高含水量废弃生物质水热降解工艺及其资源化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各类资源的不断消耗,作为产量巨大和可再生的生物质资源逐渐引起各界的重视,并被认为是未来公认的潜在能源性物质和资源性物质。新鲜生物质一般具有较高的含水量,特别是作为未来生物质利用重心的水生生物质,其含水量更大。而当前各类资源化处理过程中,生物质中的高含量水分将带来高额操作成本或处理操作工艺及路线限制,成为生物质再利用的重要限制性因素之一。故而,本论文开展了针对高含水量生物质的资源化利用处理工艺的实验,并期于未来可以在实际中得到商业化运用。通过实验及分析得到以下主要结论:
     (1)结合当前热门的生物质处理工艺—水热处理和高含水量生物质的较高含水量这一特点,提出一套针对高含水量生物质的亚临界水热处理工艺,即不添加水,直接对这类高含水量生物质进行加压升温处理。通过初探性试验可以表明,该工艺可以将生物质中的各组分降解转化形成相应的单体。通过水热处理可以增值回收得到氨基酸、蛋白质和单糖等物质以及生物原油等可以在化学工业再利用物质。而该工艺具有以下特点:免除了其他处理技术中需要烘干等高成本工艺,并可以多元化利用处理得到的产物。
     (2)通过响应面分析了不同添加水含量对水热资源化利用生物质的影响。试验表明,水热过程中的水分添加量对水热资源化转化过程具有重要的影响。而当生物质的水分含量达到85%以上,则可以采用不添加水的水热处理工艺直接进行处理。
     (3)选取了不同来源的三种生物质废弃物:蔬菜废弃物、水生生物质以及水生生物质和花鸟市场的花枝废弃物的两组分混合生物质原料作为高含水量木质纤维类生物质的模型物,研究其在423-553 K处理温度和0-60 min处理停留时间内的水热转化效果。实验结果表明:在所设置的处理温度和处理停留时间内,三种生物质材料发生不同程度降解转化。木质纤维素类生物质中的主要组分纤维素和半纤维素均发生降解转化,而且它们的降解量随着处理温度的升高和处理停留时间的增加而增加。由于水热体系中存有再浓缩现象,故在没有酸碱等催化剂存在的情况下,于本试验设置温度范围内是无法完全降解生物质材料中的纤维素和半纤维素组分的。相比之下,木质素在水热体系降解转化所需的温度更高,本试验中,只在553 K温度和较长的处理时间下才表现降解现象。此外,通过固体产物的资源化分析表明,由于固体产物中具有较高含量的腐殖酸类物质和氮磷钾等养分含量,可以作为有机肥料施用于土壤改造和地力提升等工程。而残留在固体产物中少量纤维组分有利于进一步提升固体产物作为有机肥料的品质。处理温度和处理停留时间对资源化回收蛋白质、氨基酸和单糖及生物原油等影响不同,故在实际操作中应当针对具体的目的物质,进行具体参数设置。在多元化探讨水热降解产物利用的研究表明,水热处理得到的液体产物还具有较强的抗氧化性和一定的抑菌性,在提取这些抗氧化性物质和抑菌性物质后,可用于相关行业的药品制备,并为高产值资源化利用液体产物提供了新的途径。
     (4)通过动力学试验分析比较了常规热解和水热处理高含水量生物质的降解转化过程。结果表明:水热处理可以在较低温度下对纤维素等组分进行降解转化。水热体系中,生物质在473-553 K处理温度范围内的计算得到的表观活化能为90 KJ/mol,要明显低于常规热解条件下于相同温度区间内计算得到的活化能值130~116 KJ/mol,这也表明了在较低处理温度下,水热技术更合适于木质纤维类生物质的降解及在利用转化。
With the continuous consumption of various resources, the large amounts and renewable biomass resources are gaining public attention and regarded as the potential energy of the future material and resource material. General speaking, fresh biomass material has a higher water content, especially as the focus of future biomass utilization of aquatic biomass, among which the water content is much greater. The inherently high moisture content of biomass is the disadvantage for many treatment processed, because prior drying bring about high operating costs. Thus, water content is one of the important limiting factors that affect the treatment process of biomass. Therefore, this dissertation work is carried out encompassed resource re-utilization technology of the high water content biomass, and aimes at supporting the commercial re-utilization of high water content biomass. Via experiment and analysis, the following conclusions were obtained:
     (1) Hydrothermal treatment attracts many interest for its effectively, environmental benign on organic matter treatment. Considering the characteristics of hydrothermal treatment, which inducing decomposition in the water, and the higher water content in fresh biomass, we proposed to treat those biomass by using hydrothermal process, in which the high moisture content could be used advantageously to produce commercially viable valued-added matters without prior drying or other expensive chemicals. A prep-experiment that the high moisture biomass was hydrothermally treated directly without adding a external water, which was different from prior hydrothermal process, was carried out. The results showed that this process can degrade the biomass into its corresponding monomer. After hydrothermal decomposition of the biomass, value-added matters like amino acids, proteins, disaccharides and bio-crude could be recovered through the liquid product.
     (2) Effects of different watenfeed ratio on the hydrothermal conversion of biomass into resource were tested by response surface experiment. The results showed that the adding water amount during hydrothermal process had great effect on the value-added matters recovery and the biomass hydrothermal decomposition, and too low adding water amounts had a disadvantage effect on the biomass decomposition. As for the hydrothermal process without adding external water, it was recommended that higher than 85% moisture content is appropriate for directly hydrothermal conversion of the high moisture content of biomass.
     (3) Vegetable waste, aquatic biomass and two component mixture of waste biomass materials (aquatic biomass and bird market squid material) were selected as three different sources of high moisture content biomass waste model. These three biomass were hydrothermal treated under the 423-553 K of reaction temperature and reaction residence time of 0-60 min to view hydrothermal treatment effects. The results show that:in the set processing temperature and reaction residence time, all the three kinds of biomass materials could happen degradation reaction. The main components of cellulose and hemicellulose in lignocellulosic biomass could be split into their units successfully, and the amount of hemicellulose and cellulose decomposition was increased with the elevated reaction temperature and reaction retention time as set in this experiment, so did the amount of solid product. However, because there is existed a phenomenon of re-concentrated during hydrothermal process, it was very different to completely decompose the cellulose and hemicellulose components in the biomass without the presence of a catalyst such as acid and alkali, especially in subcritical water condition. The conversion of lignin in hydrothermal process usually needed a higher temperature, and in this experiment, only in the 553 K of reaction temperature with a longer retention time, the lignin appeared degradation phenomena. Thus, there still existed certain amounts of fiber in solid product. These residue lignocelluloses could benefit solid product, which contain a certain amounts of humus and nutrient fertilizer like N, P, K and other mineral nutrients, to re-use as a organic fertilizer to increase soil fertilizer via increasing the soil carbon content and buffering power of the soil. Moreover, reaction temperature and retention time had a great effect on the resource recovery of protein, amino acids and simple sugars from the biomass and constituents of the bio-crude oil. thus in practice, it was very important to set the hydrothermal condition according to the matter recycling targets. In addition, strong antioxidant and antimicrobial activity of liquid product obtained after hydrothermal treatment was also provided a new way to value-added re-utilization of the product in medicine and health products industries.
     (4) Kinetic experiments of pyrolytic and hydrothermal decomposition of lignocellulose were carried out to analyze and compare the biomass conversion process during the two thermo chemical treatment. The results showed that:a lower reaction temperature was needed for the lignocellulose biomass decomposition in hydrothermal treatment than that of the pyrolysis treatment. In the temperature range of 473-553 K, the calculated apparent activation energy 90 KJ/mol for hydrothermal treatment, significantly lower than the apparent activation energy of 130-116 KJ/mol calculated in the same temperature range of conventional pyrolysis, which also shows that at lower reaction temperature, hydrothermal technology was more appropriate to decompose the lignocellulosic biomass for re-utilization.
引文
Akiya, N., Savage, P.E. Roles of water for chemical reactions in high-temperature water [J]. Chemical Reviews.2002,102(8):2725-2750.
    Alenezi, R., Leeke, G.A., Santos, R.C.D., Khan, A.R. Hydrolysis kinetics of sunflower oil under subcritical water conditions [J]. Chemical Engineering Research and Design.2009,87(6):867-873.
    Allen, S.G., Kam, L.C., Zemann, A.J., Antal Jr, M.J. Fractionation of sugar cane with hot, compressed, liquid water [J]. Industrial & Engineering Chemistry Research. 1996,35(8):2709-2715.
    Allen, S.G., Schulman, D., Lichwa, J., Antal, M.J., Laser, M., Lynd, L.R. A comparison between hot liquid water and steam fractionation of corn fiber [J]. Industrial & Engineering Chemistry Research.2001,40(13):2934-2941.
    An, J.Y., Bagnell, L., Cablewski, T., Strauss, C.R., Trainor, R.W. Applications of high-temperature aqueous media for synthetic organic reactions [J]. Journal of Organic Chemistry.1997,62(8):2505-2511.
    Aronovsky, S.I., Gortner, R.A. The Cooking Process I Role of Water in the Cooking of Woodl [J]. Industrial & Engineering Chemistry.1930,22(3):264-274.
    Aswathy, U.S., Sukumaran, R.K., Devi, G.L., Rajasree, K.P., Singhania, R.R., Pandey, A. Bio-ethanol from water hyacinth biomass:An evaluation of enzymatic saccharification strategy [J]. Bioresource Technology.2010,101(3):925-930.
    Ayyasamy, P.M., Rajakumar, S., Sathishkumar, M., Swaminathan, K., Shanthi, K., Lakshmanaperumalsamy, P., Lee, S. Nitrate removal from synthetic medium and ground water with aquatic macrophytes [J]. Desalination.2009,242(1-3): 286-296.
    Ba, T., Chaala, A., Garcia-Perez, M., Rodrigue, D., Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions [J]. Energy & Fuels.2004,18(3): 704-712.
    Beckman, D., Elliott, D.C. Comparisons of the yields and properties of the oil products from direct thermochemical biomass liquefaction processes [J]. The Canadian Journal of Chemical Engineering.1985,63(1):99-104.
    Bicker, M., Endres, S., Ott, L., Vogel, H. Catalytical conversion of carbohydrates in subcritical water:A new chemical process for lactic acid production [J]. Journal of Molecular Catalysis a-Chemical.2005,239(1-2):151-157.
    Bobleter, O. Hydrothermal degradation of polymers derived from plants [J]. Progress in polymer science.1994,19(5):797-841.
    Bobleter, O., Concin, R. Degradation of poplar lignin by hydrothermal treatment [J]. Cellulose Chemistry and Technology.1979,13:583-593.
    Boocock, D.G.B., Porretta, F. Physical aspects of the liquefaction of poplar chips by rapid aqueous thermolysis [J]. Journal of wood chemistry and technology (USA). 1986,6(1):127-144.
    Bouchard, J., Nguyen, T.S., Chornet, E., Overend, R.P. Analytical methodology for biomass pretreatment. Part 2:characterization of the filtrates and cumulative product distribution as a function of treatment severity [J]. Bioresource Technology.1991,36(2):121-131.
    Box, G.E.P., Behnken, D.W. Some new three level designs for the study of quantitative variables [J]. Technometrics.1960,2(4):455-475.
    Bridgwater, A.V. Principles and practice of biomass fast pyrolysis processes for liquids [J]. Journal of Analytical and Applied Pyrolysis.1999,51(1):3-22.
    Brown, M., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H., Kemmler, A. Computational aspects of kinetic analysis-Part A:The ICTAC kinetics project-data, methods and results [J]. Thermochimica Acta.2000,355(1-2):125-144.
    Brown, R.C. Introduction to Thermochemical Processing of Biomass into Fuels, Chemicals, and Power [J].2011,11:1.
    Buccellato, F. Vanilla in Perfumery and Beverage Flavors [M]. Wiley-Blackwell. 2010.
    Bueno, P., Tapias, R., Lopez, F., Diaz, M.J. Optimizing composting parameters for nitrogen conservation in composting [J]. Bioresource Technology.2008,99(11): 5069-5077.
    Byrappa, K., Adschiri, T. Hydrothermal technology for nanotechnology [J]. Progress in Crystal Growth and Characterization of Materials.2007,53(2):117-166.
    Catallo, W.J., Shupe, T.F. Hydrothermal treatment of mixed preservative-treated wood waste [J]. Holzforschung.2008,62(1):119-122.
    Catallo, W. J., Shupe, T.F., Eberhardt, T.L. Hydrothermal processing of biomass from invasive aquatic plants [J]. Biomass and Bioenergy.2008,32(2):140-145.
    Chanda, A., Fokin, V.V. Organic Synthesis "On Water" [J]. Chemical Reviews.2009, 109(2):725-748.
    Cheng, H., Zhu, X., Zhu, C., Qian, J., Zhu, N., Zhao, L., Chen, J. Hydrolysis technology of biomass waste to produce amino acids in sub-critical water [J]. Bioresource Technology.2008,99(9):3337-3341.
    Clifford, M.N. Anthocyanins-nature, occurrence and dietary burden [J]. Journal of the Science of Food and Agriculture.2000,80(7):1063-1072.
    Coats, A.W., Redfern, J.P. Kinetic Parameters from Thermogravimetric Data [J]. Nature.1964,201(4914):68-69.
    Conde, E., Cara, C., Moure, A., Ruiz, E., Castro, E., Dom f nguez, H. Antioxidant activity of the phenolic compounds released by hydrothermal treatments of olive tree pruning [J]. Food Chemistry.2009,114(3):806-812.
    Conde, E., Moure, A., Dominguez, H., Parajo, J.C. Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes [J]. LWT-Food Science and Technology.2011,44(2):436-442.
    Diaz, M.J., Cara, C., Ruiz, E., Romero, I., Moya, M., Castro, E. Hydrothermal pre-treatment of rapeseed straw [J]. Bioresource Technology.2010,101(7): 2428-2435.
    Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals [J]. Energy Conversion and Management.2001,42(11): 1357-1378.
    Demirbas, A. Waste management, waste resource facilities and waste conversion processes [J]. Energy Conversion and Management.2011,52(2):1280-1287.
    Dote, Y., Inoue, S., Ogi, T., Yokoyama, S.-y. Studies on the direct liquefaction of protein-contained biomass:The distribution of nitrogen in the products [J]. Biomass and Bioenergy.1996,11(6):491-498.
    Duku, M.H., Gu, S., Hagan, E.B. A comprehensive review of biomass resources and biofuels potential in Ghana [J]. Renewable and Sustainable Energy Reviews. 2011,15(1):404-415.
    Eiland, F., Klamer, M., Lind, A.M., Leth, M., B th, E. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw [J]. Microbial Ecology.2001a,41(3):272-280.
    Eiland, F., Leth, M., Klamer, M., Lind, A.M., Jensen, H.E.K., Iversen, J. C and N turnover and lignocellulose degradation during composting of Miscanthus straw and liquid pig manure [J]. Compost Science & Utilization.2001b,9(3):186-196.
    Elliott, D.C. Historical Developments in Hydroprocessing Bio-oils [J]. Energy & Fuels.2007,21(3):1792-1815.
    Fang, Z., Fang, C. Complete dissolution and hydrolysis of wood in hot water [J]. Aiche Journal.2008,54(10):2751-2758.
    Fengel, D., Wegener, G. Wood:chemistry, ultrastructure, reactions [M]. German:Inst. Wood Res.1984.
    Fitzer, E., Kochling, K., Boehm, H., Marsh, H. Recommended terminology for the description of carbon as a solid [J]. Pure Appl. Chem.1995,67(3):473-506.
    Freeman, E.S., Carroll, B. The Application of Thermoanalytical Techniques to Reaction Kinetics:The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate [J]. The Journal of Physical Chemistry.1958,62(4):394-397.
    Goring, D. The lignin paradigm [M]. ACS Publications.1989:2-10.
    Goto, M., Obuchi, R., Hiroshi, T., Sakaki, T., Shibata, M. Hydrothermal conversion of municipal organic waste into resources [J]. Bioresource Technology.2004, 93(3):279-284.
    Gronli, M.G., Varhegyi, G, Di Blasi, C. Thermogravimetric Analysis and Devolatilization Kinetics of Wood [J]. Industrial and Engineering Chemistry Research.2002,41(17):4201-4208.
    Gullon, B., Yanez, R., Alonso, J.L., Parajo, J.C. Production of oligosaccharides and sugars from rye straw:A kinetic approach [J]. Bioresource Technology.2010, 101(17):6676-6684.
    Haghighat Khajavi, S., Kimura, Y., Oomori, T., Matsuno, R., Adachi, S. Kinetics on sucrose decomposition in subcritical water [J]. LWT-Food Science and Technology.2005,38(3):297-302.
    Hashaikeh, R., Fang, Z., Butler, I., Hawari, J., Kozinski, J. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion [J]. Fuel. 2007,86(10-11):1614-1622.
    He, B., Zhang, Y., Yin, Y., Funk, T., Riskowski, G. Effects of alternative process gases on the thermochemical conversion process of swine manure [J]. Carbon (C). 2001,45:1.12.
    Helgeson, H.C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures [J]. American journal of science.1969,267(7):729.
    Hendriks, A., Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass [J]. Bioresource Technology.2009,100(1):10-18.
    Honda, S., Miyata, N., Iwahori, K. Recovery of biomass cellulose from waste sewage sludge [J]. Journal of Material Cycles and Waste Management.2002,4(1):46-50.
    Hubbe, M., Nazhad, M., Sanchez, C. Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments:a review [J]. BioResources.2010,5(4):2808-2854.
    Jakab, E., Liu, K., Meuzelaar, H.L.C. Thermal Decomposition of Wood and Cellulose in the Presence of Solvent Vapors [J]. Industrial & Engineering Chemistry Research.1997,36(6):2087-2095.
    Jin, F., Enomoto, H. Hydrothermal conversion of biomass into value-added products: Technology that mimics nature [J]. BioResources.2009,4(2):704-713.
    Jin, F., Zhou, Z., Kishita, A., Enomoto, H. Hydrothermal conversion of biomass into acetic acid [J]. Journal of Materials Science.2006,41(5):1495-1500.
    Jin, F., Zhou, Z., Moriya, T., Kishida, H., Higashijima, H., Enomoto, H. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass [J]. Environ. Sci. Technol.2005,39(6):1893-1902.
    Jomaa, S., Shanableh, A., Khali, W., Trebilco, B. Hydrothermal decomposition and oxidation of the organic component of municipal and industrial waste products [J]. Advances in Environmental Research.2003,7(3):647-653.
    Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K. Glucose and Fructose Decomposition in Subcritical and Supercritical Water:Detailed Reaction Pathway, Mechanisms, and Kinetics [J]. Industrial & Engineering Chemistry Research.1999,38(8):2888-2895.
    Kabyemela, B.M., Adschiri, T., Malaluan, R.M., Arai, K. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water [J]. Industrial & Engineering Chemistry Research.1997,36(5):1552-1558.
    Kamio, E., Takahashi, S., Noda, H., Fukuhara, C., Okamura, T. Effect of heating rate on liquefaction of cellulose by hot compressed water [J]. Chemical Engineering Journal.2008,137(2):328-338.
    Karagoz, S., Bhaskar, T., Muto, A., Sakata, Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J]. Fuel.2005a,84(7-8):875-884.
    Karagoz, S., Bhaskar, T., Muto, A., Sakata, Y, Oshiki, T., Kishimoto, T. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products [J]. Chemical Engineering Journal.2005b,108(1-2):127-137.
    Karagoz, S., Bhaskar, T., Muto, A., Sakata, Y, Uddin, M.A. Low-temperature hydrothermal treatment of biomass:Effect of reaction parameters on products and boiling point distributions [J]. Energy & Fuels.2004,18(1):234-241.
    Kastner, H., Kaminsky, W. Recycle plastics into feedstocks [J]. Hydrocarbon Processing.1995,74(5):109-112.
    Katritzky, A.R., Nichols, D.A., Siskin, M., Murugan, R., Balasubramanian, M. Reactions in high-temperature aqueous media [J]. Chemical Reviews.2001, 101(4):837-892.
    Khajavi, S.H., Kimura, Y, Oomori, T., Matsuno, R., Adachi, S. Degradation kinetics of monosaccharides in subcritical water [J]. Journal of Food Engineering.2005, 68(3):309-313.
    Khuwijitjaru, P., Fujii, T., Adachi, S., Kimura, Y., Matsuno, R. Kinetics on the hydrolysis of fatty acid esters in subcritical water [J]. Chemical Engineering Journal.2004,99(1):1-4.
    Kim, S.-S., Kim, J., Park, Y.-H., Park, Y.-K. Pyrolysis kinetics and decomposition characteristics of pine trees [J]. Bioresource Technology.2010,101(24): 9797-9802.
    Kitada, K., Machmudah, S., Sasaki, M., Goto, M., Nakashima, Y, Kumamoto, S., Hasegawa, T. Antioxidant and Antibacterial Activity of Nutraceutical Compounds from Chlorella vulgaris Extracted in Hydrothermal Condition [J]. Separation Science and Technology.2009,44(5):1228-1239.
    Klingler, D., Berg, J., Vogel, H. Hydrothermal reactions of alanine and glycine in sub-and supercritical water [J]. The Journal of Supercritical Fluids.2007,43(1): 112-119.
    Knezevic, D., van Swaaij, W., Kersten, S. Hydrothermal Conversion Of Biomass. Ⅱ. Conversion Of Wood, Pyrolysis Oil, And Glucose In Hot Compressed Water [J]. Industrial & Engineering Chemistry Research.2010,49(1):104-112.
    Knezevic, D., van Swaaij, W., Kersten, S. Hydrothermal Conversion Of Biomass.Ⅱ. Conversion Of Wood, Pyrolysis Oil, And Glucose In Hot Compressed Water [J]. Industrial & Engineering Chemistry Research.2009,49(1):104-112.
    Komilis, D.P., Ham, R.K. The effect of lignin and sugars to the aerobic decomposition of solid wastes [J]. Waste Management.2003,23(5):419-423.
    Kong, L., Li, G., Yin, J., He, W., Wang, H., Xu, J., Ling, F. Re-utilization Disposal of Sawdust and Maize Straw by Hydrothermal Reaction [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.2009,31(10):876-887.
    Krammer, P., Vogel, H. Hydrolysis of esters in subcritical and supercritical water [J]. The Journal of Supercritical Fluids.2000,16(3):189-206.
    Kruse, A., Dinjus, E. Hot compressed water as reaction medium and reactant:2. Degradation reactions [J]. The Journal of Supercritical Fluids.2007a,41(3): 361-379.
    Kruse, A., Dinjus, E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions [J]. The Journal of Supercritical Fluids. 2007b,39(3):362-380.
    Lamoolphak, W., Goto, M., Sasaki, M., Suphantharika, M., Muangnapoh, C., Prommuag, C., Shotipruk, A. Hydrothermal decomposition of yeast cells for production of proteins and amino acids [J]. Journal of Hazardous Materials. 2006,137(3):1643-1648.
    Lehmann, J., Joseph, S. Biochar for environmental management:an introduction [J]. Biochar for environmental management:Science and technology.2009:1-12.
    Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fhner, C., Bens, O., Kern, J. Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry, processes and applications of wet and dry pyrolysis [J]. Biofuels.2011,2(1):71-106.
    Lu, Q., He, Z., Graetz, D., Stoffella, P., Yang, X. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.) [J]. Environmental Science and Pollution Research.2010,17(1):84-96.
    Lu, X., Zhang, Y, Angelidaki, I. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol:focusing on pretreatment at high solids content [J]. Bioresour Technol.2009,100(12): 3048-3053.
    Luo, G.e., Cheng, X., Shi, W., James Strong, P., Wang, H., Ni, W. Response surface analysis of the water:feed ratio influences on hydrothermal recovery from biomass [J]. Waste Management.2011,31(3):438-444.
    Lykidis, C., Grigoriou, A. Hydrothermal recycling of waste and performance of the recycled wooden particleboards [J]. Waste Management.2008,28(1):57-63.
    Ma, F., Yang, N., Xu, C., Yu, H., Wu, J., Zhang, X. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth [J]. Bioresource Technology.2010,101(24): 9600-9604.
    Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., Longworth, J. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure [J]. Bioresource Technology.2008, 99(17):8288-8293.
    Maiksteniene, S., Arlauskiene, A. Effect of preceding crops and green manure on the fertility of clay loam soil [J]. Agronomy Research.2004,2(1):87-97.
    Malester, I., Green, M., Shelef, G. Kinetics of dilute acid hydrolysis of cellulose originating from municipal solid wastes [J]. Industrial & Engineering Chemistry Research.1992,31(8):1998-2003.
    Marshall, W.M., Franck, E. Ion Product of Water Substance,0-1000℃,1-10,000 bars: New International Formulation and Its Background [M]. U.S.:American Chemical Society and the American Institute of Physics for the National Bureau of Standards.1981.
    McMillan, J. Processes for pretreating lignocellulosic biomass:A review [R]. National Renewable Energy Lab., Golden, CO (United States).1992.
    Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry.1959,31(3):426-428.
    Minowa, T., Fang, Z. Hydrogen production from cellulose in hot compressed water using reduced nickel catalyst:product distribution at different reaction temperatures [J]. Journal of Chemical Engineering of Japan.1998,31(3): 488-491.
    Minowa, T., Murakami, M., Dote, Y., Ogi, T., Yokoyama, S. Oil production from garbage by thermochemical liquefaction [J]. Biomass and Bioenergy.1995,8(2): 117-120.
    Minowa, T., Zhen, F., Ogi, T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst [J]. The Journal of Supercritical Fluids.1998,13(1-3): 253-259.
    Mochidzuki, K., Sakoda, A., Suzuki, M. Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water:a kinetic-study [J]. Advances in Environmental Research. 2003,7(2):421-428.
    Mok, W.S.L., Antal Jr, M.J. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water [J]. Industrial & Engineering Chemistry Research.1992,31(4):1157-1161.
    Moore, S., Stein, W.H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds [J]. Journal of Biological Chemistry.1954,211(2):907-913.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y, Holtzapple, M., Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology.2005,96(6):673-686.
    Muthuraman, M., Namioka, T., Yoshikawa, K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals:A thermogravimetric analysis [J]. Applied Energy.2010,87(1):141-148.
    Nelson, D.A., Molton, P.M., Russell, J.A., Hallen, R.T. Application of direct thermal liquefaction for the conversion of cellulosic biomass [J]. Industrial & engineering chemistry product research and development.1984,23(3):471-475.
    Onwudili, J.A., Williams, P.T. Hydrothermal reforming of bio-diesel plant waste: Products distribution and characterization [J]. Fuel.2010,89(2):501-509.
    Onwudili, J.A., Williams, P.T. Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions [J]. The Journal of Supercritical Fluids.2007,39(3):399-408.
    Osada, M., Sato, T., Watanabe, M., Shirai, M., Arai, K. Catalytic gasification of wood biomass in subcritical and supercritical water [J]. Combustion Science and Technology,178.2006,1(3):537-552.
    Ozawa, T. Thermal analysis--review and prospect [J]. Thermochimica Acta.2000, 355(1-2):35-42.
    Papadimitriou, E.K. Hydrolysis of organic matter during autoclaving of commingled household waste [J]. Waste Management.2010,30(4):572-582.
    Papadimitriou, E.K., Barton, J.R. Report:Factors affecting the content of potentially toxic elements in the biodegradable fraction of autoclaved household waste [J]. Waste Management & Research.2009,27(7):685-692.
    Parawira, W., Read, J.S., Mattiasson, B., Bjornsson, L. Energy production from agricultural residues:High methane yields in pilot-scale two-stage anaerobic digestion [J]. Biomass and Bioenergy.2008,32(1):44-50.
    Pompeu, D.R., Silva, E.M., Rogez, H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology [J]. Bioresource Technology.2009,100(23):6076-6082.
    Portela, J.R., Lopez, J., Nebot, E., Martinez de la Ossa, E. Elimination of cutting oil wastes by promoted hydrothermal oxidation [J]. Journal of Hazardous Materials.2001,88(1):95-106.
    Pourali, O., Asghari, F.S., Yoshida, H. Sub-critical water treatment of rice bran to produce valuable materials [J]. Food Chemistry.2009,115(1):1-7.
    Quitain, A.T., Faisal, M., Kang, K., Daimon, H., Fujie, K. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes [J]. Journal of Hazardous Materials.2002,93(2):209-220.
    Quitain, A.T., Katoh, S., Moriyoshi, T. Isolation of Antimicrobials and Antioxidants from Moso-Bamboo (Phyllostachys Heterocycla) by Supercritical CO2 Extraction and Subsequent Hydrothermal Treatment of the Residues [J]. Industrial & Engineering Chemistry Research.2004,43(4):1056-1060.
    Quitain, A.T., Sato, N., Daimon, H., Fujie, K. Production of valuable materials by hydrothermal treatment of shrimp shells [J]. Industrial & Engineering Chemistry Research.2001,40(25):5885-5888.
    Rajauria, G, Jaiswal, A.K., Abu-Ghannam, N., Gupta, S. Effect of hydrothermal processing on colour, antioxidant and free radical scavenging capacities of edible Irish brown seaweeds [J]. International Journal of Food Science & Technology. 2010,45(12):2485-2493.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay [J]. Free Radic Biol Med.1999,26(9-10):1231-1237.
    Rice, S.F., Steeper, R.R. Oxidation rates of common organic compounds in supercritical water [J]. Journal of Hazardous materials.1998,59(2-3):261-278.
    Rogalinski, T., Liu, K., Albrecht, T., Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water [J]. The Journal of Supercritical Fluids.2008,46(3):335-341.
    Ross, D., Jayaweera, I. Environmentally acceptable waste disposal by hydrothermal decomposition of labile compounds with nitrite [P]. Google Patents.1998.
    Saha, B.C. Hemicellulose bioconversion [J]. Journal of Industrial Microbiology and Biotechnology.2003,30(5):279-291.
    Sakaki, T., Shibata, M., Miki, T., Hirosue, H., Hayashi, N. Reaction model of cellulose decomposition in near-critical water and fermentation of products [J]. Bioresource Technology.1996,58(2):197-202.
    Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., Arai, K. Cellulose hydrolysis in subcritical and supercritical water [J]. The Journal of Supercritical Fluids.1998,13(1-3):261-268.
    Savage, P.E. Organic chemical reactions in supercritical water [J]. Chemical Reviews. 1999,99(2):603-621.
    Savage, RE. A perspective on catalysis in sub- and supercritical water [J]. The Journal of Supercritical Fluids.2009,47(3):407-414.
    Seo, D.K., Park, S.S., Hwang, J., Yu, T.-U. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species [J]. Journal of Analytical and Applied Pyrolysis.2010,89(1): 66-73.
    Sereewatthanawut, I., Prapintip, S., Watchiraruji, K., Goto, M., Sasaki, M., Shotipruk, A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis [J]. Bioresource Technology.2008,99(3):555-561.
    Shock, E.L. Organic acids in hydrothermal solutions:standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures [J]. American journal of science.1995,295(5):496.
    Siskin, M., Katritzky, A.R. Reactivity of organic compounds in superheated water: General background [J]. Chemical Reviews.2001,101(4):825-835.
    So, K., Brown, R. Economic analysis of selected lignocellulose-to-ethanol conversion technologies [J]. Applied Biochemistry and Biotechnology.1999,79(1): 633-640.
    Spigno, G., De Faveri, D.M. Antioxidants from grape stalks and marc:Influence of extraction procedure on yield, purity and antioxidant power of the extracts [J]. Journal of Food Engineering.2007,78(3):793-801.
    Spigno, G., Tramelli, L., De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics [J]. Journal of Food Engineering.2007,81(1):200-208.
    Srokol, Z., Bouche, A.G., van Estrik, A., Strik, R.C.J., Maschmeyer, T., Peters, J.A. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds [J]. Carbohydrate Research.2004,339(10):1717-1726.
    Starink, M. Activation energy determination for linear heating experiments:deviations due to neglecting the low temperature end of the temperature integral [J]. Journal of Materials Science.2007,42(2):483-489.
    Stratil, P., Klejdus, B., Kuban, V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables evaluation of spectrophotometric methods [J]. Journal of Agricultural and Food Chemistry. 2006,54(3):607-616.
    Sun, L., Chen, J.Y., Negulescu, I.I., Moore, M.A., Collier, B.J. Kinetics modeling of dynamic pyrolysis of bagasse fibers [J]. Bioresource Technology.2011,102(2): 1951-1958.
    Tagaya, H., Shibasaki, Y., Kato, C., Kadokawa, J., Hatano, B. Decomposition reactions of epoxy resin and polyetheretherketone resin in sub-and supercritical water [J]. Journal of Material Cycles and Waste Management.2004,6(1):1-5.
    Tam, K.H., Djurisic, A.B., Chan, C.M.N., Xi, Y.Y., Tse, C.W., Leung, Y.H., Chan, W.K., Leung, F.C.C., Au, D.W.T. Antibacterial activity of ZnO nanorods prepared by a hydrothermal method [J]. Thin Solid Films.2008,516(18): 6167-6174.
    Templer, R., van der Wielen, L. Biorenewables, the bio-based economy and sustainability [J]. Interface Focus.2011,1 (2):187.
    Tronina, P., Bubel, F. Production of organic fertilizer from poultry feather wastes excluding the composting process [J]. Polish Journal of Chemical Technology. 2008,10(2):33-36.
    Tymchyshyn, M., Xu, C. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds [J]. Bioresource Technology.2010,101 (7): 2483-2490.
    Ueno, H., Tanaka, M., Hosino, M., Sasaki, M., Goto, M. Extraction of valuable compounds from the flavedo of Citrus junos using subcritical water [J]. Separation and Purification Technology.2008,62(3):513-516.
    van den Berg, R., Haenen, G.R.M.M., van den Berg, H., Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures* 1 [J]. Food Chemistry.1999, 66(4):511-517.
    Van soest, P.J. Collaborative study of acid-detergent fiber and lignin [J]. Journal of the Association of Official Analytical Chemists.1973,56(4):781-784.
    Van soest, P.J. Use of detergents in analysis of fibrous feeds. Ⅱ. A rapid method for determination of fiber and lignin [J]. Journal of the Association of Official Agricultural Chemists.1963,46(5):829.
    Van Soest, P.J., Robertson, J.B., Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition [J]. Journal of dairy science.1991,74(10):3583.
    Vegas, R., Kabel, M., Schols, H.A., Alonso, J., Parajo, J. Hydrothermal processing of rice husks:effects of severity on product distribution [J]. Journal of Chemical Technology & Biotechnology.2008,83(7):965-972.
    Villamagna, A.M., Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes):a review [J]. Freshwater Biology.2010, 55(2):282-298.
    Wahyudiono, Sasaki, M., Goto, M. Kinetic study for liquefaction of tar in sub-and supercritical water [J]. Polymer Degradation and Stability.2008,93(6): 1194-1204.
    Watanabe, M., Mochiduki, M., Sawamoto, S., Adschiri, T., Arai, K. Partial oxidation of n-hexadecane and polyethylene in supercritical water [J]. The Journal of Supercritical Fluids.2001,20(3):257-266.
    Watchararuji, K., Goto, M., Sasaki, M., Shotipruk, A. Value-added subcritical water hydrolysate from rice bran and soybean meal [J]. Bioresource Technology.2008, 99(14):6207-6213.
    Wilkie, A., Evans, J. Aquatic plants:an opportunity feedstock in the age of bioenergy [J]. Aquatic.2010,1(2):311-321.
    Wolosiak, R., Worobiej, E., Piecyk, M., Druzynska, B., Nowak, D., Lewicki, P.P. Activities of amine and phenolic antioxidants and their changes in broad beans (Vicia faba) after freezing and steam cooking [J]. International Journal of Food Science & Technology.2010,45(1):29-37.
    Wyman, C.E. Ethanol from lignocellulosic biomass:Technology, economics, and opportunities [J]. Bioresource Technology.1994,50(1):3-15.
    Xia, X., Zeng, X., Liu, J., Xu, W. Preparation and characterization of epoxy/kaolinite nanocomposites [J]. Journal of Applied Polymer Science.2010,118(4): 2461-2466.
    Yang, Y., Feng, C., Inamori, Y., Maekawa, T. Analysis of energy conversion characteristics in liquefaction of algae [J]. Resources, Conservation and Recycling.2004,43(1):21-33.
    Yao, F., Wu, Q., Lei, Y, Guo, W., Xu, Y. Thermal decomposition kinetics of natural fibers:Activation energy with dynamic thermogravimetric analysis [J]. Polymer Degradation and Stability.2008,93(1):90-98.
    Yin, S., Dolan, R., Harris, M., Tan, Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil:Effects of conversion parameters on bio-oil yield and characterization of bio-oil [J]. Bioresource Technology.2010,101(10): 3657-3664.
    Yoshida, H., Terashima, M., Takahashi, Y. Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis [J]. Biotechnology Progress. 1999,15(6):1090-1094.
    Zielinski, H., Kozlowska, H., Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing [J]. Innovative Food Science & Emerging Technologies.2001,2(3):159-169.
    Zimmels, Y, Kirzhner, F., Kadmon, A. Effect of circulation and aeration on wastewater treatment by floating aquatic plants [J]. Separation and Purification Technology.2009,66(3):570-577.
    于文吉,马红霞,王天佑.农作物秸秆人造板发展现状与应用前景[J].木材工业.2005,19:5.
    孔令照,李光明,张波,贺文智,王华.纤维素废弃物水热处理制Hz的研究进展[J].环境污染治理技术与设备.2006,7(9):7-12.
    文科军,吴丽萍,尹建峰.城市生物垃圾的生物质利用途径[J].中国园林.2009,04:15-17.
    孔繁祚.糖化学[M].北京:科学出版社.2005.
    王正言.论城市生活垃圾的源头减量化[J].大众科技.2006,1:109-110.
    王树荣,庄新妹,骆仲泱,岑可法.木质纤维素类生物质超低酸水解试验及产物分析研究[J].工程热物理学报.2006a,27(005):741-744.
    王树荣,庄新姝,骆仲泱,岑可法.农林废弃物超低酸水解装置及试验研究[J].农业机械学报.2006b,37(006):27-31.
    王述洋.生物质热解动力学建模几锥式闪速热解装置设计理论研究[D].东北林 业大学.哈尔滨.2002.
    王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学工程.2006,40(6):36-42.
    王瑞芳,石蔚云.糠醛的生产及应用[J].牙膏工业.2008,(3):39-40.
    王德宝,胡莹.我国生活垃圾组成成分及处理方法分析[J].环境卫生工程.2010,18(1):40-41.
    石元春.发展生物质产业[J].中国农业科技导报.2006,8(1):1.
    刘一星.木质废弃物再生循环利用技术[M].北京:化学工业出版社.2005,1-11.
    刘广青,董仁杰,李秀金.生物质能源转化技术[M].北京:化学工业出版社.2009,20.
    刘建禹,翟国勋.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报.2001,32:290.
    庄新姝,王树荣,袁振宏,骆仲泱,吴创之,岑可法.纤维素超低酸水解产物的分析[J].农业工程学报.2007,23(002):177-182.
    朱玉昌,焦必宁.ABTS法体外测定果蔬类总氧化能力的研究进展[J].食品与发酵工业.2005,31(8):77-80.
    曲金星,池涌,郑皎,陈翀,米海波,倪明江.水分对城市生活垃圾热解气化特性影响的试验研究[J].电站系统工程.2007,23(5):23-26.
    朱磊,卢剑波.沼气发酵产物的综合利用[J].农业环境科学学报.2007,26(增刊):176-180.
    杜秀珍,赵梦.多能互补,重视生物质能发展[J].农业工程技术·新能源产业.2010,4:10-13.
    李建新,王永川,张美琴,严建华,池涌.国内城市生活垃圾特性及其处理技术研究[J].热力发电.2006,1:11-14.
    李传华,钱光人,洪瑞金,王雪梅,丘富荣.生物质垃圾转化为生态肥料的水热技术试验研究[J].农业环境科学学报.2004,23(6):1119-1123.
    杜风光,史吉平,张龙,徐志剑.纤维质生产燃料乙醇产业化研究进展[J].中国麻业科学.2007,1:72-74.
    肖军,沈来宏,王泽明,仲晓黎.生物质加压热重分析研究[J].燃烧科学与技术. 2005,11(5):415-420.
    林剑峰.沼气发酵产物的利用技术[J].可再生能源.2003,110:36-38.
    邹小明,钱俊青,卢时勇.竹醋液馏分抑茵性能研究[J].林产化学与工业.2005,25(3):33-37.
    涂平涛.以农业剩余物为原料生产的建筑板材及其发展现状[J].砖瓦.2004,12:30.
    郭艳,王垚,魏飞.生物质快速裂解液化技术的研究进展[J].化工进展.2001,8:13-17.
    黄进,夏涛,郑化.生物质化工与生物质材料[M].北京:化学工业出版社.2009,12-115.
    傅旭峰,仲兆平,肖刚,李睿.几种生物质热解特性及动力学的对比[J].农业工程学报.2009,25(1):199-202.
    曾元儿,张凌.仪器分析[M].北京:科学出版社.2007,12-40.
    曾其良,王述洋,徐凯宏.典型生物质快速热解工艺流程及其性能评价[J].森林工程.2008,24(3):47-50.
    董玉平,王理鹏,邓波,陆萍,申树云.国内外生物质能源开发利用技术[J].山东大学学报(工学板).2007,37(3):64-69.
    张波,李光明,恽俊,王华.农业废弃物水热资源化利用进展[J].江苏环境科技.2006,19(5):49-52.
    杨远智,田文栋,肖云汉.可降解有机物湿解实验研究[J].工程热物理学报.2004,25(3):388-340.
    汤章城.现代植物生理学试验指南[M].北京:科学出版社.1999,392-394.
    陈育如,夏黎明,岑沛霖,欧阳平凯.蒸汽爆破预处理对植物纤维素性质的影响[J].高校化学工程学报.1999,13(3):234-239.
    陈洪章.生物质科学与工程[M].北京:化学工业出版社.2008,1-6.
    马志刚,吴树志,白云峰.生物质能利用技术现状及进展[J].能源工程.2008,5:21-27.
    马隆龙.秸秆气化技术[M].北京:中国环境科学出版社.2002.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社.2000.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社.2005,438-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700