科学思维培养的实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
知识经济时代呼唤具有创造精神的人才,这对学校教育提出了新的要求,作为重要组成部分的科学教育,也需要顺应时代潮流,在知识和技能的传授之外,思考学生科学思维的培养。在此背景下,本研究综合心理学、学习科学、科学教育等相关研究成果展开跨学科研究,在辨析科学思维概念的基础上,追溯科学思维培养目标的转变,构建以科学思维为核心的科学课程目标体系,并基于生理学和心理学有关科学思维培养基础的认识,构建MBD教学模式,以“物质的粒子模型”知识为依托,在科学课堂中开展模型建构项目学习的实证研究,旨在促进初中生6年级学生科学思维的发展。
     本论文主体包括两大部分共八章展开研究,第一部分是有关科学思维培养的理论探讨,由前三章组成,第二部分是科学思维培养的实践研究,包括第四至第八章。具体如下:
     第一章从分析一般思维概念入手,进而定义并辨析科学思维概念,最后讨论智力、能力和科学思维培养等相关概念及其关系。本章主要解答了“科学思维是什么?”的研究问题。
     第二章从历史的角度回答了“为什么要培养学生的科学思维?”这一问题,通过回顾“形式教育”和“实质教育”的演变,梳理国际(主要是美国)科学教育目标的演变历史,建构了以科学思维培养为核心的科学课程目标体系。
     第三章主要解决有关思维(科学思维)是否可教的争论,结合生理学和心理学的研究成果,本研究认为个体的思维(科学思维)发展具有生理的硬件基础和心理的软件适应性,因此,思维(科学思维)是可以通过恰当的培养方式而发展的。
     第四章开始进入科学思维培养的实证研究部分。第一节根据前三章有关科学思维培养的理论探讨总结了进行实证研究的理论思路,包括以多变量因果系统的逐级完善为指向;以知识、技能、价值的整合发展为目标;以学生生理和心理发展特点为基础。基于此设计了实证研究的过程,并分别进行了被试选择、变量说明、学习内容确立、学习过程规划以及评价工具的选择与开发等方面的说明。最终,有关科学思维培养的实证研究将在学校科学常规课堂中进行,目标对象为6年级学生,采用MBD教学模式,进行“物质的粒子模型”的学习,共分为7个课时,最终效果将由测验、课堂观察、临床访谈以及植入性调查等手段进行检验。
     第五章本章主要阐述了MBD教学模式的构建过程及结果。MBD教学模式主要分为四步,分别是研究原型、构造模型、应用模型和返回原型;相应的,学生活动分为学习定位、建立模型、迁移应用和优化拓展;教师活动分为启思设疑、协调构建、启迪应用和总结评价。本章还分析了MBD教学模式在具体教学实践中的应用课型。
     第六章重点进行了科学思维测量工具的开发。以Rasch模型以及测量建构的“四基石”模型为理论基础设计前、后测验卷项目,并采用Bond&Fox Steps软件对前、后测试卷进行了信度和效度方面的质量检验。结果表明,前、后测试卷具有较高的信度和效度,能够反映测量的心理特质。
     第七章主要分析和讨论了科学思维内容的培养结果,表明,MBD教学模式能够有效的促进学生对“物质的粒子模型”相关知识的理解和学习,女生学习效果优于男生,学优生学习效果明显。教学实践后,实验组被试建模水平和模型解释水平有了大幅度提升,但也存在容易忽视系统中背景因素的缺陷。
     第八章对科学思维过程进行的结果分析,表明,学优生被试的科学思维过程更加缜密,能够提出有效的研究假设,具有“证实倾向”,能够有效地控制变量。访谈显示,学生原有知识结构也即科学思维的内容能够影响学生科学思维的过程。基于此,总结了具体情境中的科学思维过程模型。
     本论文结论与反思部分重点梳理了本研究的研究结论,并从实验效果和教师两个层面进行了研究反思。
The era of knowledge economy calls for people with creative spirits, which makes new requirements to school education. As an important component, science education, in addition to imparting knowledge and skills, also needs to adapt to the times and consider cultivate students'scientific thinking. On the basis of analysis of scientific thinking, tracing the transition of the goal of cultivating scientific thinking, this study combines psychology, learning science, science education and other related research results to develop an interdisciplinary research. It set up science curriculum with scientific thinking as the core aim and built MBD teaching model based on the knowledge of physiology and psychology related scientific thinking. It carried out empirical study about the learning of modeling construction in science classroom to facilitate the 6th grade students'scientific thinking.
     This dissertation has eight chapters, which is divided into two parts, theoretic discussion and empirical research.
     In the first chapter, the author defined the key concepts, such as thinking and scientific thinking, discussed the relationship with other concepts. So this chapter solved the first question that what scientific thinking is. It is the definition and summary of the concepts for the entire dissertation.
     "Why should the students' scientific thinking be cultured?' is the second question which was answered in the second chapter. The author reviewed the history of formal education and material education, analyzed the changes in science education aims, and construted a system of science curriculum objectives with the scientific thinking as its core.
     Chapter three was drivened by the argument that whether scientific thinking could be cultured. This dissertation stood the point that scientific thinking chould be cultured by proper method because its development had the physiological bases and psychological adaptability based on the study in physiology and psychology.
     Chapter four turned to the empirical investigation of the dissertation. The theoretical framework, which referred to completing the students'mental causal model, targeting the students'development in knowledge, skills and value, and basing on the students'physiological and psychological condition, was summarized in the first lesson. Then this chapter designed the whole process of the empirical investigation, which contained the subject, variables, contents, learning process, and evaluation. Around 180 students of grade 6 in Shanghai attended the empirical study, and half of them used the MBD teaching model during their 7-lesson study about the particle model of matter. Test, interview, classroom observation and embedded observation were used as the measurement tool.
     Chapter five constructed the MBD teaching model, which consists of four steps. The first step is studying phenomenon, the second step is constructing model, the third step is using model, and the last step is returning phenomenon. Each step corresponds student activity and teacher activity.
     Chapter six focused on the development of the test. The author designed pre-test and post-test based on the Rasch model and Wiloson' "Four Building Blocks". This two tests were analyzed by the software Bond & Fox Steps. The results indicated that these two tests were in high quality.
     All the data were analyzed and discussed in chapter seven and chapter eight. Chapter seven focused on the discussion of the content of the students'scientific thinking. The results proclaimed that MBD teaching model could promote students" understanding of the particle model of matter, female students could get more benefit from MBD teaching model than male students, and the students in high level had more progress. Meanwhile, the experiment group has progression in modeling and explaination. However, all the students were inclined to ignore the unimportant variables of the system.
     Chapter eight analyzed the experiment group students' process of scientific thinking. The author compared interview results of the students from different level, which indicated that top learners were much better than poor students in their performance.
     Based on the work in theoretical and empirical study, the author summarized the conclusion and gave the reflection in the last part.
引文
1.I.阿西摩夫.人体和思维[M].北京:科学出版社,1978:143-144.
    2.爱因斯坦.爱因斯坦文集(第一卷)[M].许良英,范岱年译.北京:商务印书馆,1976:574.
    3. Baars, B. J.,& Gage, N. M认知、脑与意识[M].北京:科学出版社,2008:18-19.
    4. Bruner, J. S. (1957). Going beyond the information given. In Colorado University Psychology Department (Eds.), Contemporary Approached to Cognition (pp. 41-69). Cambridge, MA:Harvard University Press.转引自邵志芳.思维心理学[M].上海:华东师范大学出版社,2007:2.
    5. Cohen, L. B., Cashon, C. H婴儿认知[M].//Kuhn, D., Siegler, R.儿童心理学手册(第六版):第2卷.上海:华东师范大学出版社,2009:241-286.
    6. Magnani Lorenzo, Neressian Nancy J, Thagard Paul科学发现中的模型化推理[M].于祺明等译.北京:中国科学技术出版社,2002,14.
    7. Marx, G., Toth, E在科学教育领域中的模型[J].科学对社会的影响,1981(4):29-37.
    8.毕晓白,张巳瑛,张志文.关于程序探索教学的实验研究[J].教育研究,2002(3):74-77.
    9.E.G.波林.实验心理学史[M].北京:商务印书馆,1981:57.
    10.布鲁纳.布鲁纳教育论著选[M].邵瑞珍,等译.北京:人民教育出版社,1989.
    11.蔡晓晖,戴忠恒.有关开设思维能力训练课程对中学生智能水平影响的实验研究[J].心理科学,1993,16(6):338-343.
    12.曹平.“暴露数学思维过程”探析[J].教育科学,1994(3):30-34.
    13.曹平.小学数学思维教育机制[J].教育科学,1995(2):29-31.
    14.陈传尧.启发式教学与创造性思维的培养[J].高等教育研究,1998(5):62-64.
    15.陈嘉映.无法还原的像[R]//陈嘉映.泠风集[M].北京:东方出版社,2001:155-170.
    16.辞海编辑委员会.辞海(1999年版缩印本音序)[z].上海:上海辞书出版社,2002:821,1580,1883.
    17.东洲小学课题组.“运用电教媒体,发展小学生的思维能力”实验研究报告[J].电化教育研究,2001(1):73-77.
    18.大桥正夫编.教育心理学[M].钟启泉译.上海:上海教育出版社,1980:56.
    19.丁祖荫.儿童概念掌握的实验研究[G]//中国心理学会发展心理教育心理专业委员会.发展心理教育心理论文选.北京:人民教育出版社,1980:39-55.
    20.杜威.杜威教育论著选[M].赵祥麟,王承绪,编译.上海:华东师范大学出版社,1981:181,191.
    21.杜威.民主主义与教育[M].王承绪,译.北京:人民教育出版社,1990:75-76,152.
    22.杜威.我们怎样思维[M].姜文闵译.北京:人民教育出版社,1991:3.
    23.恩格斯.自然辩证法[M].于光远,等译.北京:人民出版社,1984.
    24.范文霈,崔晓慧.网络学习环境下批判性思维能力培养的研究[J].电化教育研究,2008(5):33-37.
    25.高德建.委内瑞拉“学会思维”计划述评[J].外国教育研究,1984(3):52-57.
    26.高德建.美国开展思维技能教学的理论和实践[J].外国教育研究,1985(4):13-16.5.
    27.高钢.我所看到的美国小学教育[N].南方周末,1997-6-20.
    28.关永忠.知识论[M].台北市:五南图书出版公司,2000.
    29.郭彦霞.研究生科学思维能力发展的研究[J].中国高教研究,2005(9):35-39.
    30.杭国英,平若媛,龙阳.论高职院校学生创新能力的培养[J].教育研究,2008(10):82-86.
    31.赫尔巴特.普通教育学·教育学讲授纲要[M].李其龙,译.北京:人民教育出版社,1989:53-70.
    32.何克抗.现代教育技术与创新人才培养(上)[J].电化教育研究,2000a(6):3-7.
    33.何克抗.现代教育技术与创新人才培养(下)[J].电化教育研究,2000b(7):17-21.
    34.何克抗.儿童思维发展新论和语文教育的深化改革[J].教育研究,2004(1):55-60.
    35.胡庆芳,程可拉.美国项目研究模式的学习概论[J].外国教育研究,2003,30(8):18-20.
    36.胡适.科学与人生观序.胡适文集(3)[M].北京:北京大学出版社,1998:152.
    37.胡卫平.中学生解决科学问题的心理分析及其能力培养[J].中国教育学刊,2003(8):38-42.
    38.胡卫平.科学思维培育学[M].北京:科学出版社,2004:22,27.
    39.胡卫平.科学概念教学中思维能力的培养[J].中国教育学刊,2004(9):44-47.
    40.胡卫平,陈明.新旧科学课程对初中生科学抽象思维能力影响的比较研究[J].教育研究与实验,2008(1):62-66.
    41.胡卫平,林崇德.青少年的科学思维能力研究[J].教育研究,2003(12):19-23.
    42.胡卫平,郧海丽.“学思维”活动课程对初中生创造力影响的实验研究[J].教育科学,2006,22(1):92-94.
    43.黄昌兰.创设问题情境促进学生思维主动发展[J].2006(4):20-21.
    44.黄朝阳.加强批判性思维教育培养创新型人才[J].教育研究,2010(5):69-74.
    45.黄华.巧妇难为无米之炊:也谈“为思维而教”[J].教育学报,2008,4(5):47-52.
    46.加德纳.墨菲.近代心理学历史导引[M].北京:商务印书馆,1980:84-86.
    47.姜嘉乐.思维训练与教学过程[J].高等教育研究,1988(3):46-52.
    48.姜正国,谭吉华.论毛泽东邓小平江泽民科学思维方法对建设中国特色社会主义的贡献[J].湖南师范大学社会科学学报,2008(4):49-52.
    49.凯洛夫.伟大的教育家扬’阿.夸美纽斯//赵荣昌,单中惠.外国教育史教学参考资料[M].上海:华东师范大学出版社,1991:190.
    50.康德.纯粹理性批判[M].蓝公武,译.北京:商务印书馆,1960:74.
    51.课程发展议会与香港考试及评核局.科学教育学习领域化学课程及评估指引(中四至中六).2007.
    52.可明.R.N.布什论提高教育研究效率的六个条件[J].全球教育展望,1985(3):23.
    53.库恩D,西格勒R.S.儿童心理学手册[M].林崇德,李其维,董奇等,译.上海:华东师范大学出版社,2009.
    54.孔丘.论语[M].纪琴,译注.北京:中国纺织工业出版社,2007.
    55.拉瑞·劳丹.进步及其问题[M].刘新民,译.北京:华夏出版社,1998:16,17.
    56.理查德·尼斯贝特.思维的版图[M].北京:中信出版社,2006:2.
    57.李殿森.布鲁纳的直觉思维论及其教学意义[J].外国教育研究,2003,30(1):15-17.
    58.李其维.论皮亚杰的心理逻辑学[M].上海:华东师范大学出版社,1990:4.
    59.黎世法.异步教学论[M].武汉:湖北教育出版社,1989.
    60.李晓铭.项目反应理论的形成与基本理论假设[J].心理发展与教育,1989(1):25-31.
    61.李兴保,刘敏.虚拟社区中学生高级思维能力的培养[J].电化教育研究,2006(12):8-10,26.
    62.李玉琪.元认知开发与数学问题解决[J].教育研究,1996(1):59-63.
    63.李竹英.疑问式教学法初探[J].高等教育研究,1985(1):73-75.
    64.联合国教科文组织国际教育发展委员会编著.学会生存——教育世界的今天和明天[M].华东师范大学比较教育研究所,译.北京:教育科学出版社,1989:204-205.
    65.列弗蓝达.一般思维方法教学模型:Landamatics[J].施枫编,译.开放教育研究,2004(1):22-25.
    66.林崇德.学龄前儿童数概念与运算能力发展[J].北京师范大学学报,1980(2):67-77.
    67.林崇德.小学儿童数概念与运算能力发展的研究[J].心理学报,1981(3):289-298.
    68.林崇德.中学生心理学[M].北京:北京出版社,1983:52.
    69.林崇德.学习与发展[M].北京:北京师范大学出版社,2003:177.
    70.林崇德.我的心理学观——聚焦思维结构的智力理论[M].北京:商务印书馆,2008:2-4.37.
    71.林崇德.基础教育改革心理学研究30年[J].教育研究,2009(4):61-66.
    72.林正范,丁俊.创造性想象和推理的脑电特征及其在教育中的应用[J].教育研究,2003(12):21-30.
    73.林智中,何瑞珠.香港学生在PISA2003中的解难能力表现及启示[J].教育研究,2006(1):78-83.
    74.刘国建.论理论思维与科学思维[J].自然辩证法研究,2006,22(8):104-108.
    75.刘朔,刘颖.英国的思维教育及对我国的启示[J].外国教育研究,2002,29(10):14-17.
    76.卢正芝,洪松舟.教师有效课堂提问:价值取向与标准建构[J].教育研究,2010(4):65-70.
    77.卢仲衡.自学辅导心理学[M].北京:地质出版社,1987:35.
    78.罗定中学语文课题组.形象思维与抽象思维[J].电化教育研究,1994(3):71-75.
    79.吕星宇.对话教学:为思维而教[J].教育学报,2008,4(3):31-35.
    80.马建坤.美国加州科学课程标准评介[J].科学课,2008(3):46-49.
    81.毛明山,张庆林.解答数学应用题思维策略训练的实验研究[J].教育研究与实验,1998(4):53-56.
    82.美国国家研究理事会.美国国家科学教育标准[M].戢守志译.北京:科学技术文献出版社,1999.
    83.美国科学促进协会著.科学素养的导航图[M].中国科学技术协会,译.北京:科学普及出版社,2008.
    84.美国科学促进协会著.科学素养的基准[M].中国科学技术协会,译.北京:科学普及出版社,2001.
    85.美国科学促进协会著.面向全体美国人的科学[M].中国科学技术协会,译.北京:科学普及出版社,2001.
    86.孟轲.孟子[M].吴天明,程继松,评析.武汉:崇文书局,2004.
    87.孟卫青.教育研究的跨学科取向[J].教育评论,2003(2):33-35.
    88.米广春.氧化还原反应原型学习的实证研究[D].华东师范大学,2008.
    89.米广春,王祖浩.终身教育视阈下的“一贯教育”研究[J].外国中小学教育,2009(10):23-25.
    90.奈德‘赫曼著.全脑革命[M].宋伟航译.北京:经济管理出版社,1998:10.
    91.帕朗.自然科学的哲学[M].张来举译.长沙:中南工业大学出版社,1987:105.
    92.皮埃尔·迪昂.物理学理论的目的和结构.李醒民,译.北京:华夏出版社,1999:83,108.
    93.皮亚杰.发生认识论原理[M].北京:商务印书馆,2009:21-57.
    94.钱学森.论科学技术[J].科学画报,1957(4):99.
    95.钱学森.关于思维科学[M].上海:上海人民出版社,1986:13-27.
    96.钱学森.人体科学与现代科技发展纵横观[M].北京:人民出版社,1996:87.
    97.钱学森.钱学森书信(第一卷)[M].北京:国防工业出版社,2007:391.
    98.邱学华.尝试教学发的理论与实践[J].福建教育,1982:11.
    99.瞿葆奎,施良方.“形式教育”论和“实质教育”论//瞿葆奎主编,施良方, 唐晓杰选编.教育学文集·智育[M],北京:人民教育出版社,1993:419-481.
    100. 单中惠.西方教育思想史[M].教育科学出版社,2007:136.
    101. 上海市教育委员会.上海市初中科学课程标准(试行稿)[M].上海:上海教育出版社,2006.
    102. 上海市教育委员会.上海市小学科学与技术课程标准(征求意见稿)[M].上海:上海教育出版社,2006.
    103. 上海市中小学(幼儿园)课程改革委员会.科学教学参考书(牛津上海版)六年级第一学期(试用本)[M].上海:上海远东出版社,2009:38.
    104. 邵志芳.思维心理学[M].上海:华东师范大学出版社,2007:29.
    105. 施良方.简论课程目标的三种取向[J].课程教材教法,1995(6):60-62.
    106. 史宁中,柳海民.素质教育的根本目的与实施路径[J].教育研究,2007(8):10-15.
    107. 史宁中.试论教育的本原[J].教育研究,2009(8):3-10.
    108. 斯宾塞.教育论[M].胡毅译.北京:人民教育出版社,1962.
    109. 苏虹.促进学生形象思维与抽象思维的协同发展[J].中国教育学刊,2004(5):34-37.
    110. 苏霍姆林斯基.给教师的建议[M].杜殿坤,译.北京:教育科学出版社,1984:99.
    111. 泰勒.课程与教学的基本原理[M].施良方译,瞿葆奎校.北京:人民教育出版社,1994.
    112. 谭和平,李其维.略论思维的可训练性[J].华东师范大学学报(教育科学版),1998(4):46-57.
    113. 唐宁玉.三种心理测量理论的信度观[J].心理科学,1994,17(1):33-38.
    114. 陶文中.“小学生创造能力培养的研究与实验”研究报告[J].教育研究,2008(5):82-89.
    115. 陶行知.《行知诗歌集》[M].北京:生活’读书’新知三联书店,1981:12.
    116. 滕树学,殷系明.电教与思维——论电教在思维和思维训练中的基本特性及效能[J].电化教育研究,1998(5):24-29.
    117. 田运.思维词典[M].杭州:浙江教育出版社,1998:396.
    118. 童世斌,戴宇,张庆林.初中生解答数学应用题思维策略训练[J].现代中 小学教育,1999(6):21-23.
    119. 王宏强,王冰丽.一般原型—模型论的理论体系[J].河南科学,1996,14(4):375-386.
    120. 王桂亮.论创造性发问品质及培养[J].教育研究,2001(12):57-60.
    121. 王充.论衡[M].上海市:上海人民出版社,1974.
    122. 汪馥郁.对思维活动的三种基本类型的探讨[J].北京师范大学学报,1982(1):64-72.
    123. 王筠.教童子法[M].北京:中华书局,1985.
    124. 王蕾.Rasch测量原理及在高考命题评价中的实证研究[J].中国考试,2008(1):32-39.
    125. 汪安圣.思维心理学[M].上海:华东师范大学出版社,1992:4,410.
    126. 王世光.论角色扮演对培养历史思维的作用[J].教育学报,2010,6(2):36-41.
    127. 魏宗仁,高政一,彭福荫.形象思维与制图教学[J].教育研究,1994(1):47-50.
    128. 吴鑫德,张庆林,陈向阳.思维策略训练对高中生化学问题解决能力影响的实验研究[J].心理科学,2004,27(5):1049-1051.
    129. 吴遵民.现代国际终身教育论(新版)[M].北京:中国人民大学出版社,2007:7.
    130. 现代汉语词典[Z].北京:商务印书馆,1983:1085.
    131. 项武义.基础数学的课程发展与教学改革[J].教育学报,1991(2):7-8,17.
    132. 萧成勇.科学思维与伦理思维衡论[J].科学技术与辩证法,2003,20(2):1-4.
    133. 肖静宁.脑科学概要[M].武汉:武汉大学出版社,1986:7.
    134. 肖少北,徐尚侠.汉字学习对儿童思维发展影响的实验研究[J].心理科学,2001,24(6):743,754.
    135. 荆其诚.简明心理学百科全书[M].长沙:湖南教育出版社,1991.
    136. 徐杰.关于在MCAI环境下对学生创新思维能力的培养[J].电化教育研究,2001(4):74-77.
    137. 徐青.小学三~五年级儿童创造性思维训练的实验研究[J].应用心理学,1999,5(2):54-58.
    138. 燕国材.心理与教育[M].杭州:浙江教育出版社,1984.
    139. 燕国材.智育新论[J].上海师范大学学报,1995(2):104-110.
    140. 阎莉.整体论视域中的科学模型观[M].北京:科学出版社,2008:viii.
    141. 杨豫晖,宋乃庆.教师教学决策的主要问题及其思考[J].教育研究,20 1 0(9):85-89.
    142. 姚梅林.从认知到情境:学习范式的变革[J].教育研究,2003(2):60-64.
    143. 于斌.关于自然概念的最新研究[J].心理科学,2001,24(4):487-500.
    144. 于祺明,汪馥郁.科学发现模型论——科学教育改革探索[M].北京:中央民族大学出版社,2006:142-148.
    145. 俞少君.化学教学与大学生思维能力的培养[J].心理科学,1999,22(4):369-370.
    146. 约翰·D·布兰思福.人是如何学习的——大脑、心理、经验及学校[M].程可拉,等译.上海:华东师范大学出版社,2002:130-140.
    147. 袁薇薇.心理学领域科学推理的认知研究[D].华东师范大学2007届研究生博士学位论文.
    148. 岳西泉,孔萍,许乃伟.使用思维脑图优化数学教学[J].电化教育研究,2008(11):45-47.
    149. 岳晓东.批判思维的形成与培养:西方现代教育的实践及其启示[J].教育研究,2000(8):65-69.
    150. 岳晓东.大学生创新能力培养之我见[J].高等教育研究,2004,25(1):84-91.
    151. 岳晓东,龚放.创新思维的形成与创新人才的培养[J].教育研究,1999(10):9-16.
    152. 赞可夫.教学论与生活[M].俞翔辉,等译.北京:教育科学出版社,1984:14.
    153. 曾华.培养创造性思维品质的几点思考[J].高等教育研究,2004,25(6):17-18.
    154. 查有梁.论思维模式的分类及其应用[J].教育研究,2004(1):49-54.
    155. 张爱华.全脑开发与创造性思维能力的培养[J].教育研究,1999(8):32-35.
    156. 张春兴.现代心理学[M].上海:上海人民出版社,1994:322.
    157. 张大松.科学思维的艺术:科学思维方法论导论[M].北京:科学出版社,2008:2.
    158. 张浩.思维发生学:从动物思维到人的思维[M].北京:中国社会科学出版社,2005:30-31.
    159. 张焕庭.西方资产阶级教育论著选[M].北京:人民教育出版社,1979:368,470-473.
    160. 张嘉巽.开创语文教育新局面[J].教育研究,2000(3):78-80.
    161. 张晶,刘海燕.批判性思维与多媒体教学[J].教育理论与实践,2004(10):44-46.
    162. 张景焕,赵承福,李冬梅.关于小学教师创造力培养观的研究[J].教育研究,2004(3):85-89.
    163. 张丽华,沈德立.论创造性思维产生的有利条件[J].教育科学,2006,22(1):88-91.
    164. 张庆林,刘电芝,连庸华.平面几何问题解决思维策略训练的实验研究[J].西南师范大学学报,1997(3):37-41.
    165. 张庆林,杨春燕.假设检验思维策略的发展研究[J].心理科学,1998,21(1):13-16.
    166. 张士充.数学教学与素质教育[J].教育研究,1996(1):64-67.
    167. 张同庆,李艳红.中学化学教学对学生发散思维能力的培养[J].中国教育学刊,2004(10):60-61.
    168. 张旺.科学创造与科学素质培养[J].教育研究,1999(10):17-22.
    169. 张喜艳,谢月光.培养创造性思维的网络课程设计研究[J].中国电化教育,2003(10):64-66.
    170. 张向阳,刘鸣.论课堂教学中的思维训练策略[J].高等教育研究,2001,22(5):86-89.
    171. 张绪扬.初中一年级学生思维能力培养的实验研究[J].心理学报,1 988(3):320-327.
    172. 赵爱兰.开设思维课,对初二学生进行创造性思维训练的实验报告[J].心理发展与教育,1986(2):46-49.
    173. 郅庭瑾.为思维而教[J].教育研究,2007(10):44-48.
    174. 中华人民共和国教育部.全日制义务教育科学(3-6)年级课程标准(实 验稿)[M].北京:北京师范大学出版社,2001.
    175. 中华人民共和国教育部.全日制义务教育科学(7-9)年级课程标准(实验稿)[M].北京:北京师范大学出版社,2003.
    176. 钟启泉,高文,教学模式论[M].上海:上海教育出版社,1998.
    177. 钟志贤.促进学习者高阶思维发展的教学设计假设[J].电化教育研究,2004(12):21-28.
    178. 周光璧,张铁生.基于相似性的探索是数学教学的重要途径[J].教育研究,1995(11):51-53.
    179. 周濂.从日常概念到科学概念[J].世界哲学,2004(6):84-92.
    180. 朱德全.数学问题解决的表征及元认知开发[J].教育研究,1997(3):50-54.
    181. 朱熙春.BLOG平台下中学生批判性思维培养策略研究——以通用技术教学为例[D].南京:南京师范大学,2008.
    182. 朱智贤.心理学大词典[M].北京:北京师范大学出版社,1989:634.
    183. 朱智贤,林崇德.思维发展心理学[M].北京:北京师范大学出版社,1986:6,7,20-29,38,178.
    184. 朱智贤,钱曼君,吴凤岗,林崇德.小学生字词概念发展的研究[J].心理科学,1982(3):23-29.
    185. 朱智贤,钱曼君,吴凤岗,林崇德.小学生字词概念综合性分类能力的实验研究[J].心理学报,1982(3):302-310.
    186. 宗秋荣.“发展形象思维的理论研究与教学实验”课题研究十五年成果汇报会综述[J].教育研究,2006(2):95-96.
    1. Adey, P., Shayer,M.,& Yates, C. (1995). Thinking Science. London:Thomas Nelson and Sons Ltd.
    2. Anscombe, G. (1993). Causation:Reductionism versus Realism. Sosa & Today, 88-104.
    3. Baron, J. (1988). Thinking and Deciding. New York:Cambridge University Press.
    4. Bartlett, F. C. (1932). Remembering:A study in experimental and social psychology. Cambridge, UK:Cambridge University Press.
    5. Bond, T. G.,& Fox, C. M. (2007). Applying the Rasch Model:Fundamental Measurement in the Human Sciences (2nd.). Mahwah, NJ:Lawrence Erlbaum Associates, Inc.
    6. Bourne, L. E., Jr., Ekstrand, B. R.& Dominowski, R. L. (1971). The Psychology of Thinking. Englewood Cliffs, NJ:Prentice-Hall.
    7. Bransford, J. D., Brown, A. L.& Cocking, R. R. (2000). How people learn:Brain, Mind, Experience, and School (Expanded Edition). Washington, DC:National Academy Press.
    8. Brown, A. L. (1990). Design experiments:Theoretical and methodological challenges in evaluating complex interventions in classroom setting. The Journal of the Learning Sciences,2,141-178.
    9. Bruner, J. (1960). The Process of Education. New York:Vintage.
    10. Bruner, J. S. (1967). On cognitive growth. In J. S. Bruner, R. R. Olver, P. M. Greenfield, et al. (Eds.), Studies in cognitive growth:A collaboration at the Center of Cognitive Studies (Vols.1-2, pp.1-67). New York:Wiley.
    11. Campbell, D. T.,& Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin,56,81-105.
    12. Carey, S. (1985). Conceptual Change in Childhood. Cambridge, MA:Bradford Books, MIT Press.
    13. Carlton, R. (1963). On scientific literacy. NEA Journal,52(4),33-35.
    14. Case, R. (1985). Intellectual Development:Birth to Adulthood. New York: Academic Press.
    15. Chemical Education Material Study. (1963). Chemistry:An Experimental Science. San Francisco:Freeman.
    16. Cobb, P., Confrey, J., diSessa, A., Lehrer, R.,& Schauble, L. (2003). Design experiments in education. Educational Researcher,32,9-13.
    17. Conant, J. B. (1952). Modern Science and Modern Man. New York:Columbia University Press.
    18. Cremin, L. (1964). The Transformation of the School:Progressivism in American Education,1876-1957. New York:Knopf.
    19. Creswell, J. W. (2003). Research Design:Qualitative, Quantitative and Mixed Methods Approaches. Thousand Oaks, CA:Sage.
    20. De Bono, E. (1983). The direct teaching of thinking as a skill. Phi Del Kappan,64, 703-708.
    21. De Bono, E. (1987). CoRT Thinking Program:Work Cards and Teachers Notes. Chicago: Science Research Associates.
    22. DFE, QCA. Science-The National Curriculum for England [EB/OL]. www.nc.ul.net,2009-10-5.
    23.Derry, S. J., Hawkes, L. W.,& Tsai, C-J. (1987). A theory for remediating problem-solving skills of older children and adults. Educational Psychologist,22, 55-87.
    24. Deshler, D. D., Schumaker, J. B.,& Lenz, B. K. (1984). Academic and cognitive interventions for LD adolescents (Part Ⅰ). Journal of Learning Disabilities,17, 108-117.
    25. Dolby, R. G. A. (2002). Uncertain Knowledge:An Image of Science for a Changing World. New York:Cambridge University Press.
    26. Duffy, G. G., Roehler, L. R.,& Putnam, J. (1987). Putting the teacher in control: Basal textbooks and Instructional decision making. Elementary School Journal, 87.357-366.
    27. Dunbar, K. (1999). Scientific thinking and its development. In R. Wilson,& F. Keil (Eds.). The MIT Encyclopedia of Cognitive Science (pp.730-733). Cambridge, MA:MIT Press.
    28. Dunbar, K.& Fugelsang, J. (2005). Scientific thinking and reasoning. In Holyoak, K. J.& Morison, R. G. (Eds). The Cambridge Handbook of Thinking and Reasoning. New York:Cambridge University Press.705-727.
    29. Duschl, R. A. (1990). Restructuring Science Education:The Importance of Theories and Their Development. New York:Teachers College Press.
    30. Duschl, R. (2008). Science education in three-part harmony:Balancing conceptual, epistemic, and social learning goals. Review of Research in Education,32, 268-291.
    31. Feuerstein, R., Rand, Y., Hoffman, M.,& Miller, M. (1980). Instrumental Enrichment:An Intervention Programme for Cognitive Modifiability. Baltimore, MD:University Park Press.
    32. Fiske, J. (1899). Edward Livingston Youmans. In J. Fiske (Ed.), A century of science and other essays (pp.64-99). New York:Houghton Mifflin.
    33. Gallagher, J. (1971). A broader base for science teaching. Science Education,55, 329-338.
    34. Gauld, C. (1982). The scientific attitude and science education:A critical reappraisal. Science Education,66,109-121.
    35. Gokhale, A. A. (1995). Collaborative learning enhances critical thinking. Journal of Technology Education,7,3-16.
    36. Greeno, J. G.,& Simon, H. A. (1989). Problem solving and reasoning. In R. C. Atkinson, R. J. Hernstein, G. Lidzey,& R. D. Luce (Eds.), Stevens' Handbook of experimental psychology(2nd ed.),2, Learning and Cognition (pp.589-672). New York:Wiley.
    37. Guilford, J. P. (1959). Traits of creativity. In H. H. Anderson (Ed.), Creativity and Its Cultivation. NY:Harper and Row.
    38. Guilford, J. P. (1967). The Nature of Human Intelligence. New York: McGraw-Hill.
    39. Guiller, J., Durndell, Alan,& Ross A. (2008). Peer interaction and critical thinking: Face-to-face or online discussion? Learning and Instruction,2,187-200.
    40. Harrison, A.,& Treagust, D. (2000). Learning about atoms, molecules, and chemical bonds:A case study of multiple-model use in grade 11 chemistry. Science Education,84,352-381.
    41. Hayes, R. (1989). The Complete Problem Solver. Hillsdale, NT:Erlbaum.
    42. Heidbreder, E. (1947). The attainment of concepts:III. The process. Journal of Psychology,24,93-138.
    43. Heidbreder, E. (1948). The attainment of concepts:IV. Exploratory experiments or conceptualization at perceptual levels. Journal of Psychology,26,193-216.
    44. Hurd, P. (1958). Science literacy:Its meaning for American Schools. Educational Leadership,53,439-449.
    45. Hurd, P. (1970). New Directions in Teaching Secondary School Science. Chicago: Rand McNally.
    46. Inagaki, K.& Hatano, G. (2002). Young Children's Naive Thinking about the Biological World. New York:Psychological Press.
    47. Inhelder, B.,& Piaget, J. (1958). The Growth of Logical Thinking. New York: Basic Books.
    48. Jick, T. D. (1979). Mixing qualitative and quantitative methods:Triangulation in action. Qulitiative Mehtodology,24,602-611.
    49. Kantowitz, B. H.,& Roediger, H. L. (1997). Experimental Psychology: Understanding Psychological Research (6th ed.). West Publishing Company.
    50. Keil, F. C. (1999). Conceptual Change. In R. Wilson & F. Keil (Eds.), The MIT encyclopedia of cognitive sciences. Cambridge:MIT Press.
    51. Klaczynski, P. A. (2001). Analytic and heuristic processing influences on adolescent reasoning and decision-making. Child Development,72,844-861.
    52. Klahr, D.& Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science,12,1-48.
    53. Knudsen, E. I. (2003). Early experience and critical periods. In L. R. Squire, F. E. Bloom, S. K. McConnell, J. L. Roberts, N. C. Spitzer,& M. J. Zigmond (Eds.), Foundmental neuroscience (2nd ed., pp.555-573). New York:Academic Press.
    54. Komatsu, L. K. (1992). Recent views of conceptual structure. Psychological Bulletin,112,500-526.
    55. Kuhn, D. (1996). Is good thinking scientific thinking. In D. Olson,& N. Torrance (Eds.), Modes of Thought:Explorations in Culture and Cognition (pp.261-281). New York:Cambridge University Press.
    56. Kuhn, D. (2002). What is scientific thinking and how does it develop. In U. Goswami (Ed.), Handbook of Childhood Cognitive Development (pp.371-393). Oxford, England:Blackwell.
    57. Kuhn, D. (2005). Education for Thinking. Cambridge:Harvard University Press.
    58. Kuhn, D., Amsel, E.,& O'Loughlin, M. (1988). The Development of Scientific Thinking Skills. San Diego, CA:Academic Press.
    59. Kuhn, D.,& Dean, D. (2004). Connecting scientific reasoning and causal inference. Journal of Cognition and Development,5(2),261-288.
    60. Kuhn, D., Garcia-Mila, M., Zohar, A.,& Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development,60 (4, Serial No.245).
    61. Kuhn, D.,& Pearsall,. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development,1,113-129.
    62. Kuhn, D.,& Phelps, E. (1982). The development of problem solving strategies. In H. Reese (Ed.), Advances in Child Development and Behavior (Vol.17, pp.1-44). New York:Academic Press.
    63. Kuhn, D., Schauble, L.,& Garcia-Mila, M. (1995). Cross-domain development of scientific reasoning. Cognition and Instruction,9,285-327.
    64. Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago:University of Chicago Press.
    65. Jackson, A.,& Davis, G. (2000). Turning Points 2000:Educating Adolescents in the 21st Century. New York:Teachers College Press.
    66. Joiner, R., Jones, S. (2003). The effects of communication media on argumentation and the development of critical thinking. International Journal of Educational Research,8,861-871.
    67. Lave, J.,& Wenger, E. (1991). Situated Learning:Legitimate Peripheral Participation. Cambridge:Cambridge University Press.
    68. Leng, B. A., Dolmans, D. H.,& Jobsis, R. (2009). Exploration of an E-learning model to foster critical thinking on basic science concepts during work placements. Computers and Education,1,1-13.
    69. Lehrer, R.,& Schauble, L. (2005). Scientific thinking and science literacy. In W. Damon,& R. M. Lerner. (Eds.). Handbook of Child Psychology (6th, Vol.4, pp. 153-196). New Jersey:John Wiley & Sons, Inc.
    70. Lin, C.,& Li, T. (2003). Multiple intelligence and the structure of thinking. Theory and Psychology,13,829-845.
    71.Lipman, M. (1991). Thinking in Education. Cambridge:Cambridge University Press.
    72. Liu, X. (2010). Using and Developing Measurement Instruments in Science Education:A Rasch Modeling Approach. Charlotte, North Carolina:Information Age Publishing, Inc.
    73. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences,97, 4398-4403.
    74. Massachusetts Science and Technology/Engineering Curriculum Framework [EB/OL].2006. Massachusetts Departmant of Elementary & Secondary Education. Http://www.doe.mass.edu/frameworks/current.html
    75. Mayer, R. E. (1987). Educational Psychology:A Cognitive Approach. Boston: Little Brown.
    76. Meier, D. (1995). The Power of Their Ideas:Lessons for America from a Small School in Harlem. Boston:Beacon Press.
    77. Miller, J. (1983). Scientfic Literacy:A conceptual and empirical review. Daedalus, 112(2),19-48.
    78. Merritt, J. D.,& Krajcik, J. (2008). Development of a learing progression for the particle model of matter.http://www.fi.uu.nl/en/icls2008/438/paper438.pdf
    79. Minda, J. P.,& Smith, J. D. (2002). Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. Journal of Experimental Psychology:Human, Learning, and Memory,28,275-292.
    80. Ministry of Education Singapore. Curriculum Planing & Development Division Science Syllabus Primary [Z].2004.
    81.Mirescu, C., Peters, J. D.,& Gloud, E. (2004). Early life experience alters response of adult Neurogenesis to stress. Nature Neuroscience,7,841-846.
    82. Morgan, M. S.& Morrison, M.(1999). Models as Mediators. In M. Morrison & M. S. Morgan (Eds.) Models as Mediating Instrament. Cambridge:Cambridge University Press.
    83. Mynatt, C. R., Doherty, M. E.& Tweney, R. D. (1977). Confirmation bias in a simulated research environment:An experimental study of scientific inference. Quarterly Journal of Experimental Psychology.29,85-95.
    84. National Education Association. (1893). Report of the Committee on Secondary School Studies. Washington, DC:U.S. Government Printing Office.
    85. National Education Association. (1920). Reorganization of Science in Secondary Schools:A Report of the Commission on the Reorganization of Secondary Education (U.S. Bureau of Education, Bulletin No.26). Washington, DC:U.S. Government Printing Office.
    86. National Research Council (2005). Systems for State Science Assessment. Committee on Test Design for K-12 Science Achievement. M. R. Wilson,& M. W. Bertenthal (Eds.). Washington DC:The National Academies Press.
    87. National Research Council. (2007). Taking Science to School:Learning and Teaching Science in Grades K-8. Washington, DC:National Academy Press.
    88. National Science Teachers Association. (1971). NSTA position statement on school science education for the 70's. The Science Teacher,38,46-51.
    89. National Science Teachers Association. (1982). Science-Technology-Society: Science Education for the 1980s. Washington, DC:Author.
    90. Newell, A.,& Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:Prentice-Hall.
    91. OECD. (1998). University Research in Transition. Paris:OECD Publications.
    92. OECD. (1999). Measuring Student Knowledge and Skills:A New Framework for Assessment.1-117. http://www.oecd.org/dataoecd/45/32/33693997.pdf
    93. Osborn, A. F. (1963). Applied Imagination. New York:Charles Scribner's Sons.
    94. Osherson, D. N.,& Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition,9,35-58.
    95. Pella, M. (1967). Science literacy and the h.s. curriculum. School Science and Mathematics,15,44-53.
    96. Peshkin, A. (1988). In search of subjectivity-One's Own. Educational Researcher, 17,17-21.
    97. Perkins, D., Jay, E.,& Tishman, S. (1993). Beyond abilities:A dispositional theory of thinking. Merrill-Palmer Quarterly,39,1-21.
    98. Presseley, M. (1999). Cognitive Strategy Instruction that Really Improve Children s Academic Performance. Cambridge:Brookline Books.
    99. Qin, Y.,& Simon, H. A. (1990). Laboratory replication of scientific discovery processes. Cognitive Science,4,281-312.
    100. Ravitch, D. (1983). The Troubled Crusade. New York:Basic Books.
    101. Reber, A. S.,& Allen, R. (1978). Analogic abstraction strategies in synthetic grammar learning:A functionalist interpretation. Cognition,6,189-221.
    102. Reece, G. J. (2005). Critical thinking and cognitive transfer:Implications for the development of online information literacy tutorials. Research Strategies,4, 482-493.
    103. Russell, D. H. (1956). Children s Thinking. Boston:Ginn and Co.
    104. Ryan, A. G.,& Aikenhead, G. S. (1992). Students'preconceptions about the epistemology of science. Science Education,76,559-580.
    105. Schwab, J. (1962). The teaching of science as enquiry. In The teaching of science (pp.1-103). Cambridge, MA:Harvard University Press.
    106. Sendag, S.,& Odabasi, H. F. (2009). Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Computers and Education,1,132-141.
    107. Simon, H. A. (1977). Models of Discovery. Dordrecht:Reidel.
    108. Simon, H. A. (1996). Oberservations on the science of science learning. Paper prepared for the committee on developments in the science of learning for the sciences of science learning:An interdisciplinary discussion. Department of psychology, Carnegie Mellon University.
    109. Sloane, F.,& Gorard, S. (2003). Exploring modeling aspects of design experiments. Educational Researcher,32,29-31.
    110. Sloman, S. (1996). The empirical case for two systems of reasoning. Psychological Bulletin,11,3-22.
    111. Smith, A.,& Hall, E. (1902). The Teaching of Chemistry and Physics in the Secondary School. New York:Longmans, Green.
    112. Smith, A. C., Wiser, M., Anderson, C. W.& Krajcik, J. (2006). Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory. Measurement: Interdisciplinary Research and Perspectives,14,1-98.
    113. Smith, N. (1974). The challenge of scientific literacy. The Science Teacher, 41(6),34-35.
    114. Sperry, R. W. (1968). Hemisphere deconnection and unity in conscious awareness. American Psychologist,23,723-733.
    115. Sternberg, R. J. (1985). Beyond IQ:A Triarchic Theory of Human Intelligence. Cambridge University Press.
    116. Sternberg, R. J. (1996). Successful Intelligence. New York:The Jeff Herman Literary Agency, Inc.
    117. Sternberg, R. J. (2001). Complex Cognition:The Psychology of Human Thought. New York:Talia Ben-Zeev.
    118. Stevenson, J. A. (1928). The Project Method of Teaching. New York: Macmillan.
    119. Strauss, S. (1998). Cognitive development and science education:Toward a middle level model. In W. Damon, I. Sigel,& K. A. Renninger (Eds.), Handbook of Child psychology (pp.357-399). New York:John Wiley & Sons, Inc.
    120. Strong, L. (1962). Chemistry as a science in the high school. The School Review,70,44-50.
    121. Sweeney, F. (2000). The Knowledge Explosion:Liberation and Limitation. Macmillan:Farrar, Straus & Giroux.
    122. Tinker, R. F. (1992). Thinking about Science. Princeton. NJ:College Entrance Examination Boad.
    123. Tucker, L. R. (1946). Maximum validity of a test with equivalent items. Psychometrika,11,1-13.
    124. Vygotsky, L. S. (1962). Thought and Language. Cambridge, MA:MIT Press.
    125. Wartofsky, M. W. (1979). Models:Representation and the Scientific understanding. Dordrecht:D. Reidel Publishing Company.
    126. Wellman, H. M.& Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology,43, 337-375.
    127. Werner, H. (1940). Comparative Psychology of Mental Development. New York:Harper.
    128. Wheeler, L. A.,& Collins, S. K. R. (2003). The influence of concept mapping on critical thinking in Baccalaureate nursing students. Journal of Professional Nursing,6,339-346.
    129. Williams, F. E. (1972). A Total Creativity Program for Individualizing and Humanizing the Learning Process. Englewood Cliffs, NJ:Educational Technology Publications.
    130. Wilson, M. (2005). Constructing Measures:An Item Response Modeling Approach. Mahwah, NJ:Lawrence Erlbaum Associates.
    131. Wittgenstein, L. (1953). Philosophical investigations. New York:Macmillan.
    132. Zimmerman, C. (2005). The development of scientific reasoning skills:What psychologists contribute to an understanding of elementary science learning. http://informalscience.org/researches/Corinne Zimmerman Final Paper.pdf 2010-3-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700