纳米Fe/Ni双金属颗粒的制备优化及其去除水中CAHs的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代脂肪烃(Chlorinated Aliphatic Hydrocarbons-CAHs)作为化工原料和有机溶剂被广泛的应用于化工、制革、医药和电子等行业,使用过程中发生的泄漏、喷射以及工业的直接排放,引起土壤和地下水的CAHs污染。本文旨在研究纳米零价铁和镍组成的双金属体系对CAHs的还原脱氯作用,从而达到治理地下水污染的目的。使用液相化学还原共沉淀法制备纳米Fe/Ni双金属颗粒时,添加42%聚乙二醇作为分散剂,选择冷冻干燥作为干燥方法,可以得到性能较优良的纳米双金属颗粒材料。纳米Fe/Ni颗粒粒径较小(约为20nnm),呈现非晶态纳米合金结构。通过使用不同Ni含量纳米Fe/Ni颗粒对于三种不同CAHs进行批式降解实验,发现对于PCE和1,1,1-TCA的还原降解而言,最佳Ni含量为11%;而对于TCE最佳Ni含量为6%,这证明并非催化金属Ni的含量越高,其对CAHs的降解效能就越好。随着投加量的增大,纳米Fe/Ni颗粒对TCE降解速率和去除率随之增加。在1,1,1-TCA和TCE共存于水相时,其降解效能和速率相较于单独降解过程都有不同程度的下降。Ca2+、Mg2+、Na+、SO42-、NO3-、Cl和甲醇对于1,1,1-TCA和TCE的降解过程均表现出抑制作用,而腐殖酸钠对于CAHs降解的影响是竞争吸附和传递电子两方面作用的叠加。纳米Fe/Ni对于CAHs的去除动力学符合伪-级反应动力学模型。
Chlorinated aliphatic hydrocarbons (CAHs) as chemical raw materials and organic solvents, are widely used in chemical, leather, pharmaceutical and electronics industries. As a result of the leakage or injetion occur in the process and industrial direct emissions, CAHs results in the critical contamination of soil and groundwater environments. The objective of this study is to evaluate the effectiveness of removing CAHs from groundwater with nano-scale Fe/Ni (iron/nickel) particles. Liquid phase chemical reduction coprecipitation method, chosen 42% polyethylene glycol as dispersing agent and freeze drying as the dring technique, was employed for the preparation of nano-Fe/Ni bimetallic materials. The Fe/Ni particles, with average size of 20nm, have amorphous nano-alloy structure. The results of batch CAHs degradation experiments by nano Fe/Ni with different Ni content shown that, for 1,1,1-TCA and PCE, the optimum Ni content is 11%, while nano Fe/Ni with 6% Ni content has the best removal capacity for TCE. This phenomenon implies that the higher content of Ni metal catalyst doesn't mean the better performance for CAHs removal. As the dosage increases, the nano-Fe/Ni particles will reduce TCE more quickly with higher removal rate. When 1,1,1-TCA and TCE co-exist in the water, slower reduction was observed with lower removal rate for each CAH. Ca2+, Mg+, Na+,SO42-,NO3-, Cl-, and methanol were found have negative effects on 1,1,1-TCA and TCE degradation, while the effect of humic acid sodium is constituted of competitive adsorption and transmission of electron. The CAHs removal kinetics by nano Fe/Ni consists with the pseudo-first order kinetics model.
引文
[1]陈红书.浅析我国水资源与水污染治理现状[J].云南环境科学,2003,22:66-69.
    [2]张晓勇,黄卫,司蔚.浅谈当前水资源的现状和问题及对策[J].山西化工,2007,27(5):68-70.
    [3]张保会,宋建民.解决水质性缺水应是我国“十二五”重要环保任务[J].环境保护,2009,(15):42-44.
    [4]武雪艳.我国水资源保护和水污染控制对策[J].中小企业管理与科技,2009,(21):211-212.
    [5]张国俊,孟洪,薛峰TCE/PCE的DNAPL污染及零价铁墙防治技术[J].环境污染防治技术与设备,2006,7(4):12-18.
    [6]黄园英,刘菲,汤鸣皋.纳米镍/铁对四氯乙烯快速脱氯试验[J].岩矿测试,2005,24(2):93-96.
    [7]江泉观,纪云晶,常元勋.环境化学毒物防治手册[M].北京:化学工业出版社,2004:559-567.
    [8]Gillham, R. W. Enhanced degradation of VOCs:laboratory and pilot-scale field demonstration[A]. Petersburg. International containment technology conference[C]. Florida: 1997,858-864.
    [9]Morioka, Y. Control of groundwater quality contaminated with toxic chemicals[J]. Journal of Japan Society on Water Environment,1996(19):529-533.
    [10]张达政,陈鸿汉,李海明.浅层地下水卤代烃污染初步研究[J].中国地质,2002,29(3):326-329.
    [11]何江涛,李烨,陈鸿汉.浅层地下水氯代烃污染的天然生物降解[J].环境科学,2005,26(2):121-125.
    [12]高霏,刘菲,陈鸿汉.三氯乙烯污染土壤和地下水污染源区的修复研究进展[J].地球科学进展,.2008,23(8):821-829.
    [13]刘菲,汤鸣皋,何小娟.零价铁降解水中氯代烃的实验室研究[J].地球科学—中国地质大学学报,2002,27(2):186-188.
    [14]何小娟,李旭东,汤明皋.零价铁、镍-铁和铜-铁双金属对四氯乙烯的脱氯研究[J].化工环保,2006,26(6):451-454.
    [15]杨柱,李义连,陈华清.零价铁修复水土中含氯有机物的研究进展[J].安全与环境工程,2007,14(1):43-46.
    [16]卢杰,李梦红,潘嘉芬.有机氯代烃污染地下水环境的治理与修复[J].山东理工大学学报(自然科学版),2008,22(4):27-30.
    [17]孟凡生,王业耀,汪春香.三氯乙烯污染地下水的原位修复技术研究及应用现状[J]. 四川环境,2005,24(3):70-73.
    [18]GB5749-2006,生活饮用水卫生标准,2006.
    [19]蓝俊康,王焰新.利用铁屑腐蚀电池原位修复被氯代烃污染地下水的研究进展[J].地质科技情报,2002,21(3):84-87.
    [20]李琳,刘菲.水资源中氯代烃污染物的去除方法[J].黄金地质,2002,8(2):74-76.
    [21]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版,1999:21-27.
    [22]郭华明,王焰新.地下水有机污染治理技术现状及发展前景[J].地质科技情报,1999,18(2):69-72.
    [23]马长文,仵彦卿,孙承兴.受氯代烃类污染的地下水环境修复研究进展[J].环境保护科学,2007,33(3):23-25.
    [24]Vedrina, D. I., Dragojevi, D. Trichloroethylene and tetrachloroethylene in ground waters of Zagreb,Croatia[J]. Science of The Total Environment,1997,203(3):253-259.
    [25]Jeffrey, H. H., Sabatini, D. A., Knox, R.C. Surfactants for ground water remediation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,151(1-2):255-268.
    [26]胥思勤,王焰新.表面活性剂改性岩矿材料去除废水中氯代烃的实验研究[J].地球科学-中国地质大学学报,2004,29(1):55-58,64.
    [27]谢冰.超声波作用下有机污染物的降解[J].水处理技术,2000,26(2):114-119.
    [28]Yan, Y. E., Schwartz, F. W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate[J]. Journal of Contaminant Hydrology,1999,37(3-4):343-365.
    [29]Nelson, C. H., Brown, R. A. Adapting ozonation for soil and groundwater cleanup[J]. Chemical Engineering.1994,101(10):18-22.
    [30]李功虎,马胡兰,安纬珠.纳米二氧化钛气相光催化降解三氯乙烯[J].催化学报,2000,21(4):350-354.
    [31]陈宜菲,陈少瑾.光催化氧化法降解含氯有机物的研究进展[J].河北化工,2008,(1):25-28.
    [32]米生权,魏涛.四氯乙烯污染现状及处理方法的研究进展[J].海峡预防医学杂志,2006,12(3):21-23.
    [33]陈郁,全燮.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5):84-88.
    [34]Scott, O. W., Gillham, R. W. Dechlorination of Trichloroethene in Aqueous Solution Using FeO[J]. Environmental Science and Technology,1996,30(1):66-71.
    [35]Junko, M. V., Grace, M., Forney, L. J., et al. Long-term biodegradation of trichloroethylene influenced by bioaugmentation and dissolved oxygen in aquifer microcosms[J]. Environmental Science and Technology,1997,31(3):786-791.
    [36]Strandberg, G. W., Donaldson, T. L., Farr, L. L. Degradation of trichloroethylene and trans-1,2-dichloroethylene by a methanotrophic consortium in a fixed-film, packed-bed bioreactor[J]. Environmental Science and Technology,1989,23(11):1422-1425.
    [37]Duba, A. G., Jackson, K. J., Jovanovich, M. C., et al. TCE remediation using an in situ, resting-state bioaugmentation[J]. Environmental Science and Technology,1996,30(6): 1982-1989.
    [38]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展[J].化学进展,2006,18(1):93-99.
    [39]Li, X. Q., Elliott, D. W., Zhang, W. X. Zero-valent iron nanoparticles for abatement of environmental pollutants:Materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences,2006,31(4):111-122.
    [40]Lowry, G. V., Johnson, K. M. Congener-specific dechlorination of dissolved PCBs by micro-scale and nano-scale zero-valent iron in a water/methanol solution[J]. Environmental Science and Technology,2004,38(19):5208-5216.
    [41]Kanel, S. R., Greneche, J. M., Choi, H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science and Technology,2006,40(6):2045-2050.
    [42]Su,C. M., Puls, R. W. Kinetics of tricholoroethene reduction by zero valent iron and tin: pre-treatment effect, apparent activation energy, and intermediate products[J]. Environmental Science and Technology,1999,33(1):163-168.
    [43]Sweeny, K. H. Reductive degradation treatment of industrial and municipal wastewater[A]. Water reuse symposium [C]. Denver:American Water Works Association Research Foundation,1979,2:1487-1488.
    [44]Gillham, R. W., O'Hannesin, S. F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water,1994,2(6):958-967.
    [45]郎印海,聂新华,贾永刚.零价铁渗透反应格栅原位修复地下水中氯代烃的应用及研究进展[J].土壤(Soils),2006,38(1):23-28.
    [46]Zhang, W. X. Nanoscale iron particles for environmental remediation an overview[J]. Journal of Nanoparticle Research,2003,5(3-4):323-332.
    [47]何小娟,刘菲,黄园英等.利用零价铁去除挥发性氯代脂肪烃的试验[J].环境科学,2003,24(1):139-142.
    [48]Johnson, T. L., Scherer, M. M., Tratnyek P. G. Kinetics of Halogenated Organic Compound Degradation by Iron Metal [J]. Environmental Science and Technology,1996, 30(8):2634-2640.
    [49]刘菲,钟佐乐.地下水中氯代烃的格栅水处理技术[J].地学前缘(中国地质大学)2001,8(2):309-314.
    [50]Matheson, L. J., Tratnyek, P. G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science and Technology,1994,28(12):2045-2053.
    [51]全燮,杨凤林,薛大明.钯-铁催化还原法对水中三氯乙烯的快速脱氯研究[J].大连理工大学学报,1997,37(1):46-50.
    [52]O'Hannesin, S. F., Gillham, R. W. Long-term performance of an situ "iron wall"for remediation of VOCs[J]. Ground Water,1998,36(1):164-170.
    [53]Muftikian, R., Fernando, Q., Korte, N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J]. Water Research,1995,29(10): 2434-2439.
    [54]Schlieker, O., Ebert, M., Fruth, M., et al. Degradation of TCE With iron:The role of competing chromate and nitrate reduction[J]. Ground Water,2000,38(3):403-409.
    [55]黄园英,刘菲,汤明皋等.纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究[J].环境科学学报,2007,27(1):80-85.
    [56]Mallat, T., Bodnar, Z., Petro, J., Reduction by dissolving bimetals[J]. Tetrahedron,1991, 47(3):441-446.
    [57]Korte, N.E., Zutman, J. L., Schlosser, R.M., et al. Field application of palladized iron for the dechlorination of trichloroethene[J]. Waste Management,2000,20(8):687-694.
    [58]Zhang, W. X., Wang, C. B. Treatment of chlorinated organic contaminants with nanoscale bimetal particles[J]. Catal Today,1998,40(4):387-395.
    [59]全燮,刘会娟,杨凤林.二元金属体系对水中多氯有机物的催化还原脱氯特性[J].中国环境科学,1998,18(4):333-338.
    [60]童少平,胡丽华,魏红等.Ni/Fe二元金属脱氯降解对氯苯酚的研究[J].环境科学,2005,26(4):59-62.
    [61]Cwiertny, D. M., Bransfield, S. J., Kenneth, J. T., et al. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction[J]. Environmental Science and Technology,2006,40(21):6837-6843.
    [62]Lin, C. J., Shang, L. L., Ya, H. L. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron[J]. Journal of Hazardous Materials,2004,116(3):219-228
    [63]Sivavec, T. M. Mackenzie, P D., Homey, D. P., et al. Redox-active media for permeable reactive barriers[A]. International Containment Technology Conference [C]. Florida Petersburg:1997,753-759.
    [64]梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究[J].环境保护,2002,4:14-16.
    [65]Cao, J. S., We, L. P., Huang, Q. G. et al. Reducing degradation of azo dye by zero-valent iron in aqueous solution[J]. Chemosphere,1999,38(3):565-571
    [66]Matheson, L. J., Tratnyek, P. G., Reductive Dehalogenation of Chlorinated Methanes by Iron Metal[J]. Environmental Science and Technology,1994,28(12):2045-2053.
    [67]Wang, C. B., Zhang, W. X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs[J]. Environmental Science and Technology,1997, 31(7):2154-2156.
    [68]Lien, H. L., Zhang, W. X. Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,191(1-2):97-105.
    [69]Elliott, D. W., Zhang, W. X. Field assessment of nanoscale biometallic particles for groundwater treatment[J]. Environmental Science and Technology,2001,35(24):4922-4926.
    [70]Wei, Y. T., Wu, S. C., Chou, C. M., et al. Influence of nanoscale zero valent iron on geochemical properties of groundwater and vinyl chloride degradation:A field case study[J]. Water Research,2010,44(1):131-140.
    [71]Arnold, W. A., Roberts, A. L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene with Fe(0) particles[J]. Environmental Science and Technology,2000, 34(9):1794-1805.
    [72]Lien, H. L., Jhuo,Y. S., Chen, L. H. Effect of Heavy Metals on Dechlorination of Carbon Tetrachloride by Iron Nanoparticles[J]. Environmental Engineering Science,2007,24(1): 21-30.
    [73]Liu,Y. Q., Majetich, S. A., Tilton, R. D., et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties [J]. Environmental Science and Technology,2005,39(5):1338-1345.
    [74]戴道生.非晶态物理学[M].北京:电子工业出版社,1989:694-695.
    [75]Liu, Y. Q., Choi, H., Dionysiou D., et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron[J]. Chemistry of Materials,2005,17(21): 5315-5322.
    [76]Schrick, B., Blough, J. L., Jones, A. D. et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials,2002, 14(12):5140-5147.
    [77]吴德礼,王红武,马鲁铭.氯代烃结构特性对其还原脱氯反应速率的影响[J].同济大学学报(自然科学版),2007,35(4):496-500.
    [78]刘文霞.硫酸根对零价铁降解1,1,1-三氯乙烷的影响[D].浙江:浙江大学,2010.
    [79]Devlin, J. F., Allin, K. O. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments [J]. Environmental Science and Technology,2005,39(6):1868-1874.
    [80]Liu, Y. Q., Phenrat, T., Lowry, G. V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution[J]. Environmental Science and Technology,2007,41(22):7881-7887.
    [81]林佩君.整合零价金属与电动力法复育有机污染土壤——以四氯乙烯为例[D].台 湾:朝阳科技大学,2003.
    [82]Cho, H. H., Park, J. W. Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules [J]. Chemosphere,2006,64(6):1047-1052.
    [83]曾迪华,蔡灿桦,刘志忠等.硝酸盐与腐植酸影响零价铁去除三氯乙烯之研究[J].21世纪可持续发展之环境保护(上卷),2001,7:95-100.
    [84]林海英.纳米零价铁的制备以及在环境有机污染物去除方面的应用研究[D].河南:河南师范大学,2009.
    [85]Tratnyek, P. G, Scherer, M. M, Deng, B. L., et al. Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron[J]. Water Research,2001,35(18):4435-4443.
    [86]McDowall, L. Degradation of toxic chemicals by zero-valent metal nanoparticles a literature review[A].Human Protection Performance Division DSTO Defence Science and Technology Organisation,2005,11-12.
    [87]Fennelly, J. P., Roberts, A. L. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants[J].Environmental Science and Technology,1998,32(13): 1980-1988.
    [88]吴德礼,马鲁铭,徐文英.Fe/Cu催化还原法处理氯代有机物的机理分析[J].水处理技术,2005,31(5):30-33.
    [89]全燮,刘会娟,杨凤林.二元金属体系对水中多氯有机物的催化还原脱氯特性[J].中国环境科学,1998,18(4):333-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700