ideas with the grade increasing. Moreover, each of the U.S. science curriculum, classroom teaching and examination evaluation stands by its own side. To address these drawbacks, Washington, New Jersey initially amended their states'curriculum standards. The U.S. National Research Council also enacted the conceptual framework of the new National Science Education Standards in2012. These newly revised science curriculum standards organize knowledge around a small number of core ideas and provided each of the core idea with the learning progression during12years, which means the degree of understanding about the core idea that students of all grades should reach, so that students continued to deepen the understanding of the core ideas during the period of the elementary, middle and high school. Organizing and allocating subject knowledge around core ideas and developing understanding about core ideas though learning progressions can promote the formation of good structure of knowledge, thorough understanding of core ideas, and the ability to solving problems. It has become the core idea of modern science curriculum reform.
     At present, China has conducted physical curriculum reform based on the curriculum standards for about10years. The inefficiently alignment on a comprehensive science curriculum and subject curriculum from elementary to high school stage has affected the development of ability of students to solve problems and thinking logically. Therefore, the investigation of what the high-school physics core ideas are and the construction of the core ideas'learning progression are significant to the promotion of the alignment of curriculum, learning, teaching, and examination.
     As above, the problems to be solved in this study are:(1) What the high-school physics core ideas and their connotations are?(2) What the "learning progression" of each core ideas are? That is, what level of understanding should the students of elementary, junior high, high school reach to the high-school physics core ideas?
     In order to achieve the above purpose, the study consists of two main research contents. Firstly, the investigation research of the core ideas of our high-school physics. By text analysis on the physics textbooks of high school, the mechanical, electrical, thermal, optical, and modern physics ideas are combed and the core ideas of high school physics are summarized. To verify the reasonableness of the study, a survey of the core knowledge by high-school physics teachers was done. According to the statistical frequency of these knowledge appearing in the questionnaire, the author test and adjust the core ideas generalized. Secondly, the study of the learning progression of the high-school physics core ideas. The author studys the knowledge directly related to core ideas in the domestic and foreign physics/scientific curriculum standards of basic education, makes a special effort to analyze the knowledge around certain core idea in these standards which should be studied by students of certain phase of studying, calculates the frequency of these knowledge and analyze the connotation of them. Moreover, the author combs through the research from domestic and abroad on the understanding of core ideas by students, makes a special effort to analyze the typical misconceptions of certain core idea by students of every phase of studying and the teaching efficiency of certain core idea in every phase of studying. Synthesize the comparison of domestic and foreign standards and the combing of related research evidence, the author builds the learning progression of these three typical core ideas as "conservation of energy","stable electric field," Force and Motion ".
     As above, the conclusions are obtained as follows:
     (1)There are11core ideas of the physics in high school, namely force and motion, energy and momentum conservation, stable electromagnetic fields, dynamic electromagnetic field, molecular kinetic theory, the laws of thermodynamics, preliminary geometrical optics, preliminary physical optics, atomic structure, changes of the atomic, wave-particle duality and the theory of relativity. The author details the meaning of each of the core ideas. Through the survey on high-school physics teachers, the11core ideas in the five areas of mechanics, electricity, heat, light and modern physics could covers very well the core knowledge of the teachers in corresponding areas.9of the11core ideas get higher frequency, which means that the core ideas selected and their connotations is basically reasonable. Two core ideas of "Laws of thermodynamics" and "wave-particle duality and the theory of relativity" get relatively minimum frequency. By analysis, the "wave-particle duality and the theory of relativity "should be remained as an core idea, but whether the laws of thermodynamics should merge with other core ideas needs further study.
     (2)The author builds "learning progression" for the core idea of "energy conservation".
     As to the definition of energy and manifestations, pupils should learn the common forms of energy (light, electricity, heat, sound), but also recognize that the movement is a form of energy, not to learn the concept of energy. Junior high school students began to learn the kinetic energy, potential energy, the nature of the hot (not to learn the internal energy) as well as nuclear energy(preliminary), to learn the approximately initial energy concept. High school students quantitatively understand the kinetic energy, potential energy, begin to learn internal energy, electric potential energy, nuclear energy(further), and learn more precise and abstract concept of energy (from the conservation point of view);
     As to "the transfer, transformation and conservation of energy", pupils only learn the typical phenomenon of energy transfer and conversion, involving light, electricity, heat transfer, and electrical energy, thermal energy conversion. Students in Junior high school continue studying further about the heat transfer (transfer mode, explanation of heat conduction by using the molecular kinetic theory), electrical energy conversion and transfer, and start learning the mutual conversion between the kinetic energy and potential energy, the transfer of kinetic energy though collision(preliminary), the concept "energy can transform and transfer "as well as the concept of energy conservation in a half quantitative terms. High school students learn more abstract and complex phenomenon about energy transfer and transformation, involving radiation and its essence, energy transfer and conversion though collisions, the mechanism of the release of atomic energy and nuclear energy, the conversion of electric potential energy, and quantitatively master the conservation of mechanical energy and the law of energy conservation.
     As to the relationship between work and transfer/transformation of energy, students from junior high school start learning some typical examples of energy conversion during the process of doing work. High school students learn the relationship between work and change of energy quantitatively and quantitatively, especially the quantitative relationship between work and change of kinetic/gravitational potential energy.
     (3) The author constructs the "learning progression" for the core idea of "stable electric field".
     As to the electrostatic field, primary school students know that the objects can attract other objects at a distance after electrification by friction. When they are in the sixth grade, they can distinguish between static electricity and current. Junior high school students know the classification of the charges as well as the interaction between the positive and negative charges. High school students learn the microscopic nature of electrification, the Coulomb's law, the electrostatic field, the electric field strength, the electric potential difference, the electrical potential energy, and the electric field lines, without learning the concept of the electric potential.
     As to the steady current, pupils should recognize that a complete and closed loop is the premise of the current formed, electrical components working properly, and be able to recognize each of the elements of the circuit and their functions, especially the switch. Junior high school students start learning the concept of the voltage, current and resistance, the causal relationship between voltage and current, and the distinction between the concept of current and electrical energy. Junior high school students should understand the usage of the circuit diagram, short circuit, the uses of voltmeter and ammeter, qualitatively master Ohm's law, recognize that a resistor added to an arbitrary position of the simple series circuit will cause the same effect on the entire circuit, recognize the changes of electrical elements in the external circuit will influence the current in main circuit. Junior high school students should understanding of the series circuit, parallel circuit and the characteristics of the voltage and current in them, particularly the allocation of the voltage in series circuit and the allocation of the current in parallel circuit. In addition, they should qualitatively grasp the electric power and Joule's law. High school students should understand the microscopic mechanism of the current from the perspective of the electric field, quantitatively grasp Ohm's law, and know the affect of the local circuit changes on the entire circuit. High school students should quantitatively grasp the characteristics of resistors in series and parallel circuits, qualitatively master the Resistance law, and quantitatively grasp the electric power and the Joule's law.
     (4) Regarding to "kinematics" and "dynamics" included in the core idea of "Force and Motion", the author construct the learning progression for each of them.
     On Kinematics aspects, primary school students learn the various forms of an object motion, recognize the need of another object when describing the location of one object and the need of tracking the changes in its position when describing the movement of the object. Junior high school students grasp the concept of speed quantitatively and the relationship among speed, distance and time, and recognize the need of position, direction of movement and speed when describing the motion of one object. Junior High School students should learn the uniform linear motion, and use distance-time image to describe motion. High school students start grasping the concept of acceleration and learning related principals about uniformly accelerated linear motion. High school students distinguish between scalar and vector, e.g. displacement and distance, speed and rate; distinguish between instantaneous and average values, e.g. instantaneous speed and average speed. Motion is described by displacement-time image or speed-time image.
     On dynamics aspects, primary school students learn to forces which could change the shape of and the motion of an object, initially understand the existence of friction which hinders the movement. Junior high school students should be aware of the effect of imbalance forces on the object motion, recognize objects at rest in life often be affected by a pair of balanced forces, and recognize that the interaction of the forces is always mutual. Junior high school students should recognize that the object would remain stable or uniform linear motion with a pair of balance force or without force when they are in the9th grade. The high school students continue to study Newton's first law further, and know that objects maintain the speed of the moment when losing force(to inertia). The high school students learn Newton's second and third law, understand the simultaneity of force and acceleration and the real reason of the emergence of acceleration. The high school students learn the projectile motion, circular motion, and the causes of both, and learn the planetary motion in which gravitation is the centripetal force.
     In light of the conclusions as above, this study provides recommendations to teaching, compiling of textbooks and subsequent research.
引文
1 Sarah M, Andrew W S, Heidi A S. Ready, Set, Science! Putting Research to Work in K-8 Science Classrooms [M]. Washington, DC:The National Academies Press,2007.59-60.
    2张颖之,刘恩山.核心概念在理科教学中的地位和作用——从记忆事实向理解概念的转变[J].教育学报,2010(2):57-61.
    3 Timothy F S, Stephanie J S. A Science Discipline Based Perspective on Core Ideas [EB/OL]. http://www7.nationalacademies.org/bose/Slater CommissionedPaper.pdf,2010-10-2.
    4 New Jersey Department of Education, USA. New Jersey Core Curriculum Content Standards for Science [EB/OL]. http://www.state.nj.us/education/cccs/2009/std5 science.doc,2010-10-2.
    5 Mary McClellan & Dr. Cary Sneider. Washington State K-12 Science Learning Standards[EB/OL]. http://www.kl2.wa.us/Science/pubdocs/WAScienceStandards.pdf,2010-3-19.
    6同1。
    7韦斯林,贾远娥.学习进阶:促进课程、教学与评价的一致性[J].全球教育展望,2010(9):24-31.
    8 National Science Teacher Association. The Challenge[EB/OL]. http://scienceanchors.nsta.org/Content/TheChallenge/Default.aspx, 2010-3-18.
    9 National Science Teacher Association. Core Ideas In Science Education,9/2006[EB/OL]. http://www.nsta.org/about/olpa/surveys/200609_CoreIdeasInScienceEducation.htm,2009-12-12.
    10约翰·D·布兰思福特.人是如何学习的——大脑、心理、经验及学校[M].上海:华东师范大学出版社,2002,43.
    11同l0。
    12 National Science Teacher Association. The Challenge[EB/OL]. http://scienceanchors.nsta.org/Content/TheChallenge/Default.aspx,2010-3-18.
    13 Timothy F S, Stephanie J S. A Science Discipline Based Perspective on Core Ideas [EB/OL]. http://www7.nationalacademies.org/bose/Slater CommissionedPaper.pdf,2010-10-2.
    14 National Science Teacher Association. Science Anchors Phase One Final Report [EB/OL]. http://www.nsta.org/pdfs/ScienceAnchorsPhaseOneFinalReport.pdf,2010-3-18.
    15 Carnegie Corporation of New York. The Opportunity Equation[EB/OL]. http://www7.nationalacademies.org/bose/Carnegie_Standards_Presentation_Oct27.pdf,2009-10-27.
    16 Mary McClellan & Dr. Cary Sneider. Washington State K-12 Science Learning Standards[EB/OL]. http://www.k12.wa.us/Science/pubdocs/WAScienceStandards.pdf,2010-3-19.
    17[美]国家研究理事会著,戢守志等译.美国国家科学教育标准[M].北京:科学技术文献出版社,1999,128.
    18 New Jersey Department of Education, USA. New Jersey Core Curriculum Content Standards for Science [EB/OL]. http://www.state.nj.us/education/cccs/2009/std5_science.doc,2010-10-2.
    19 Board on Science Education. Background Materials [EB/OL]. http://www7.nationalacademies.org/bose/Core Ideas Background Materials.html,2010-3-19.
    20 Board on Science Education. Organizing K-12 Science Education around Core Ideas [EB/OL]. http://www7.nationalacademies.org/bose/Core Ideas Homepage.htm,2010-3-19.
    21 Joan L. Herman. Moving to the Next Generation for the Standards of Science:Building on Recent Practices[EB/OL]. http://www7.nationalacademies.org/bose/Herman CommissionedPaper.pdf,2010-3-19.
    22 Helen Quinn. A Core Ideas Framework for Standards:the NRC contribution[EB/OL]. http://www7.nationalacademies.org/bose/Quinn Standards Presentation_Oct27.pdf,2010-3-19.
    23刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012,8(2):81-87.
    24郭玉英,姚建欣,张静.整合与发展——科学课程中概念体系的建构及其学习进阶[J].课程·教材·教法.2013,33(2):44-49.
    25[美H. Lynn Erickson著,兰英译.概念为本的课程与教学[M].北京:中国轻工业出版社,2011,3.
    26 Schweingruber. What has changed? Reasons for tackling new science standards[EB/OL]. http://www7.nationalacademies.org/bose/Schweingruber Standards Presentation Oct27.pdf,2009-10-27.
    27郭玉英,姚建欣,张静.整合与发展——科学课程中概念体系的建构及其学习进阶[J].课程·教材·教法.2013,33(2):44-49.
    28小学科学教育国家课程标准修订网站.统计数据[EB/OL]. http://nsse.handsbrain.com/article.php/147,2010-3-19.
    29朱建育,王祖浩,米广春.科学教育研究的转型——以学习进阶为核心的证据驱动范式J].上海教育科研,2012(7):48-50.
    30张颖之,刘恩山.核心概念在理科教学中的地位和作用——从记忆事实向理解概念的转变[J1.教育学报,2010,6(1):57-61.
    31高潇怡.试论“促进概念性理解”的科学课教学[J].课程·教材·教法,2009,29(4):68-72.
    32[美]H. Lynn Erickson著,兰英译.概念为本的课程与教学[M].北京:中国轻工业出版社,2003,58-59.
    33陈琦,刘儒德.教育心理学[M].北京:高等教育出版社,2005,127.
    34诸如“物体在不受外力时总保持静止状态或匀速直线运动状态”是物理课程中的概念性理解。
    35任长松.高中新课程与探究式学习[M].天津:天津教育出版社,2005,96.
    36约翰·D·布兰思福特,程可拉、孙亚玲、王旭卿,译.人是如何学习的——大脑、心理、经验及学校[M].L海:华东师范大学出版社,2002,68、38.
    37同上。
    38梁宁建.当代认知心理学[M].上海:上海教育出版社,2002,296.
    39[美]约瑟夫·科瑞柴科,景源.科学教育标准的变革与发展[J].基础教育课程.2013(1):91.
    40刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012,8(2):81-87.
    41 National Science Teacher Association. Science Anchors Phase One Final Report [EB/OL]. http://www.nsta.org/pdfs/ScienceAnchorsPhaseOneFinalReport.pdf,,2010-3-18.
    42陈阳.大众传播学研究方法导论[M].北京:中国人民大学出版社,2007,294-295.
    43冯远程.最新学校教育科研方法及实施过程指导与重点热点教育问题研究和案例运用实务全书(第1卷)[M].北京:中国教育出版社,2007,171.
    44裴娣娜.教育研究方法导论[M].合肥:安徽教育出版社,1995,91.
    45冯远程.最新学校教育科研方法及实施过程指导与重点热点教育问题研究和案例运用实务全书(第1卷)[M].北京:中国教育出版社,2007:175.
    46林崇德等.心理学大辞典(上卷)[M].上海:上海教育出版社,2003,45.
    47陈琦、刘儒德.当代教育心理学(第二版)[M].北京:北京师范大学出版社,2007,267.
    48陈德华.学习中的心理问题(学习实践篇)[M].上海:上海教育出版社,2007,151.
    49陈琦、刘儒德.当代教育心理学(第二版)[M].北京:北京师范大学出版社,2007,269.
    50林崇德等.心理学大辞典(上卷)[M].上海:上海教育出版社,2003,48.
    51彭漪涟,马钦荣.逻辑学大辞典[M].上海市:上海辞书出版社,2004,124.
    52李家庆.小学教师知识词典[M].上海:上海科学普及出版社,1993,115-116.
    53毛泽东.毛泽东选集(四卷本)[M].北京:人民出版社,1964,262.
    54朱凤青.观察与理论的关系——从科学哲学的视角看[M].哈尔滨市:哈尔滨工业大学出版社,2008,43.
    55同上,49.
    56张宗明.自然辩证法概论[M].北京市:人民卫生出版社,2009,116.
    57栾玉广.自然辩证法原理[M].合肥市:中国科学技术大学出版社,2007,317.
    58刘德华.小学科学课程与教学[M].北京:中国人民大学出版社,2009,163.
    59刘恩山,张颖之.课堂教学中的生物学概念及其表述方式[J].生物学通报.2010,45(7):40-42.
    60[美]H. Lynn Erickson著,兰英译.概念为本的课程与教学[M].北京:中国轻工业出版社,2003,194.
    61[英]温·哈伦,韦钰译.科学教育的原则和大概念[M].北京:科学普及出版社,2011,8.
    62 Sally Wehmrier.牛津高阶英汉双解词典(第六版)[M].北京:商务印书馆,2005,871.
    63胡玉华.对生物学核心概念及其内涵的研究[J].生物学通报.2011,46(10):33-36.
    34刘占兰.加拿大小学科学教育对我们的启示[J].课程·教材·教法.2006,26(12):85-89.
    65韦钰.十年“做中学”为了说明什么——以科学研究为基础的教学改革之路[M].北京:中国科学技术出版社,2012,231-233.
    66陈琦、刘儒德.当代教育心理学(第二版)[M].北京:北京师范大学出版社,2007.278.
    67郑毓信.科学教育哲学[Ml.成都:四川教育出版社,2006,445.
    68陈莉.美国科学教材对“科学概念”的处理及其借鉴——以FOSS教材为例[J].全球教育展望.2012(6):88-91.
    69吴成军.初中生物学教科书中如何体现概念的传递、形成和转变过程的思考[Jl.课程·教材·教法.2012(4):66-73.
    70刘恩山,张颖之.课堂教学中的生物学概念及其表述方式[J].生物学通报.2010,45(7):40-42.
    71刘恩山.中学生物学教学中概念的表述与传递[J].中学生物学.2011,27(1):3-5.
    72韦钰.十年“做中学”为了说明什么——以科学研究为基础的教学改革之路[M].北京:中国科学技术出版社,2012.231-232.
    73美国科学促进会著,闵实译.科学素养的基准[M].北京:科学普及出版社,2001,238.
    74刘恩山.生物学:为何凸显重要概念——《义务教育生物学课程标准(2011版)》热点问题访谈[J].人民教育.2012(6):45-46.
    75刘恩山,张颖之.课堂教学中的生物学概念及其表述方式[J].生物学通报.2010,45(7):40-42.
    76刘恩山.中学生物学教学中概念的表述与传递[J].中学生物学.2011,27(1):3-5.
    77小学科学教育国家课程标准修订网站.物质科学领域内容的概念分解[EB/OL]. http://nsse.handsbrain.com/sort.php/30,2010-3-19.
    78 Ontario Ministry of Education. The Ontario Curriculum Grades 1-8 Science and Technology [EB/OL]. http://www.edu.gov.on.ca/eng/curriculum/elementary/scientecl8currb.pdf,2009-12-5.
    79 Joseph D.Novak. Concept in Science. Theory into Practice.1971,10(2):129-133.
    80[英]温·哈伦,韦钰译.科学教育的原则和大概念[M].北京:科学普及出版社,2011.9.
    81 Joanne K. Olson. Concept-Focused Teaching:Using Big Ideas to Guide Instruction in Science. Science and Children.2008:45-49.
    82 Kevin Pardin. Science Big Ideas. The Skeptical Inquirer.1994,18(4):442-443.
    83 Michael B. Leyden. Three Big Ideas Going Around and Around. Teaching K-8.1993 (2):34-36.
    84 Paul Dehart Hurd. New Directions in Teaching Secondary School. Chicago:Rand McNally & Company.1971.247.
    85刘占兰.加拿大小学科学教育对我们的启示[J].课程·教材·教法.2006,26(12):85-89.
    86张颖之,刘恩山.核心概念在理科教学中的地位和作用—从记忆事实向理解概念的转变[J].教育学报.2010,6(1):57-61.
    87张颖之,刘恩山.基础教育课程中遗传学核心概念内容和呈现方式的研究[J].课程·教材·教法.2010(10):81-84.
    88普莱斯顿·D·费德恩,王锦 译.教学方法——应用认知科学、促进学生学习[M].上海:华东师范大学出版社,2006,462.
    89 Sarah M, Andrew W S, Heidi A S. Ready, Set, Science! Putting Research to Work in K-8 Science Classrooms. Washington, DC:The National Academies Press,2007:59-60.
    90 Martin Stocksdieck. Core Ideas as the basis for teaching science[EB/OL]. http://www.apecknowledgebank.org/file.aspx?id=2161,2009-10-1.
    91 Timothy F. Slater & Stephanie J.Slater. A Science Discipline Based Perspective On Core Ideas[EB/OL]. http://www7.nationalacademies.org/bose/Slater CommissionedPaper.pdf,2009-12-11.
    92刘继和.日本理科教科书研究[M].沈阳市:东北大学出版社,2008,112.
    93值得一提的是,在刘继和的研究中,“科学概念”不仅指科学概念本身,而且还是包括科学概念在内的科学原理、定律、法则、公式、规律性等理性科学知识的代表。
    94郭玉英,姚建欣,张静.整合与发展——科学课程中概念体系的建构及其学习进阶[J].课程·教材·教法.2013,33(2):44-49.
    95 Smith, C., Wiser, M., Anderson, C. W.& Krajcik, J.. Implications for Children's Learning for Assessment: A Proposed Learning Progression for Matter and the Atomic-Molecular theory. Measurement,2006,4 (1-2): 1-98.
    96刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012,8(2):81-87.
    97 Duncan, R.. Learning Progressions:Aligning Curriculum, Instruction, and Assessment. Journal of Research in Science Teaching.2009,46 (6):606-609.
    98 National Research Council. Taking Science to School:Learning and Teaching Science in Grades K-8. Washington: National Academies Press,2007.213.
    99约瑟夫·科瑞柴科.革命性的变化:美国确立新一代科学教育框架[J].基础教育课程.2013(1),82-85.
    100刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012,8(2):81-87.
    101普莱斯顿·D·费德恩,王锦译.教学方法——应用认知科学、促进学生学习[M].上海:华东师范大学出版社,2006,428-430.
    102张颖之,刘恩山.核心概念在理科教学中的地位和作用—从记忆事实向理解概念的转变[J].教育学报.2010,6(1):57-61.
    103[美]H. Lynn Erickson著,兰英译.概念为本的课程与教学[M].北京:中国轻工业出版社,2003,60-99.
    104韦钰.十年“做中学”为了说明什么——以科学研究为基础的教学改革之路[M].北京:中国科学技术出版社,2012,50-53.
    105安军.高中生物学“生态系统”核心概念分析[J].生物学通报.2011,46(10):37-40.
    106佘建云,安军.围绕生物学核心概念的教学设计——以“遗传信息的传递”为例[J].生物学通报.2010,45(10):24-27.
    107 Paul Dehart Hurd. New Directions in Teaching Secondary School. Chicago:Rand McNally & Company.1971.251.
    108美国科学促进会著.面向全体美国人的科学[M].北京:科学普及出版社.2001,21-24.
    109 Sarah M, Andrew W S, Heidi A S. Ready, Set, Science! Putting Research to Work in K-8 Science Classrooms [M]. Washington, DC:The National Academies Press,2007:62.
    110 National Research Coucil. A Framework for K-12 Science Education:Practices, Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.34.
    111叶善专.关于小学科学课程标准科学知识内容修订的思考[EB/OL]. http://nsse.handsbrain.com/article.php/175,2009-12-13.
    112Marianne Wiser, Carol L. Smith. How does cognitive development inform the choice of core ideas in the physical sciences?[EB/OL]. http://www7.nationalacademies.org/bose/Wiser Smith CommissionedPaper.pdf,2009-12-18.
    113胡玉华.对生物学核心概念及其内涵的研究[J].生物学通报.2012,46(10):33-36.
    114[英]温·哈伦,韦钰译.科学教育的原则和大概念[M].北京:科学普及出版社,2011.20.
    115 Joan L. Herman. Moving to the Next Generation of Standards for Science:Building on Recent Practices[EB/OL]. http://www7.nationalacademies.org/bose/Herman_CommissionedPaper.pdf,2009-12-19.
    116 New Jersey Department of Education. New Jersey Core Curriculum Content Standards for Science[EB/OL]. http://www7.nationalacademies.org/bose/core_ideas NJ Science Standards.pdf,2011-1-20.
    117 Board on Science Education. Conceptual Framework for New Science Education Standards Committee Meeting 1[EB/OL]. http://www7.nationalacademies.org/bose/Meeting 1 Agenda.html.,2009-12-19.
    118 National Research Coucil. A Framework for K-12 Science Education:Practices, Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.2-7.
    119小学科学课标修订工作组.2007年小学科学课程标准修订工作组工作汇报[EB/OL]. http://nsse.handsbrain.com/article.php/38,2009-10-9.
    120“做中学”科学教育项目是教育部和科协2001年通过发起的教育改革项目,是针对5-12岁儿童开展的基于动手的探究式科学教育项目,迄今已开展8年。“做中学”科学教育项目为小学科学课程的建立和实施提供研究基础和实际经验,是国家小学科学教育标准改革的实验[J]。
    121叶兆宁.有关内容标准中具体内容的表述和分级研究——物质和物理科学领域[EB/OL]. http://nsse.handsbrain.com/article.php/174,2009-10-19.由于篇幅所限,这里只展示了部分核心概念的比较结果。
    122张颖之,刘恩山.基础教育课程中遗传学核心概念内容和呈现方式的研究[J].课程·教材·教法,2010,30(10):81-84.
    123李红菊,刘恩山.中小学生物学课程中生态学重要概念的筛选及其表述[J].生物学通报.2010,45(10):31-34.
    124 Board on Science Education. Meeting Agenda [EB/OL]. http://www7.nationalacademies.org/bose/Science Standards October 12 Presentations.html,2009-10-19.
    125即science, technology, engineering, and mathematics教育。
    126叶善专.法国、加拿大专家关于做中学内容标准的建议[EB/OL]. http://nsse.handsbrain.com/article.php/173.2011-8-21.
    127韦钰.十年“做中学”为了说明什么——以科学研究为基础的教学改革之路[M].北京:中国科学技术出版社,2012.242-243.
    128小学科学课标修订工作组.与生物领域专家开展专题研讨(二)[EB/OL]. http://nsse.handsbrain.com/article.php/279,2011-8-21.
    129万东升,张红霞.美国国家科学教育新标准制订过程的政策透视[J].外国教育研究.2011,38(9):26-31.
    130 National Research Coucil. A Framework for K-12 Science Education:Practices, Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.23-24.
    131张颖之,刘恩山.基础教育课程中遗传学核心慨念内容和呈现方式的研究[J].课程·教材·教法,2010,30(10):81-84.
    132万东升,张红霞.美国国家科学教育新标准制订过程的政策透视[J].外国教育研究.2011,38(9):26-31.
    133 Alicia C. Alonzo, Jeffrey T. Steedle. Developing and Assessing a Force and Motion Learning Progression. Science Education,2008(6):389-421.
    134 Julia D. Plummer, Joseph Krajcik. Building a Learning Progression for Celestial Motion:Elementary Levels from an Earth-Based Perspective. Journal of research in science education,2010,47(7):768-787.
    135刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012,8(2):81-87.
    136 National Research Coucil. A Framework for K-12 Science Education:Practices. Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.112.
    137 National Research Coucil. A Framework for K-12 Science Education:Practices, Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.89-91.
    138人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理1(必修)[M].北京:人民教育出版社,2010,9-91;人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理2(必修)[M].北京:人民教育出版社,2010,1-82;人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-1[M].北京:人民教育出版社,2010,1-102;人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-2[M].北京:人民教育出版社,2010,1-62;人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-3[M].北京:人民教育出版社,2010,1-69;人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110;人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    139笔者作出了每一章的概念图。由于篇幅的限制和排版的需求,将每章的概念图放在附录一中。
    140王立君.概念图在促进认知和评估知识结构方面的理论与实证研究[D].上海:上海师范大学博士学位论文,2008.24-27.
    141蔡铁权,姜旭英,胡玫著.概念转变的科学教学[M].北京:教育科学出版社,2009,106-107.
    142人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理1(必修)[M].北京:人民教育出版社,2010,9-91.
    143人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理1(必修)[M].北京:人民教育出版社,2010,9-91.
    144人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理1(必修)[M].北京:人民教育出版社,2010,9-91.
    145人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理1(必修)[M].北京:人民教育出版社,2010,9-91.
    146人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理2(必修)[M].北京:人民教育出版社,2010,1-82.
    147人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理2(必修)[M].北京:人民教育出版社,2010,1-82.
    148人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110.
    149人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110.
    150人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110.
    151人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    152人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-1[M].北京:人民教育出版社,2010, 1-102.
    153人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-1[M].北京:人民教育出版社,2010,1-102.
    154人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-2[M].北京:人民教育出版社,2010,1-62.
    155人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-1[M].北京:人民教育出版社,2010,1-102.
    156人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-2[M].北京:人民教育出版社,2010,1-62.
    157人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-2[M].北京:人民教育出版社,2010,1-62.
    158人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110.
    159人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-3[M].北京:人民教育出版社,2010,1-69.
    160人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-3[M].北京:人民教育出版社,2010,1-69.
    161人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-3[M].北京:人民教育出版社,2010, 1-69.
    162人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-3[M].北京:人民教育出版社,2010,1-69.
    163人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110.
    164人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    165人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    166人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    167人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    168“稳定的电场”包含静电场和恒定电流两个主题。
    169笔者未能找到新加坡高中阶段的课程标准,只找到了其小学阶段和初中前半段的课程标准。
    170在美国国家层面上,笔者选取了科学素养的基准、美国国家科学教育标准以及美国国家科学教育新标准概念框架共3套标准。
    171笔者未能查到香港小学阶段的科学课标。
    172由于有不少课程标准都是9年一贯或12年一贯设计的,因此本研究中选取的14套课程文件中共含有28份标准而不是42份(14套×3份=42份)。在这28份标准中,笔者参考了13份课程标准中的小学阶段的内容、14份课程标准中的初中阶段的内容、13份课程标准中的高中阶段的内容,如后文所述。
    173张军朋,段世英.国外学生对能量概念理解的研究概述[J].中学物理教学参考,2004,33(1):55-57.
    174谭世略.初中物理能量及相关概念教学的研究与实践[D].苏州:苏州大学硕士学位论文,2009.43-62.
    175许慧.高中物理能量相关知识的教学研究[Dl.苏州:苏州大学硕士学位论文,2008.53-68.
    176张军明,段世英.国外学生对能量概念理解的研究概述[J].中学物理教学参考,2004,33(1):55-57.
    7义务教育物理课程标准实验教科书编写组.物理(9年级)[M].上海:上海科技出版社,2002.24.
    178张红霞.科学究竟是什么[M].北京:教育科学出版社,2003.214.
    179 Hee-Sun Lee & Ou Lydia Liu. Assessing Learning Progression of Energy Concepts Across Middle School Grades: The Knowledge Integration Perspective. Science Education,2009 (10):665-688.
    180许慧.高中物理能量相关知识的教学研究[D].苏州:苏州大学硕士学位论文,2008.
    181刘建伟.中学生对能量概念的理解调查研究[J].长治学院学报,2007,24(10):78-81.
    182张军朋,段世英.国外学生对能量概念理解的研究概述fJ].中学物理教学参考,2004,33(1):55-57.
    183[美]国家研究理事会,戢守志等译.美国国家科学教育标准[M].北京:科学技术文献出版社.1999,6364.
    184义务教育物理课程标准实验教科书编写组.物理(9年级)[M].上海:上海科技出版社,2002.158-159.
    185[美]国家研究理事会,戢守志等译.美国国家科学教育标准[M].北京:科学技术文献出版社.1999,218.
    186美国科学促进会著,闵实译.科学素养的基准[M].北京:科学普及出版社,2001.64.
    187人民教育出版社课程教材研究所编著.物理2[M].北京:人民教育出版社,2010.81.
    188美国科学促进会著,闵实译.科学素养的基准[M].北京:科学普及出版社,2001.62.
    189[美]保罗·齐泽维茨著.物理:原理与问题(中册)[M].杭州:浙江教育出版社.2008,272.
    190 National Research Council. A Framework for K-12 Science Education:Practices, Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.5-13.
    191这三份标准是美国科学素养的基准、美国科学教育新标准概念框架以及新泽西州课程标准。
    2[美]保罗·齐泽维茨著.物理:原理与问题(下册)[M].杭州:浙江教育出版社.2008,583-585.
    193 Rosalind Driver, Edith Guesne著,刘小玲译.儿童的科学前概念[M].上海:上海科技出版社,2008:43.
    194杨根香,夏爱明.初中电路教学中的几个难点分析[J].苏州教育学院学报(自然科学版),1997(3):50-52.
    195相凤华,郭玉英.关于我国初中生对简单电路认知情况的调查[J].课程·教材·教法,2002(9):48-52.
    196霍思含.初三学生简单电路错误概念现状调查研究[D].新乡:河南师范大学硕士学位论文,2010.45-58.
    197孟秀兰,鲁增贤.中美高中生相异构想(电路部分)之比较研究[J].河北师范大学学报(教育科学版),2000,2(3):105-108.
    198张运科.中学生持有电流消耗模型之成因及其转变的实证研究[D].桂林:广西师范大学硕士学位论文,2011.6-36.
    199石志敏,卢慕稚,徐力.串联电路电流规律的前概念转变措施[J].中国教育技术装备,2010(15):65-66.
    200郑朝阳,郭玉英.国外关于电学概念转化研究的新进展[J].物理教师,2006,27(10):47-49.
    201刘震平.对串、并联电路特点的理解[J].教学与管理,2003(3):67-68.
    202 Rosalind Driver, Edith Guesne著,刘小玲译.儿童的科学前概念[M].上海:上海科技出版社,2008:91-92.
    203该量表来自美国期刊Physics Teacher于1992年3月刊登的Force Concept Inventory一文,该量表在诸多的研究中得到了使用。
    204江苏省阜宁中学物理教研组,胡正元(执笔).学生对力学现象的误解及其矫正[J].中学物理教学参考,1998,27(9):7-12.
    205王明怡.学生力学概念建构的现状与影响因素的分析研究[D].苏州:苏州大学硕士学位论文,2002.24-35.
    206张慧玲.高中生物理力学部分相异构想的探查与转变[D].济南:山东师范大学硕士论文,2009.14-32.
    207 Rosalind Driver, Edith Guesne著,刘小玲译.儿童的科学前概念[M].上海:上海科技出版社,2008:91-92.
    208冯玉广,李建平.高中力学学习思维障碍与教学策略[J].教育科学研究,2003(7):51-53.
    209刘建伟,高彩云.国外学生对力和运动概念理解的研究概述及其启示[J].长治学院学报,2006,23(2):68-71.
    210唐军毅.高一学生力学概念理解调查研究[J].广西民族师范学院学报,2010,27(5):131-134.
    211 Alicia C. Alonzo, Jeffrey T. Steedle. Developing and Assessing a Force and Motion Learning Progression. Science Education,2008(6):389-421.
    [1]张颖之,刘恩山.核心概念在理科教学中的地位和作用——从记忆事实向理解概念的转变[J].教育学报,2010(2):57-61.
    [2]韦斯林,贾远娥.学习进阶:促进课程、教学与评价的一致性[J].全球教育展望,2010(2):24-31.
    [3]约翰·D·布兰思福特.人是如何学习的——大脑、心理、经验及学校[M].上海:华东师范大学出版社,2002,38、43、68.
    [4][美]国家研究理事会著,戢守志等译.美国国家科学教育标准[M].北京:科学技术文献出版社,1999,128、63-64、218.
    [5]小学科学教育国家课程标准修订网站.统计数据[EB/OL]. http://nsse.handsbrain.com/article.php/147,2010-3-19.
    [6]朱建育,王祖浩,米广春.科学教育研究的转型——以学习进阶为核心的证据驱动范式[J].上海教育科研,2012(7):48-50.
    [7]高潇恰.试论“促进概念性理解”的科学课教学[J].课程·教材·教法,2009,29(4):68-72.
    [8][美]H. Lynn Erickson著,兰英译.概念为本的课程与教学[M].北京:中国轻工业出版社,2003,58-59、194、60-99.
    [9]陈琦,刘儒德.教育心理学[M].北京:高等教育出版社,2005,127、267、269、278.
    [10]任长松.高中新课程与探究式学习[M].天津:天津教育出版社,2005,96.
    [11]梁宁建.当代认知心理学[M].上海:上海教育出版社,2002,296.
    [12][美]约瑟夫·科瑞柴科,景源.科学教育标准的变革与发展[J].基础教育课程.2013(1):91.
    [13]陈阳.大众传播学研究方法导论[M].北京:中国人民大学出版社,2007,294-295.
    [14]冯远程.最新学校教育科研方法及实施过程指导与重点热点教育问题研究和案例运用实务全书(第1卷)[M].北京:中国教育出版社,2007,171、175.
    [15]裴娣娜.教育研究方法导论[M].合肥:安徽教育出版社,1995,91.
    [16]林崇德等.心理学大辞典(上卷)[M].上海:上海教育出版社,2003,45、48.
    [17]陈德华.学习中的心理问题(学习实践篇)[M].上海:上海教育出版社,2007,151.
    [18]彭漪涟,马钦荣.逻辑学大辞典[M].上海市:上海辞书出版社,2004,124.
    [19]李家庆.小学教师知识词典[M].上海:上海科学普及出版社,1993,115-116.
    [20]毛泽东.毛泽东选集(四卷本)[M].北京:人民出版社,1964,262.
    [21]朱凤青.观察与理论的关系——从科学哲学的视角看[M].哈尔滨市:哈尔滨工业大学出版社,2008,43、49.
    [22]张宗明.自然辩证法概论[M].北京市:人民卫生出版社,2009,116.
    [23]栾玉广.自然辩证法原理[M].合肥市:中国科学技术大学出版社,2007,317.
    [24]刘德华.小学科学课程与教学[M].北京:中国人民大学出版社,2009,163.
    [25]刘恩山,张颖之.课堂教学中的生物学概念及其表述方式[J].生物学通报.2010,45(7):40-42.
    [26][英]温·哈伦,韦钰译.科学教育的原则和大概念[M].北京:科学普及出版社,2011,8、9、20.
    [27]Sally Wehmrier.牛津高阶英汉双解词典(第六版)[M].北京:商务印书馆,2005.871.
    [28]胡玉华.对生物学核心概念及其内涵的研究[J].生物学通报.2011,46(10):33-36.
    [29]刘占兰.加拿大小学科学教育对我们的启示[J].课程·教材·教法.2006,26(12):85-89.
    [30]韦钰.十年“做中学”为了说明什么——以科学研究为基础的教学改革之路[M].北京:中国科学技术出版社,2012,231-233、50-53、242-243.
    [31]郑毓信.科学教育哲学[M].成都:四川教育出版社,2006,445.
    [32]陈莉.美国科学教材对“科学概念”的处理及其借鉴——以FOSS教材为例[J].全球教育展望.2012(6):88-91.
    [33]吴成军.初中生物学教科书中如何体现概念的传递、形成和转变过程的思考[J].课程·教材·教法.2012(4):66-73.
    [34]刘恩山.中学生物学教学中概念的表述与传递[J].中学生物学.2011,27(1):3-5.
    [35]美国科学促进会著,闵实译.科学素养的基准[M].北京:科学普及出版社,2001,238、64.
    [36]刘恩山.生物学:为何凸显重要概念——《义务教育生物学课程标准(2011版)》热点问题访谈[J].人民教育.2012(6):45-46.
    [37]小学科学教育国家课程标准修订网站.物质科学领域内容的概念分解[EB/OL]. http://nsse.handsbrain.com/sort.php/30,2010-3-19.
    [38]刘继和.日本理科教科书研究[M].沈阳市:东北大学出版社,2008,112.
    [39]郭玉英,姚建欣,张静.整合与发展——科学课程中概念体系的建构及其学习进阶[J].课程·教材·教法.2013,33(2):44-49.
    [40]刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012,8(2):81-87.
    [41]约瑟夫·科瑞柴科.革命性的变化:美国确立新一代科学教育框架[J].基础教育课程.2013(1),82-85.
    [42]普莱斯顿·D·费德恩,王锦译.教学方法——应用认知科学、促进学生学习[M].上海:华东师范大学出版社,2006,462、428-430.
    [43]张颖之,刘恩山.基础教育课程中遗传学核心概念内容和呈现方式的研究
    [J].课程·教材·教法.2010(10):81-84.[44]安军.高中生物学“生态系统”核心概念分析[J].生物学通报.2011,46(10):37-40.
    [45]佘建云,安军.围绕生物学核心概念的教学设计——以“遗传信息的传递”为例[J].生物学通报.2010,45(10):24-27.
    [46]叶善专.法国、加拿大专家关于做中学内容标准的建议[EB/OL]. http://nsse.handsbrain.com/article.php/173,2011-8-21.
    [47]小学科学课标修订工作组.与生物领域专家开展专题研讨(二)[EB/OL]. http://nsse.handsbrain.com/article.php/279,2011-8-21.
    [48]万东升,张红霞.美国国家科学教育新标准制订过程的政策透视[J].外国教育研究.2011,38(9):26-31.
    [49]美国科学促进会著.面向全体美国人的科学[M].北京:科学普及出版社.2001,21-24.
    [50]叶善专.关于小学科学课程标准科学知识内容修订的思考[EB/OL]. http://nsse.handsbrain.com/article.php/175,2009-12-13.
    [51]胡玉华.对生物学核心概念及其内涵的研究[J].生物学通报.2012,46(10):33-36.
    [52]小学科学课标修订工作组.2007年小学科学课程标准修订工作组工作汇报[EB/OL]. http://nsse.handsbrain.com/article.php/38,2009-10-9.
    [53]叶兆宁.有关内容标准中具体内容的表述和分级研究——物质和物理科学领域[EB/OL]. http://nsse.handsbrain.com/article.php/174,2009-10-19.
    [54]李红菊,刘恩山.中小学生物学课程中生态学重要概念的筛选及其表述[J].生物学通报.2010,45(10):31-34.
    [55]王立君.概念图在促进认知和评估知识结构方面的理论与实证研究[D].上海:上海师范大学博士学位论文,2008.24-27.
    [56]蔡铁权,姜旭英,胡玫著.概念转变的科学教学[M].北京:教育科学出版社,2009,106-107.
    [57]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理1(必修)[M].北京:人民教育出版社,2010,9-91.
    [58]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书物理2(必修)[M].北京:人民教育出版社,2010,1-82、81.
    [59]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-1[M].北京:人民教育出版社,2010,1-102.
    [60]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-2[M].北京:人民教育出版社,2010,1-62.
    [61]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-3[M].北京:人民教育出版社,2010,1-69.
    [62]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-4[M].北京:人民教育出版社,2010,1-110.
    [63]人民教育出版社课程教材研究所编著.普通高中课程标准实验教科书选修3-5[M].北京:人民教育出版社,2010,1-93.
    [64]张军朋,段世英.国外学生对能量概念理解的研究概述[J].中学物理教学参考,2004,33(1):55-57.
    [65]谭世略.初中物理能量及相关概念教学的研究与实践[D].苏州:苏州大学硕士学位论文,2009.43-62.
    [66]许慧.高中物理能量相关知识的教学研究[D].苏州:苏州大学硕士学位论文,2008.53-68.
    [67]义务教育物理课程标准实验教科书编写组.物理(9年级)[M].上海:上海科技出版社,2002,24、158-159.
    [68]张红霞.科学究竟是什么[M].北京:教育科学出版社,2003,214.
    [69]刘建伟.中学生对能量概念的理解调查研究[J].长治学院学报,2007,24(10):78-81.
    [70][美]保罗·齐泽维茨著.物理:原理与问题(中册)[M].杭州:浙江教育出版社.2008,272.
    [71]Rosalind Driver, Edith Guesne著,刘小玲译.儿童的科学前概念[M].上海:上海科技出版社,2008:43、91-92.
    [72]杨根香,夏爱明.初中电路教学中的几个难点分析[J].苏州教育学院学报(自然科学版),1997(3):50-52.
    [73]相凤华,郭玉英.关于我国初中生对简单电路认知情况的调查[J].课程·教 材·教法,2002(9):48-52.
    [74]霍思含.初三学生简单电路错误概念现状调查研究[D].新乡:河南师范大学硕士学位论文,2010.45-58.
    [75]孟秀兰,鲁增贤.中美高中生相异构想(电路部分)之比较研究[J].河北师范大学学报(教育科学版),2000,2(3):105-108.
    [76]张运科.中学生持有电流消耗模型之成因及其转变的实证研究[D].桂林:广西师范大学硕士学位论文,2011.6-36.
    [77]石志敏,卢慕稚,徐力.串联电路电流规律的前概念转变措施[J].中国教育技术装备,2010(15):65-66.
    [78]郑朝阳,郭玉英.国外关于电学概念转化研究的新进展[J].物理教师,2006,27(10):47-49.
    [79]刘震平.对串、并联电路特点的理解[J].教学与管理,2003(3):67-68.
    [80]江苏省阜宁中学物理教研组,胡正元(执笔).学生对力学现象的误解及其矫
    正[J].中学物理教学参考,1998,27(9):7-12.
    [81]王明怡.学生力学概念建构的现状与影响因素的分析研究[D].苏州:苏州大学硕士学位论文,2002.24-35.
    [82]张慧玲.高中生物理力学部分相异构想的探查与转变[D].济南:山东师范大学硕士论文,2009.14-32.
    [83]冯玉广,李建平.高中力学学习思维障碍与教学策略[J].教育科学研究,2003(7):51-53.
    [84]刘建伟,高彩云.国外学生对力和运动概念理解的研究概述及其启示[J].长治学院学报,2006,23(2):68-71.
    [85]唐军毅.高一学生力学概念理解调查研究[J].广西民族师范学院学报,2010,27(5):131-134.
    [86]教育部小学科学课程标准研制组.义务教育小学科学(3-6年级)课程标准[EB/OL]. http://www.being.org.cn/ncs/sci/p/sci-p.html,2011-8-26.
    [87]肖川,汤卫平.义务教育物理课程标准(2011年版)解读[M].武汉:湖北教育出版社,2012.163-200.
    [88]廖伯琴,张大昌.普通高中物理课程标准(实验)解读[M].武汉:湖北教育出版社,2004.204-230.
    [89]香港课程发展议会.中学课程纲要科学科(中一至中三)[EB/OL]. http://www.edb.gov.hk/tc/curriculum-development/kla/science-edu/curriculum-docume nts.html,2012-5-3.
    [90]香港课程发展议会.物理课程及评估指引(中四至中六)[EB/OL]. http://www.edb.gov.hk/tc/curriculum-development/kla/science-edu/curriculum-docume nts.html,2012-5-3.
    [1]Sarah M, Andrew W S, Heidi A S. Ready, Set, Science! Putting Research to Work in K-8 Science Classrooms. Washington, DC:The National Academies Press,2007, 59-60.62.
    [2]Timothy F S, Stephanie J S. A Science Discipline Based Perspective on Core Ideas [EB/OL]. http://www7.nationalacademies.org/bose/Slater_CommissionedPaper.pdf,2010-10-2.
    [3]New Jersey Department of Education, USA. New Jersey Core Curriculum Content Standards for Science [EB/OL]. http://www.state.nj.us/education/cccs/2009/std5_science.doc,2010-10-2.
    [4]National Science Teacher Association. The Challenge[EB/OL]. http://scienceanchors.nsta.org/Content/TheChallenge/Default.aspx,2010-3-18.
    [5]National Science Teacher Association. Core Ideas In Science Education, 9/2006[EB/OL]. http://www.nsta.org/about/olpa/surveys/200609_CoreIdeasInScience Education.htm,2009-12-12.
    [6]National Science Teacher Association. Science Anchors Phase One Final Report [EB/OL]. http://www.nsta.org/pdfs/ScienceAnchorsPhaseOneFinalReport.pdf, 2010-3-18.
    [7]Carnegie Corporation of New York. The Opportunity Equation[EB/OL]. http://www7.nationalacademies.org/bose/Carnegie_Standards_Pres entation_Oct27.pdf,2009-10-27.
    [8]Mary McClellan & Dr. Cary Sneider. Washington State K-12 Science Learning Standards[EB/OL]. http://www.k12.wa.us/Science/pubdocs/WAScienceStandards.pdf, 2010-3-19.
    [9]Board on Science Education. Background Materials [EB/OL]. http://www7.nationalacademies.org/bose/Core_Ideas_Background_Materials.html, 2010-3-19.
    [10]Board on Science Education. Organizing K-12 Science Education around Core Ideas [EB/OL]. http://www7.nationalacademies.org/bose/Core_Ideas_Homepage.htm,2010-3-19.
    [11]Schweingruber. What has changed? Reasons for tackling new science standards[EB/OL]. http://www7.nationalacademies.org/bose/Schweingruber_Standard s_Presentation_Oct27.pdf,2009-10-27.
    [12]Joan L. Herman. Moving to the Next Generation for the Standards of Science: Building on Recent Practices[EB/OL]. http://www7.nationalacademies.org/bose/Herman_CommissionedPaper.pdf,2010-3-19.
    [13]Helen Quinn. A Core Ideas Framework for Standards:the NRC contribution[EB/OL]. http://www7.nationalacademies.org/bose/Quinn_Standards_Pres entation_Oct27.pdf,2010-3-19.
    [14]National Science Teacher Association. Science Anchors Phase One Final Report[EB/OL]. http://www.nsta.org/pdfs/ScienceAnchorsPhaseOneFinalReport.pdf,, 2010-3-18.
    [15]Ontario Ministry of Education. The Ontario Curriculum Grades 1-8 Science and Technology[EB/OL]. http://www.edu.gov.on.ca/eng/curriculum/elementary/scientecl8currb.pdf,2009-12-5.
    [16]Joseph D. Novak. Concept in Science. Theory into Practice.1971,10(2):129-133.
    [17]Joanne K. Olson. Concept-Focused Teaching:Using Big Ideas to Guide Instruction in Science. Science and Children.2008:45-49.
    [18]Kevin Pardin. Science Big Ideas. The Skeptical Inquirer.1994,18(4):442-443.
    [19]Michael B. Leyden. Three Big Ideas Going Around and Around. Teaching K-8.1993 (2):34-36.
    [20]Martin Stocksdieck. Core Ideas as the basis for teaching science[EB/OL]. http://www.apecknowledgebank.org/file.aspx?id=2161,2009-10-1.
    [21]Paul Dehart Hurd. New Directions in Teaching Secondary School. Chicago:Rand McNally & Company.1971.247、251.
    [22]Smith, C., Wiser, M., Anderson, C. W.& Krajcik, J.. Implications for Children's Learning for Assessment:A Proposed Learning Progression for Matter and the Atomic-Molecular theory. Measurement,2006,4 (1-2):1-98.
    [23]Duncan, R.. Learning Progressions:Aligning Curriculum, Instruction, and Assessment. Journal of Research in Science Teaching.2009,46 (6):606-609.
    [24]National Research Council. Taking Science to School:Learning and Teaching Science in Grades K-8. Washington:National Academies Press,2007.213.
    [25]Alicia C. Alonzo, Jeffrey T. Steedle. Developing and Assessing a Force and Motion Learning Progression. Science Education,2008(6):389-421.
    [26]Julia D. Plummer, Joseph Krajcik. Building a Learning Progression for Celestial Motion:Elementary Levels from an Earth-Based Perspective. Journal of research in science education,2010,47(7):768-787.
    [27]National Research Coucil. A Framework for K-12 Science Education:Practices, Crosscutting concepts, and Core Ideas. Washington D.C:The National Academies Press.2011.34.2-7.23-24.112,89-91、5-13.
    [28]Marianne Wiser, Carol L. Smith. How does cognitive development inform the choice of core ideas in the physical sciences? [EB/OL]. http://www7.nationalacademies.org/bose/Wiser_Smith_CommissionedPaper.pdf, 2009-12-18.
    [29]Joan L. Herman. Moving to the Next Generation of Standards for Science:Building on Recent Practices[EB/OL]. http://www7.nationalacademies.org/bose/Herman_CommissionedPaper.pdf, 2009-12-19.
    [30]Board on Science Education. Conceptual Framework for New Science Education Standards Committee Meeting 1 [EB/OL]. http://www7.nationalacademies.org/bose/Meeting_1_Agenda.html.,2009-12-19.
    [31]Board on Science Education. Meeting Agenda [EB/OL]. http://www7.nationalacademies.org/bose/Science_Standards_October_12_Presentations .html,2009-10-19.
    [32]Hee-Sun Lee & Ou Lydia Liu. Assessing Learning Progression of Energy Concepts Across Middle School Grades:The Knowledge Integration Perspective. Science Education,2009 (10):665-688.
    [33]Finnish National Board of Education. National Core Curriculum for Basic Education 2004 [EB/OL]. http://www.oph.fi/english/sources_of_information/core_curricula_and_qualification_req uirements/basic_education,2012-3-10.
    [34]Finnish National Board of Education. National Core Curriculum for Upper Secondary Schools 2003 [EB/OL]. http://www.oph.fi/download/47678_core_curricula_upper_secondary_educat ion.pdf,2012-3-10.
    [35]Ministry of Education, Singapore. Science Syllabus Primary 2008 [EB/OL]. http://www.moe.gov.sg/education/syllabuses/sciences/files/science-primary-2008.pdf, 2012-3-8.
    [36]Ministry of Education, Singapore. Science Syllabus Lower Secondary Express/Normal(Academic) [EB/OL]. http://www.moe.gov.sg/education/syllabuses/sciences/files/science-lower-sec ondary-2008.pdf,2012-3-8.
    [37]Department of Education, England. Draft National Curriculum for Science Key Stages 1-2 [EB/OL]. http://media.education.gov.uk/assets/files/pdf/d/draft%20national%20curriculum%20for %20science%20key%20stages%201%202.pdf,2012-6-21.
    [38]Department of Education, England. Science 2007 programme of study for Key Stage 3 [EB/OL]. http://media.education.gov.uk/assets/files/pdf/q/science%202007%20programme%20of %20study%20for%20key%20stage%203.pdf,2012-4-26.
    [39]Department of Education, England. Science 2007 programme of study for Key Stage 4 [EB/OL]. http://media.education.gov.uk/assets/files/pdf/q/science%202007%20programme%20of %20study%20for%20key%20stage%204.pdf,2012-4-26.
    [40]Department of Education, Massachusetts. Massachusetts Science and Technology/Engineering Curriculum Framework October 2006 [EB/OL]. http://www.doe.mass.edu/frameworks/scitech/1006.pdf,2010-9-26.
    [41]Ministry of Education, Ontario. The Ontario Curriculum Grades 9 and 10 Science 2008 [EB/OL]. http://www.edu.gov.on.ca/eng/curriculum/secondary/science910_2008.pdf,2010-6-5.
    [42]The Ontario Curriculum Grades 11 and 12 Science 2008 [EB/OL]. http://www.edu.gov.on.ca/eng/curriculum/secondary/2009sciencell_12.pdf,2010-6-5.
    [43]Ministry of Education, Ontario.Ministry of Education, Quebec. Progression of Learning Science and Technology [EB/OL]. http://www.mels.gouv.qc.ca/progression/science/pdf/sciTech_en_sectionCo m.pdf,2010-6-5.
    [44]Ministry of Education, Quebec. Progression of Learning in Secondary School Science and Technology Cycle One and Two, Environmental Science and Technology[EB/OL]. http://www.mels.gouv.qc.ca/progression/secondaire/pdf/progrApprSec_ST_PFG_en-20 11-11-24.pdf,2011-11-24.
    [45]Ministry of Education, Quebec. Progression of Learning in Secondary School Physics Secondary V Optional Program[EB/OL]. http://www.mels.gouv.qc.ca/progression/secondaire/pdf/progrApprSec_ST_PFG_en-20 11-11-24.pdf,2011-11-24.
    [46]Australian Curriculum, Assessment and Reporting Authority. The Australian Curriculum Science F-10[EB/OL]. http://www.australiancurriculum.edu.au/Science/Curriculum/F-10, 2012-12-13.
    [47]Australian Curriculum, Assessment and Reporting Authority. The Australian Curriculum Physics[EB/OL]. http://www.australiancurriculum.edu.au/Static/docs/senior%20secondary/Senior%20Sec ondary%20Curriculum%20-%20Physics%20November%202012.pdf,2012-12-13.
    [48]Board of Studies NSW. Science and Technology Syllabus K-6[EB/OL]. http://k6.boardofstudies.nsw.edu.au/files/science-and-technology/k6_scitech_syl.pdf, 2010-12-13. [49]Board of Studies NSW. Science Years 7-10 Syllabus[EB/OL].
    http://www.boardofstudies.nsw.edu.au/syllabus_sc/pdf_doc/science-syllabus-7-10.pdf, 2010-12-13.
    [50]Board of Studies NSW. Physics Stage6 Syllabus[EB/OL]. http://www.boardofstudies.nsw.edu.au/syllabus_hsc/pdf_doc/physics_stg6_syl_03.pdf, 2010-12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700