蚕蛹蛋白酶解制备抗氧化和降血压活性产物及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚕蛹作为缫丝企业的主要副产品产量高,由于缺乏深加工技术,大量蚕蛹都作为饲料和肥料使用,资源利用率和附加值低。蚕蛹蛋白质量占干蚕蛹质量的45%-50%,经测定在蚕蛹蛋白中含有18种人体所需的氨基酸,是一种较为理想的优质纯天然全价蛋白质,而蚕蛹蛋白的酶解产物蚕蛹多肽也具有多种功能活性。虽然目前关于蚕蛹蛋白综合利用的研究已有很多,但还存在研究的广度和深度不够的问题,主要体现在蚕蛹蛋白酶解产物功能活性开发和酶解动力学过程研究不够深入等方面。本论文从蚕蛹蛋白的深加工应用研究和蛋白酶解过程基础研究出发,优化蚕蛹蛋白精制工艺,同时优化中性蛋白酶和碱性蛋白酶水解蚕蛹蛋白体系制备具有较高抗氧化和降血压活性酶解产物的工艺,推导两个酶反应体系的宏观动力学方程和集总动力学方程。主要取得以下几方面的研究成果:
     对制备得到的蚕蛹蛋白进行氨基酸含量和分子量分布分析,发现蚕蛹蛋白中8种必需氨基酸占总量的48.03%,疏水性氨基酸占总氨基酸含量的46.69%,具有进一步研究其抗氧化和和ACE抑制活性肽的潜力。蚕蛹蛋白水溶液分子量分布结果显示,蚕蛹蛋白中包含有多种蛋白和多肽,分子量范围从90kDa到500Da。
     用5种蛋白酶水解蚕蛹蛋白,以O2-·、DPPH-及·OH的抑制率和ACE的抑制率作为抗氧化和降血压活性的测检指标,发现中性蛋白酶和碱性蛋白酶的酶解产物同时具有较强的抗氧化和降血压活性。根据响应面试验设计方法,再以水解度作为响应面指标,得到中性蛋白酶最优条件为反应温度49℃,pH值7.00,加酶量0.70%,反应180min;碱性蛋白酶最优条件为反应温度51℃,pH值9.05,加酶量0.38%,反应180min,并通过实验验证其误差值小于5%,说明采用响应面试验设计方法对蚕蛹蛋白酶解体系进行优化具有较好的可靠性。
     结合酶解反应机理推导出中性蛋白酶和碱性蛋白酶水解蚕蛹蛋白体系宏观动力学模型,计算得到两个酶反应体系动力学常数分别为米氏常数4.0g-L-1、产物生成速率常数130.9min-1、底物抑制常数110.4g·L-1、酶失活速率常数24.6min-1(中性蛋白酶)和米氏常数3.5g·L-1、产物生成速率常数251.7min-1、底物抑制常数94.8g·L-1、酶失活速率常数41.4min-1(碱性蛋白酶),证明在两个体系内存在底物抑制现象,其最适底物浓度分别为32.7g·L-1和23.4g·L-1。根据实验验证两个酶反应体系反应模型,平均相对误差分别为3.80%和4.60%。再通过对两个体系不同反应条件下增溶度的分析,建立了增溶度与水解度经验方程。
     根据蚕蛹蛋白酶解机理,提出蚕蛹蛋白酶解集总动力学假设,再根据蛋白的溶解性和酶解产物分子量分布情况,建立两个酶反应体系蚕蛹蛋白三集总反应数学模型。测定酶失活速率常数和各集总本征动力学常数后,拟合出集总反应网络动力学参数,建立各动力学常数与开氏温度的关系式,并分析影响速率常数的主要因素,得到相应的反应活化能分别为22.22kJ·mo1-1和9.52kJ·mol-1。为验证模型可靠性,在不同温度下进行实验,结果表明实验值与计算值较为吻合,说明该模型具有较好的推算性。再通过测定不同集总组分的抗氧化和ACE抑制活性发现主要活性都集中在分子量最小组分(集总组分C)中,并通过蚕蛹蛋白宏观动力学模型和集总动力学模型的关联,得到两个酶反应体系水解度、主要集总组分和反应时间关联方程组,为优化生物活性肽的生产工艺提供理论依据。
Silkworm (Bombyx mori) pupae are considered main msilk industry waste. Because of shorting at the technical support, silkworm pupae mostly consumed as animal feed and fertilizer. The protein of silkworm pupae (PSP) alone consists of about40%-60%of the total dry pupae weight, containing18known amino acids and is considered as a good nutritional source of protein. In this thesis, in accordance with the deep processing application and mechanism of protein hydrolysis about PSP, extraction condition was optimized by one-factor for PSP from silkworm pupae. Then the hydrolyzates of PSP catalyzed by neutrase and alacase exerted the higher antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activity. The hydrolyzing conditions were optimized by response surface methodology (RSM). At last, the macro dynamic equation and lumped dynamic equation are deduced about neutrase and alacase reaction system, the main results are as follow.
     Amino acid composition and of PSP was analyzed with HPLC. Experiment results show that8essential amino acids (EAA) and hydrophobic amino acid was48.03%and46.69%of total amino, respectively. It is worthwhile to do the further research on antioxidative activity and angiotemin-I-converting enzyme (ACE) inhibitory activity because of its enormous potentials. Molecular weight distribution was obtained by HPSEC. The results indicated that the PSP included a variety of small proteins and peptide with the molecular weight range from500to100000Da.
     The hydrolyzates of silkworm pupae protein were catalyzed by neutrase, alcalase, bromelain, trypsin and papain. The ACE inhibitory activity and antioxidative activity were identified by HPLC and spectrophotometry. The hydrolyzates catalyzed by neutrase and alcalase exerted the higher antioxidative activity and inhibitory activity. The hydrolyzing conditions were optimized by one-factor and Box-Behnken design methods, and response surface methodology (RSM). Statistical analyses showed that regression of the second-order model equation is suitable to describe degree of hydrolysis, and the average regressive error was less than5%. The neutrase optimum technology conditions were:hydrolysis temperture at49℃, pH7.00, enzyme concentration0.38%(w/w) and reaction time180min. The alcalase optimum technology conditions were:hydrolysis temperature at51℃, pH9.05, enzyme concentration0.70%(w/w) and reaction time180min. The reliability of the model was verified by RSM, and the average regression error was less than5%.
     Taking into account the reaction mechanism, a kinetic model was established to characterize the enzymatic hydrolysis curves about neutrase and alcalase. The reaction constants in neutrase were determined as michaelis constant4.02g·L-1, product formation rate constant130.9min-1, substrate inhibition constant110.4g·L-1and enzyme inactivation rate constant24.6min. The reaction constants in alcalase were determined as michaelis constant3.5g·L-1, product formation rate constant251.7min-1,substrate inhibition constant94.8g·L-1and enzyme inactivation rate constant41.4min-1. It proved that the substrate inhibition existed in neutrase and alcalase system, and its optimum substrate concentration were determined as32.7g·L-1and23.4g·L-1. The experimental data were substituted this kinetic model, the regressive results agree well with the experimental data, i. e. the average relative error was only3.80%and4.60%. The kinetics of hydrolysis and solubilization for all experiments could be represented, and the empirical model was defined and the relationship between hydrolysis and solubilization was power found for all experimental data.
     Taking into account the reaction mechanism, this paper applied lumping kinetics to the PSP-neutrase and PSP-alcalase systems. The principle of lumping kinetic was built base on solubility of PSP and molecular weight distribution of hydrolysates. The lumped components of the complex reaction system were defined and a three-lumping reaction network was proposed in two systems. Reaction of the lumps was described with intrinsic kinetic equations, which contained product inhibition; substrate inhibition, enzyme inactivation and the variation of different lumped components in different time, and system of differential equations for this reaction of lumps were established, and its reaction activation energy were determined as22.22kJ-mol-1and9.52kJ-mol-1. The reliability of the model was verified by comparing the computed values with the experimental values, and the kinetic equations could be used to model the hydrolysis process. The functional test of different lumped components showed that it is holds better ACE inhibitory activity and antioxidative activity in lump C. By means of the combination of macro dynamic equation and lumped dynamic equation, system of equations in two systems were deduced about degree of hydrolysis, different lumped components and reaction time. These equations offer the theory support for the technological process of bioactive peptides
引文
[1]吕思行,刘吉平,廖森泰.蚕蛹资源的综合利用[J].广东蚕业,2010,44(3):40-44
    [2]浦锦宝,魏克民.蚕蛹的传统应用和现代研究概况[J].浙江中医学院学报,1999,23(5):57-58
    [3]王宝贵,孙晓霞,赵林伊,等.柞蚕蛹蛋白质营养价值研究[J].中国公共卫生,2002,18(5):67-68
    [4]金维维,赵钟兴,刘旭辉,等.蚕蛹蛋白氨基酸含量的高效液相色谱法测定[J].时珍国医国药,2010,21(3):537-539
    [5]Zhou J, Han D. Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China [J]. Journal of Food Composition and Analysis,2006,19: 850-853
    [6]王敦,白耀宇,张传溪.家蚕蛹营养成分及其开发利用研究进展[J].昆虫知识,2004,41(5):418-421
    [7]董烨平,吴琼英.蚕蛹蛋白开发与利用现状[J].农产品加工.学刊,2010,(6):17-20
    [8]邓连霞,沈新琦,朱良均,等.蚕蛹应用研究新进展[J].蚕桑通报,2010,41(3):10-13
    [9]张桂珍,王桂林,熊勇华,等.蚕蛹蛋白碱法提取工艺初探[J].食品科学,1994,(10):20-22
    [10]吴建一,魏克民.低脂无臭蛹蛋白粉的制备方法[J].蚕业科学,2003,41(3):10-13
    [11]倪红,陈怀新,杨艳燕.柞蚕蛹综合利用技术[J].湖北大学学报(自然科学版),2003,25(3):263-266
    [12]周小华,骆辉.蚕蛹分离蛋白制备及深加工现状与展望[J].蚕桑通报,2005,36(4):8-12
    [13]周建军,赵桦.一种简便的提取蚕蛹蛋白新方法[J].天然产物研究与开发,2001,13(4):44-46
    [14]吴晓霞,李建科,张研宇.蚕蛹油超声波辅助萃取及其抗氧化稳定性[J].中国农业科学,2010,43(8):1677-1687
    [15]张海祥,方婷婷,潘文娟,等.响应曲面法优化尿素包合富集蚕蛹油α-亚麻酸的工艺[J].食品科学,2011,32(4):74-77
    [16]Wei Z, Liao A, Zhang H, et al. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology [J]. Bioresource Technology,2009,100(18):4214-4219
    [17]Kotake-Nara E, Yamamoto K, Nozawa M, et al. Lipid profiles and oxidative stability of silkworm pupal oil [J]. Journal of Oleo Science,2002,51(11):681-690
    [18]陈颖娣,余丹,汪红富,等.蚕蛹三种不同方法提取的比较研究[J].食品科技,2010,35(3):194-196
    [19]张迎庆,陈腾飞.冷冻结晶法提取蚕蛹油不饱和脂肪酸[J].湖北工学院学报,2000, 15(1):58-60
    [20]杨克迪,胡小明,黄海基,等.硝酸银络合萃取蚕蛹油α-亚麻酸酯[J].中国油脂,2008,33(1):30-32
    [21]张海祥,方婷婷,潘文娟,等.响应曲面法优化尿素包合富集蚕蛹油α-亚麻酸的工艺[J].食品科学,2011,32(4):74-77
    [22]王金华,干信.蚕蛹甲壳素的开发与应用[J].现代商贸工业,2003,(4):46-48
    [23]赵祥杰,邝哲师,叶明强,等.蚕蛹几丁质开发利用研究进展[J].蚕业科学,2008,34(3):575-580
    [24]倪红,陈怀新,杨艳燕,等.桑蚕蛹甲壳素及壳聚糖的提取与制备工艺研究[J].湖北大学学报(自然科学版),1998,20(1):97-99
    [25]朱新鹏,方琼,樊明涛,等.蚕蛹甲壳素提取工艺优化研究[J].中国林副特产,2009,8(3):27-29
    [26]吕秋楠,史高峰,陈学福,等.脱脂蚕蛹酸水解制备复合氨基酸的工艺研究[J].食品科技,2009,34(10):86-88
    [27]Wang W, Shen S, Chen Q, et al. Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory Peptides (ACEIP) [J]. Current Pharmaceutical Biotechnology,2008,9(3):1-8
    [28]Wang W, Wang N, Zhou Y, et al. Isolation of a novel peptide from silkworm pupae protein components and interaction characteristics to angiotensin I-converting enzyme [J]. European Food Research and Technology,2011,232(1):29-38
    [29]温红珊,昌友权,曹柏营.蚕蛹蛋白多肽抗疲劳作用的实验研究[J].食品科学,2009,30(19):291-293
    [30]Wen H S, Chang Y Q, Cao B Y. Anti-fatigue function of silkworm pupa protein polypeptides [J]. Food Science,2009,30(19):291-293
    [31]闫琦涛,曹柏营,昌友权.蚕蛹蛋白多肽液抗肿瘤作用的实验研究[J].食品科学,2008,29(11):123-126
    [32]杨安树,陈红兵,郑功源,等.酶法水解蚕蛹蛋白制备免疫活性肽工艺的研究[J].食品工业科技,2008,29(1):225-227
    [33]闵建华,李建科,陈婷.蚕蛹多肽的制备工艺及其体外抗氧化活性[J].食品科学,2009,30(14):123-126
    [34]Perez-Figares J M, Mancera J M, Rodriguez E M, et al. Presence of an oxytocin-like peptide in the hypothalamus and neurohypophysis of a turtle(Mauremys caspica) and a snake(Natrix maura) [J]. Cell and Tissue Research,1995,279(1):75-84
    [35]Khantaphanta S, Benjakul S, Kishimura H. Antioxidative and ACE inhibitory activities of protein hydrolysates from the muscle of brownstripe red snapper prepared using pyloric caeca and commercial proteases [J]. Process Biochemistry,2011,46(1):318-327
    [36]Vercruysse L, Van Camp J, Morel N, et al. Ala-Val-Phe and Val-Phe:ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats [J]. Peptides,2010,31(3):482-488
    [37]Yang R, Thang Z, Pei X, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice [J]. Food Chemistry,2009, 113(2):464-470
    [38]He G Q, Xuan G D, Ruan H, et al. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology [J]. Journal of Zhejiang University Science B,2009,6(6):508-513
    [39]Peng I, Xiong Y L, Kong B. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance [J]. Food Chemistry,2009,113(1): 196-201
    [40]Migliore-Samoura D, Floch F, Jollesa P. Biologically active casein peptides implicated in immunomodulation [J]. Journal of Dairy Research,1989, (56):357-362
    [41]Yohikawa M, Kishi K, Takahashi M, et al. Immunostimulating peptide derived from soybean protein. New York:1993
    [42]Pan D, Luo Y, Tanokara M. Antihypertensive peptides from skimmed milkydrolysat digested by cell-free extract of Lactobacillus Shelvetieus JCM1004 [J]. Food Chemistry, 2004,91(6):123-129
    [43]Fukudome S I, Yoshikaw M. A novel opioid peptide derived from wheat gluten [J]. FEBS Letters,1993,316(1):17-19
    [44]Meisel H. Biochemical properties of regulatory peptides derived from milk proteins [J]. Biopolymers,1997,42(2):119-128
    [45]Rokka T, Syvaoja L E, Tuominen J. Release of bioaetive peptides by enzymatic proteolysis of Lactobaeillus GG fermented UHT-milk [J]. Milehwissensehaft,1997,52: 675-678
    [46]Ohashi A, Murata E, Yamamoto K, et al. New functions of lactoferrin and β-casein in mammalian milks cysteine protease inhibitors [J]. Biochemical and Biophysical Research Communications,2003,306(1):98-103
    [47]郑建仙.功能性食品:北京:中国轻工出版社,1995344-378
    [48]方允中,郑荣梁.自由基生物学地理论与应用:北京:科学出版社,2002
    [49]Anne S, Isaksen M A. Application of enzymes as food antioxidants [J]. Trends in Food Science&Technology,1995,6(9):300-304
    [50]Papas A M. Diet and antioxidant status [J]. Food and Chemical Toxicology,1999,37(9): 999-1007
    [51]Ramarathnam N. The contribution of plant food antioxidants to human health [J]. Trends in Food Science&Technology,1995,6(3):75-81
    [52]胡春.黄酮类化合物的抗氧化性质[J].中国油脂,1996,21(4):18-21
    [53]史霄燕.茶多酚的抗氧化作用及机制[J].国外医学.药学分册,1998,25(4):196-199
    [54]刘德传,吴仕九,杨运高,等.微量元素、抗氧化剂与湿热证的相关性的研究[J].广东微量元素科学,2001,8(2):30-32
    [55]韦安阳,周春兰.微量元素铜、铁、锰、锗与自由基[J].广东微量元素科学,2001,8(6):15-16
    [56]傅明辉.苦瓜籽蛋白的分离、纯化及其抗氧化作用的研究[J].药物生物技术,2001,8(5):248-250
    [57]张杰,李立,张焱,等.氨基酸复合剂抗氧化作用的研究[J].河南预防医学杂志,2007,18(6):407-408
    [58]霍湘,王安利,杨建梅.含硫氨基酸的抗氧化作用[J].生物学通报,2006,41(4):3-4
    [59]Deckel E A, Crum A D, Calvert J T. Difference in the antioxidant mechanism of camosine in the presence of copper and iron [J]. Journal of Agricuture Food Chemistry, 1992,40(4):756-759
    [60]Brown C E. Interactions among camosine, anserine, ophidine and copper in biochemical adaptation [J]. Journal of Theoretical Biology,1981,88(2):245-256
    [61]Kohen R, Misgav R, Ginsburg I. The SOD like activity of copper:camosine, copper: anserine and copper:homocamosine complex [J]. Journal of Free Radicals Research Communication,1991,13(12):179-185
    [62]Chan W K M, Decker E A, Lee J B. EPR spin-trapping studies of the hydroxyl radical scavenging activity of camosine and related dipeptides [J]. Journal of Agricuture Food Chemistry,1994,42(8):1407-1410
    [63]张强,阚国仕,陈红漫,等.酶解玉米蛋白粉制备抗氧化肽[J].食品工业科技,2005,26(6):109-111
    [64]张丽霞,顾振新,周剑忠,等.双酶水解麦胚制备抗氧化肽的工艺优化[J].江苏农业学报,2010,26(3):601-606
    [65]彭地纬,熊华,赵强,等.米渣抗氧化肽制备工艺的研究[J].食品科技,2009,(7):55-59
    [66]孙键.绿豆抗氧化活性肽的制备及其抗氧化活性研究[D].陕西师范大学,2011
    [67]Byun H G, Jung K L, Park H G, et al. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis [J]. Process Biochemistry,2009,44(8):842-846
    [68]胡文婷,孙谧,王跃军.栉孔扇贝(Chlamys farreri)中抗氧化肽的分离纯化及性质研究[J].海洋与湖沼,2006,(1):14-19
    [69]王斌,于春光,罗红宇,等.赤魟鱼肉蛋白酶解产物的制备及抗氧化活性研究[J].中国食品学报,2010,(4):113-118
    [70]肖燕平,黄培霞,董烨平,等.蚕蛹蛋白抗氧化肽的制备及其纯化[J].农产品加工.学刊,2011,(3):11-13
    [71]柳杰.花生粕抗氧化肽的研究[D].无锡:江南大学,2010
    [72]张强,周正义,孙玉军,等.米糠抗氧化肽的分离纯化研究[J].安徽科技学院学报,2008,22(1):29-33
    [73]封梅.酶解草鱼制备降血压肽的研究[D].武汉:武汉工业学院,2008
    [74]Roks A, Buikema H, Pinto Y M, et al. The renin-angiotensin system and vascular function. The role of angiotensin II, angiotensin-converting enzyme, and alternative conversion of angiotensin I [J]. Heart Vessels,1997, (12):119-124
    [75]Tigerstedt R, Bergmann P. Niere und kreislauf [J]. Scand Arch Physiol,1898, (8): 223-271
    [76]Irvine H P, Helmer O M. A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin activator [J]. The Journal of Experimental Medicine, 1940,71(1):29-42
    [77]Naftilan A J, Pratt E R, Dzau J Y. Induction of platelet-derived growth factor A-chain and c-mycgene expressions by angiotensinll in cultured rat vascular smooth muscle cells [J]. The Journal of Clinical Investigation,1989,83:1419-1424
    [78]Ondetti M A, Cushman D W. Enzymes of the renin-angiotensin system and their inhibitors [J]. Annual Review of Biochemistry,1982,51:283-308
    [79]Miyoshi S, Kaneko T, Yoshizawa Y, et al. Hypotensive activity of enzymatic a-zein hydrolysate [J]. Agricultural Biology and Chemistry,1991,55(18):1407-1418
    [80]Mamyama S, Mitaehi H, Tanaka H, et al. Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein [J]. Agricultural and Biological Chemistry,1987,51(6):1581-1591
    [81]Kohmura M, Nio N, Kubo K, et al. Inhibition of angiotensin-converting enzyme by synthetic peptides of human β-casein [J]. Agricultural Biology and Chemistry,1989, 53(8):2107-2118
    [82]Wu J P, Ding X L. Haracterization of inhibition and stability of soy protein derived Angiotensin-I converting enzyme inhibitory peptides [J]. Food Research International, 2002,35(4):367-375
    [83]Jea J Y, Parkb P J, Byuna H G. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis [J]. Bioresource Technology,2005,96(14):1624-1629
    [84]Lee D H, Kim J H, Park J S, et al. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum [J]. Peptides,2004,25(4):621-627
    [85]Yokoyama K, Chiba H, Yoshikawa H. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito [J]. Bioscience, Biotechnology and Biochemistry,1992,56(10):1541-1552
    [86]Jang A, Lee M. Purifleation and identifieation of angiotensin converting enzyme inhibitory peptides from beef hydrolysates [J]. Meat Seience,2005,69(4):653-661
    [87]Je J J, Park J Y, Jung W K, et al. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas [J]. Food Chemistry,2005, 90(4):809-814
    [88]Hasan F, Kitagawa M, Kumada Y, et al. Production kinetics of angiotensin-I converting enzyme inhibitory peptides from bonito meat in artificial gastric juice [J]. Process Biochemistry,2006,41(3):505-511
    [89]Yamamoto N, Ejiri M, Mizuno S. Biogenic peptides and their potential use [J]. Current Pharmaceutical Design,2003,9(16):1345-1355
    [90]Michaelis L, Menten M L. Die kinetik der invertinwirkung [J]. Biochemische Zeitschrift, 1913,49:333
    [91]Briggs G E, Haldane J B S. A Note on the Kinetics of Enzyme Action [J]. The Biochemical journal,1925,19(2):18-29
    [92]汪树雄,戚以政.生化反应动力学与反应器(第二版):北京:化学工业出版社,1999
    [93]Mishra A, Kumar S. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium [J]. Biochemical Engineering Journal,2009,46(3): 252-256
    [94]Carrillo F A, Lis M J, Coloma X, et al. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw:Kinetic study [J]. Process Biochemistry,2005,40(10): 3360-3364
    [95]Harun R, Danquah M K. Enzymatic hydrolysis of microalgal biomass for bioethanol production [J]. Chemical Engineering Journal,2011,168(3):1079-1084
    [96]Long W S, Kamaruddin A H, Bhatia S. Enzyme kinetics of kinetic resolution of racemic ibuprofen ester using enzymaticmembrane reactor [J]. Chemical Engineering Science, 2005,60(18):4957-4970
    [97]Alder-Nissen J. Enzymic hydrolysis of food proteins. London:Elsevier,1986.
    [98]Benkhelifa H, Bengoa C, Larre C, et al. Casein hydrolysis by immobilized enzymes in a torus reactor [J]. Process Biochemistry,2005,40(1):461-467
    [99]Kristinsson H G, Rasco B A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture [J]. Process Biochemistry,2000,36(1):131-139
    [100]齐崴,何志敏,何明霞.蛋白质酶促水解反应机理与动力学模型[J].天津大学学报,2005,38(9):768-773
    [101]黎金,张国权,罗勤贵.荞麦蛋白的碱性蛋白酶酶解动力学研究[J].中国粮油学报,2009,24(6):41-46
    [102]Marquez M C, Vazquez M A. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry,1999,35(1):111-117
    [103]Zhimin H, Wei Q, Mingxia H. A novel exponential kinetic model for casein tryptic hydrolysis to prepare active peptides [J]. Chinese Journal Chemistry Engineering,2002, 10(5):562-566
    [104]Gonzalez-Tello P, Camacho F, Jurado E, et al. Enzymatic hydrolysis of whey proteins:I. Kinetic models [J]. Biotechnology and Bioengineering,1994,44(4):523-528
    [105]林伟锋,赵谋明,彭志英,等.海洋鱼蛋白可控酶解动力学模型的研究[J].食品与机械,2005,21(3):10-13
    [106]Apar D K, ozbek B. Corn Gluten Hydrolysis by Alcalase:Effects of Process Parameters on Hydrolysis, Solubilization and Enzyme Inactivation [J]. Chemical and Biochemical Engineering Quarterly,2008,22(2):203-212
    [107]Van der Plancken I, Van Loey A, Hendrickx M E. Effect of heat-treatment on the physico-chemical properties of egg white proteins:A kinetic study [J]. Journal of Food Engineering,2006, (75):316-326
    [108]Demirhan E, Apar D K, ozbek A B. Sesame cake protein hydrolysis by alcalase:Effects of process parameters on hydrolysis, solubilisation, and enzyme inactivation [J]. Korean Journal of Chemistry Engineering,2011,28(1):195-202
    [109]陈俊武.催化裂化工艺与工程:第二版.北京:中国石化出版社,
    [110]Blanding F H. Reaction rates in catalytic cracking of petroleum [J]. Industrial & Engineering Chemistry Research,1953,45(6):1186-1189
    [111]Smith R B. Kinetic analysis of naphtha reforming with platinum catalyst [J]. Chemical Engineering Progress,1959,55(6):76-88
    [112]Wei J, Kuo C W. A lumping analysis in monomolecular reaction system-nalysis of the exactly lumpable systems [J]. Industrial & Engineering Chemistry Fundamentals,1969, 8(1):114-123
    [113]Wei J, Kuo C W. A lumping analysis in monomolecular reaction system-analysis of the approximately lumpable systems [J]. Industrial & Engineering Chemistry Fundamentals, 1969,8(1):124-132
    [114]Aris R, Gavalas G R. On the theory of reactions in continuous mixtures [J]. Philosophical Transactions of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences,1966,260:351-393
    [115]Wei J. Strueture of complex chemical reaetion systems [J]. Industrial & Engineering Chemistry Fundamentals,1965,4(2):161-167
    [116]Weekman V W. Kinetics and dynamics of catalytic cracking selectivity in fixed-bed reactors [J]. Inndustrial & Engineering Chemistry Research,1969,8(3):385-391
    [117]Weekman V W, Nace D M. Kinetics of catalytic cracking selectivity in fixed, moving and fluid bed reactors [J]. AIChE journal,1970,16(3):397-404
    [118]Ozawa Y. The structure of a lumpable monomolecular system for reversible chemical reactions [J]. Industrial & Engineering Chemistry Fundamentals,1973,12(2):191-196
    [119]江洪波,翁惠新.集总动力学模型研究的普遍方法与原则探讨[J].华东理工大学学报:自然科学版,2000,26(2):139-143
    [120]席少霖,赵风治.最优化计算方法:北京:清华大学出版社,1993
    [121]席少霖.非线性最优化方法:北京:高等教育出版社,1992
    [122]Hagelberg P, Eilos I, Hiltunen J. Kinetic of catalytic cracking with short contact times [J]. Applied Catalysis A:General,2002,223(1):73-84
    [123]Weekman V W. Lumps, models, and kinetics in practice. AIChE Journal, Monograph Series,1979
    [124]翁惠新,欧阳福生,马军.重油催化裂化反应集总动力学模型(Ⅰ)模型的建立[J].化工学报,1995,46(6):662-668
    [125]吴飞跃,翁惠新,罗世贤FDFCC工艺中重油提升管催化裂化反应动力学模型[J].石油学报:石油加工,2008,24(5):540-547
    [126]王建平,许先焜,翁惠新,等.加氢渣油催化裂化七集总动力学模型的建立[J].石油学报:石油加工,2006,22(4):44-48
    [127]王建平,许先焜,翁惠新,等.加氢渣油催化裂化14集总动力学模型的建立[J].化工学报,2007,58(1):86-94
    [128]许友好.催化裂解反应动力学模型的建立及其应用[J].石油炼制与化工,2001,32(11):44-47
    [129]李丽,高金森,徐春明,等.重油催化裂解集总动力学模型研究[J].现代化工,2006,(z2):338-341
    [130]Meng X H, Xu C M, Li L, et al. Studies on the kinetics of heavy oil catalytic pyrolysis [J]. Industrial & Engineering Chemistry Research,2003,42(24):6012-6019
    [131]王国良,王龙延,崔中强,等.重油接触裂解制乙烯集总反应动力学模型研究[J].石油化工,2004,33(2):93-99
    [132]Kmak W S. A kinetic simulation model of the power forming process:AIChE National Meeting. Housto:1971
    [133]Ramage M P, Graziani K R, Krambeck F J. Development of mobil's kinetic reforming model [J]. Chemical Engineering Science,1980,35(1):41-48
    [134]翁惠新,孙绍庄,江洪波.催化重整集总动力学模型(Ⅰ)模型的建立[J].化工学报,1994,(4):407-412
    [135]欧阳福生,翁惠新,孙绍庄,等.催化重整集总反应动力学模型的研究(Ⅳ)模型的工业验证[J].化学反应工程与工艺,1994,(2):139-145
    [136]侯卫锋,苏宏业,胡永有,等.催化重整集总动力学模型的建立及其在线应用[J].化工学报,2006,57(7):1605-1611
    [137]Froment G F. The kinetic of complex catalytic reactions [J]. Chemical Engineering Science,1987,42(5):1073-1087
    [138]Jenkins J H, Stephens T W. Kinetics of cat reforming [J]. Hydrocarbon Processing, 1980,(11):163-167
    [139]Jorge A J, Eduardo V M. Kinetc modeling of aphtha catalytic reforming reactions [J]. Energy & Fuels,2000,14(5):1032-1037
    [140]Li L X, Neil C, Earnest F. Kinetics of aplied to wastewater treatment [J]. Water Environment Research,1996,68(5):841-854
    [141]Khaled B, Faical L.Lumped kinetics for solid-catalysed wet oxidation:A versatile model [J]. Journal of Catalysis,2000,193(2):224-237
    [142]Verenich S, Laari A, Kallas J. Parameter estimation and sensitivity analysis of lumped kinetic models for wet oxidation of concentrated wastewaters [J]. Industrial & Engineering Chemistry Research,2003,42(21):5091-5098
    [143]Verenich S, Kallas J. Wet oxidation lumped kinetic model for wastewater organic burden biodegradability prediction [J]. Environmental Science & Technology,2002, 36(15):3335-3339
    [144]Alpin P, Bercic G, Besson M, et al. Catalytic wet-air oxidation of industrial effluents: total mineralization of organics and lumped kinetic modelling [J]. Applied Catalysis B: Environmental,2004,47(3):143-152
    [145]Benjamin D, Schutt, Martin A, et al. Evaluation of a monolith reactor for the catalytic wet oxidation of cellulose [J]. Chemical Engineering Journal,2004,103(3):77-88
    [146]Rui C M, Rodrigo J G L, Rosa M Q. Lumped kinetic models for single ozonation of phenolic effluents [J]. Chemical Engineering Journal,2010,165(2):678-685
    [147]Liao J C, Lightfoot J E N. Lumping analysis of biochemical reaction system with time scale separation [J]. Biotechnology and bioengineering,1988,31(8):869-879
    [148]史德青,何志敏,齐崴.蛋白质酶促水解过程集总动力学研究[J].化学反应工程与工艺,2002,18(4):315-322
    [149]史德青,齐崴,何志敏,等.胰蛋白酶水解牛血清白蛋白过程集总动力学研究[J].石油大学学报:自然科学版,2003,27(3):84-87
    [150]Shi D, He Z, Qi W. Lumping kinetic study on the process of tryptic hydrolysis of bovine serum albumin [J]. Process Biochemistry,2005,40(5):1943-1949
    [151]何志敏,齐崴,于艳军,等.基于蛋白质结构知识解析活性多肽的酶解制备反应行为(Ⅱ)酶解反应过程的集总动力学模型[J].化工学报,2005,56(12):2392-2397
    [152]罗恒成.广西桑蚕生产现状和发展方向[J].中国蚕业,2006,(11):55-56
    [153]徐志英.血管紧张素转化酶抑制剂药理作用与临床应用[J].现代诊断与治疗,1999,10(1):57-59
    [1]曹平.天然抗氧化肽研究进展[J].粮食与油脂,2004,(10):8-11
    [2]许金光,杨智超,刘长江,等.血管紧张素转化酶(ACE)抑制肽的研究进展[J].食品工业科技,2011,32(5):425-427
    [3]庞广昌,陈庆森.生物活性肽—酪蛋白磷酸肽(CPPs)的研究、应用及展望[J].食品科学,1999,24(6):25-29
    [4]张莉莉,王恬.大豆源生物活性肽的研究进展[J].中国油脂,2005,30(4):33-36
    [5]杨小军,左伟勇,陈伟华,等.灌喂大豆蛋白胃蛋白酶酶解物对大鼠免疫功能的影响[J].畜牧兽医学报,2005,36(4):348-351
    [6]李升福,闻海波.玉米蛋白水解物的功能性—抗疲劳的研究[J].食品科学,2006,27(8):245-247
    [7]宋茹,冯婷立,谢超.海产小杂鱼抗氧化肽制备工艺[J].食品科学,2011,32(12):29-33
    [8]王海英,宋永相,孙谧.酶解鳕鱼皮制备血管紧张素转换酶抑制剂ACEI的研究[J].现代食品科技,2008,24(10):987-991
    [9]周庆军,邵健忠,等.鱼类抗菌肽的研究进展[J].生物化学与生物物理进展,2002,29(5):682-685
    [10]李琳,赵谋明.食物源活性肽结构-特性关系的研究进展[J].食品科技,2006,31(3):8-11
    [11]Fujitaa H, Yoshikawa M. LKPNM:a prodrug-type ACE-inhibitory peptide derived from fish protein [J]. Immunopharmacology,1999,44(1):123-127
    [12]Igene J O, Pearson A M. Role of phospholipids and triglycerides in warmed-over flavor development in meat model systems [J]. Journal of Food Science,1979,44(5): 1285-1290
    [13]Sato K, Hegarty R G, Herring K H. The inhibition of warmed-over flavor in cooked meats [J]. Journal of Food Science,1973,38(3):398-403
    [14]Love J D. The Role of heme iron in the oxidation of lipids in red meats [J]. Food Technology,1983,37(7):117-120,129
    [15]Liang J H. Fluorescence due to interactions of oxidizing soybean oil and soy proteins [J]. Food Chemistry,1999,66(1):103-108
    [16]Autor A P. Biosynthesis of mitochondrial manganese superoxide dismutase insSaccharomyces cerevisiae [J]. The Journal of Biological Chemistry,1982,257(4): 2713-2719
    [17]Cushman D W, Cheung H S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung [J]. Biochemical Pharmacology,1971, 20(7):1637-1648
    [18]Pan D, Luo Y, Tanokara M. Antihypertensive peptides from skimmed milkydrolysat digested by cell-free extract of Lactobacillus Shelvetieus JCM1004 [J]. Food Chemistry, 2004,91(6):123-129
    [19]Kim S, Jwao H. Molecular and cellular mechanisms of angiotensin Ⅱ-mediated cardiovascular and renal diseases [J]. Pharmacological Reviews,2000,52(1):11-34
    [20]Lee D H, Kim J H, Park J S, et al. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum [J]. Peptides,2004,25(4):621-627
    [21]蒋菁莉,任发政,蔡华伟.牛乳酪蛋白降血压肽的超滤分离[J].食品科学,2006,27(7):124-128
    [22]刘雄民,廖丹葵,孙建华,等.酶法水解和筛选蛋黄蛋白质中的药物前驱型降血压 肽[J].精细化工,2006,23(8):757-759,792
    [23]李建昌,李静茹.正交设计法优化大豆分离蛋白膜工艺参数[J].粮食与油脂,2005,(8):27-28
    [24]Bas D, Boyaci I H. Modeling and optimization I:Usability of response surface methodology [J]. Journal of Food Engineering,2007,78(3):836-845
    [25]王艳,张爱珍,任春生.正交试验设计与优化的理论基础与应用进展[J].分析实验室,2008,27(12S):333-334
    [26]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236-240
    [27]Hill J W, Hunter G W. A review of response surface methodology:a literature review [J]. Technometrics,1966,8(4):571-590
    [28]Delgado R, A. J C, M. V Z. A kinetic assessment of the enzymatic hydrolysis of potato (Solanum tuberosum) [J]. LWT-Food Science and Technology,2009,42(4):797-804
    [29]Gheshlaghi R, Scharer J M, Moo-Young M, et al. Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC [J]. Analytical Biochemistry,2008,383(1):93-102
    [30]Perez-Galvez R, Almecija M C, Espejo F J, et al. Bi-objective optimisation of the enzymatic hydrolysis of porcine blood protein [J]. Biochemical Engineering Journal, 2011,53(9):305-310
    [31]Alder-Nissen J. Enzymic hydrolysis of food proteins. London:Elsevier,1986.
    [32]Wua H C, Chenb H M, Shiau C Y. Free amino acids and pep tides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus) [J]. Food Research International,2003,36(9):949-957
    [33]Marklund S, Marklund G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase [J]. European Journal of Biochemistry,2005,47(3):469-474
    [34]Kitagaki H, Tsugawa M. 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging ability of sake during storage [J]. Journal of Bioscience and Bioengineering,1999,87(3): 328-332
    [35]金鸣,蔡亚欣,李金荣.邻二氮菲-Fe2+氧化法检测H2O2/Fe2+产生的羟自由基[J].生 物化学与生物物理进展,1996,23(6):553-555
    [36]Matsui T, Yukiyoshia A, Doib S, et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR [J]. The Journal of Nutritional Biochemistry,2002,13(2):80-86
    [37]Maruyama S, Miyoshi S, Tanaka H. Angiotensin I-converting enzyme inhibitors derived from Ficus carica (Biological Chemistry) [J]. Agricultural and biological chemistry, 1989,53(10):2763-2767
    [38]Maruyama S, Suzuki H A. A peptide inhibitor of angiotensin I-converting enzyme in the tryptic hydrolysis of casein [J]. Agricultural Biology and Chemistry,1982,46(5): 1383-1394
    [39]何海伦,陈秀兰,孙彩云,等.血管紧张素转化酶抑制肽的研究进展[J].中国生物工程杂志,2004,24(9):7-11
    [1]Michaelis L, Menten M L. Die kinetik der invertinwirkung [J]. Biochemische Zeitschrift, 1913,49:333
    [2]Briggs G E, Haldane J B S. A Note on the Kinetics of Enzyme Action [J]. The Biochemical journal,1925,19(2):18-29
    [3]齐崴,何志敏,何明霞.蛋白质酶促水解反应机理与动力学模型[J].天津大学学报,2005,38(9):768-773
    [4]Harun R, Danquah M K. Enzymatic hydrolysis of microalgal biomass for bioethanol production [J]. Chemical Engineering Journal,2011,168(3):1079-1084
    [5]Carrillo F A, Lis M J, Coloma X, et al. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw:Kinetic study [J]. Process Biochemistry,2005,40(10): 3360-3364
    [6]Long W S, Kamaruddin A H, Bhatia S. Enzyme kinetics of kinetic resolution of racemic ibuprofen ester using enzymaticmembrane reactor [J]. Chemical Engineering Science, 2005,60(18):4957-4970
    [7]Alder-Nissen J. Enzymic hydrolysis of food proteins. London:Elsevier,1986.
    [8]Gonzalez-Tello P, Camacho F, Jurado E, et al. Enzymatic hydrolysis of whey proteins:I. Kinetic models [J]. Biotechnology and Bioengineering,1994,44(4):523-528
    [9]Demirhan E, Apar D K, ozbek A B. Sesame cake protein hydrolysis by alcalase:Effects of process parameters on hydrolysis, solubilisation, and enzyme inactivation [J]. Korean Journal of Chemistry Engineering,2011,28(1):195-202
    [10]黎金,张国权,罗勤贵.荞麦蛋白的碱性蛋白酶酶解动力学研究[J].中国粮油学报,2009,24(6):41-46
    [11]Apar D K, ozbek B. Corn Gluten Hydrolysis by Alcalase:Effects of Process Parameters on Hydrolysis, Solubilization and Enzyme Inactivation [J]. Chemical and Biochemical Engineering Quarterly,2008,22(2):203-212
    [12]Benkhelifa H, Bengoa C, Larre C, et al. Casein hydrolysis by immobilized enzymes in a torus reactor [J]. Process Biochemistry,2005,40(1):461-467
    [13]Marquez M C, Vazquez M A. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry,1999,35(1):111-117
    [14]林伟锋,赵谋明,彭志英,等.海洋鱼蛋白可控酶解动力学模型的研究[J].食品与机械,2005,21(3):10-13
    [15]田其英,华欲飞.大豆蛋白溶解性研究[J].粮食与油脂,2006,(6):6-8
    [16]刘菲琳,安志丛,朱科学,等.增溶预处理对面筋蛋白功能性质和酶解效率的影响 [J].中国粮油学报,2010,25(4):1-6
    [17]Zhimin H, Wei Q, Mingxia H. A novel exponential kinetic model for casein tryptic hydrolysis to prepare active peptides [J]. Chinese Journal of Chemical Engineering, 2002,10(5):562-566
    [1]Long W S, Kamaruddin A H, Bhatia S. Enzyme kinetics of kinetic resolution of racemic ibuprofen ester using enzymaticmembrane reactor [J]. Chemical Engineering Science, 2005,60(18):4957-4970
    [2]Mishra A, Kumar S. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium [J]. Biochemical Engineering Journal,2009,46(3): 252-256
    [3]潘进权.毛霉蛋白酶的催化特性及动力学研究[J].食品科技,2010,(11):36-40
    [4]张国权,史一一,魏益民,等.荞麦淀粉的真菌淀粉酶酶解动力学研究[J].农业工程学报,2007,23(5):42-46
    [5]李湘,彭地纬,熊华,等.胰蛋白酶有限酶解米渣蛋白的机理及动力学模型研究[J].食品科学,2009,(21):166-171
    [6]齐崴,何志敏,何明霞.蛋白质酶促水解反应机理与动力学模型[J].天津大学学报:自然科学与工程技术版,2005,38(9):768-773
    [7]Marquez M C, Vazquez M A. Modeling of enzymatic protein hydrolysis [J]. Process Biochemistry,1999,35(1):111-117
    [8]林伟锋,赵谋明,彭志英,等.海洋鱼蛋白可控酶解动力学模型的研究[J].食品与机械,2005,21(3):10-13
    [9]Pierce W, Souther R P, Kaufman T G, et al. Innovation in flexible cracking [J]. Hydrocarbon Processing,1972,51(5):92-97
    [10]Wollaston E G, Haflin W J, Ford W D. FCC model valuable operating tools [J]. Oil & Gas Journal,1975,73(38):87-94
    [11]丁建军,黄星亮.催化裂化轻汽油中烯烃加氢反应宏观动力学[J].化学工程,2011, 39(9):61-65
    [12]欧阳福生,宁汇.催化裂化复杂反应体系动力学模型研究进展[J].炼油技术与工程,2009,39(10):8-13
    [13]Darin M C, Michael T K. Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods [J]. Applied Catalysis A:General, 1997,160(1):41-54
    [14]Quann R J. Structure-oriented Lumping:describing the chemistry of comples by droearbon mixtures [J]. Industrial & engineering chemistry research,1992,31(11): 2483-2497
    [15]史德青.蛋白质酶促水解过程集总动力学研究[D].天津:2003
    [1]何志敏,齐崴,于艳军,等.基于蛋白质结构知识解析活性多肽的酶解制备反应行为(Ⅱ)酶解反应过程的集总动力学模型[J].化工学报,2005,56(12):2392-2397
    [2]Shi D, He Z, Qi W. Lumping kinetic study on the process of tryptic hydrolysis of bovine serum albumin [J]. Process Biochemistry,2005,40(5):1943-1949
    [3]汪树雄,戚以政.生化反应动力学与反应器(第二版):北京:化学工业出版社,1999
    [4]黎金,张国权,罗勤贵.荞麦蛋白的碱性蛋白酶酶解动力学研究[J].中国粮油学报,2009,24(6):41-46
    [5]Zhimin H, Wei Q, Mingxia H. A Novel Exponential Kinetic Model for Casein Tryptic Hydrolysis to Prepare Active PePtides [J]. Chinese J. Chem. Eng.,2002,10(5):562-566
    [6]张红梅,赵雨波,罗殿英.大庆重石脑油蒸汽热裂解10集总动力学模型[J].化工学报,2011,62(3):705-709
    [7]赵雨波.重质裂解原料蒸汽热裂解10集总动力学模型的研究[D].东北石油大学,2011
    [8]齐国祯,马涛,刘红星,等.甲醇制烯烃反应动力学[J].化工学报,2005,56(12):2326-2331
    [9]沈本贤,田立达,刘纪昌.基于结构导向集总的石脑油蒸汽裂解过程分子尺度动力学模型[J].石油学报(石油加工),2010,s:218-225
    [10]王琳琳,李丽明,陈小鹏,等.Pd/C上松香催化歧化反应集总动力学[J].化工学报,2007,58(2):371-377
    [11]吴小军,李晓红,钟思青,等.石脑油催化裂解制低碳烯烃动力学[J].化学反应工程与工艺,2010,26(4):289-295
    [12]Rui C M, Rodrigo J G L, Rosa M Q. Lumped kinetic models for single ozonation of phenolic effluents [J]. Chemical Engineering Journal,2010,165(2):678-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700