煤粉的富氧高温空气燃烧及其NO_x生成特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富氧高温空气燃烧(HTOEC)是具有前景的煤粉燃烧技术,研究其燃烧特性和NO_x生成特性具有重要意义。论文在文献调研的基础上,通过基础实验、样机试验和数值模拟对煤粉在富氧高温空气条件下的燃烧特性和NO_x生成特性进行了全面研究。论文首先使用TGA、沉降炉和携带流反应器等实验研究了富氧条件下对煤粉的燃烧反应动力学及着火特性的影响,而后重点地开展了HTOEC煤粉燃烧器样机的研制、性能测试和数值模拟工作。论文搭建试验台完成了样机的燃烧和NO_x排放性能试验;数值模拟了HTOEC样机的燃烧和NO_x生成与还原,模拟结果与试验数据一致。为提高模拟精度和节约计算成本,论文对煤粉湍流燃烧模拟进行了多项改进:(1)提出一种根据煤质参数估算煤挥发分组分的方法;(2)在均相反应和NO_x生成与还原模拟中考虑挥发分中间组分反应的影响;(3)应用Magnussen的熄火理论修正传统EDC模型;(4)提出并开发湍流煤粉燃烧的“双反应机理法”。论文主要结论如下:
     1)实验研究表明:氧气浓度和加热速率提高会缩短煤颗粒着火所需时间,降低着火温度,增强煤燃烧强度,提高燃尽率;
     2)样机试验表明:在煤粉燃烧器的浓股一次风预热室中加入一股富氧气流可以实现富氧高温空气燃烧,在氧消耗量很少的情况下可以实现优异的煤种适应性、燃烧稳定性、节油性能和低NO_x排放性能;
     3)数值模拟表明:在富氧高温空气燃烧条件下,煤粉气流的火焰温度增高,燃烧强度增强,挥发分析出加快,着火提前;使用少量的氧气也可实现煤粉NO_x排放浓度的大幅减小,NO_x排放浓度与富氧气流中的氧浓度的增大呈先减小再增大的非单调变化,对论文所设计的燃烧器,富氧浓度的最佳值在50%左右;
     4)在EDC模型中考虑挥发分中间组分反应和进行基于Magnussen的熄火理论的修正可提高对湍流煤粉射流着火和燃烧特性的预测精度,更加准确地描述了化学反应与湍流的相互作用;将应用骨架机理的EDC模型与传统“后处理法”相结合,经过试验数据修正后,湍流煤粉燃烧中NO_x生成与还原的模拟精度得以提高;将复杂化学反应机理局限于主反应区,而其它区域使用简单化学反应机理的“双反应机理法”可以显著提高计算效率,便于高精度修正EDC模型的工程应用。
The oxygen-enriched and high temperature air combustion (HTOEC) is apromising pulverized coal combustion technology. In the paper, the combustion andNO_xformation characteristic of the pulverized coal under the high temperature andoxygen-enriched conditions was fully investigated through literature study, theoreticalanalyses and experimental study, model burner assessment and numerical simulation.First, in the laboratory, TGA, drop tube furnace and entrained flow reactor (Henckenburner) were used to study the combustion kinetic and ignition behaviors of the coalparticle in oxygen-enriched and preheating conditions. Then, a model HTOECcoal-fired burner was developed. A test rig was established and a set of experiments hasbeen conducted to validate the combustion and NO_xemission performance of the modelHTOEC burner. At the same time, corresponding studies were conducted numericallyby using the Eddy Dissipation Concept (EDC) model with several improvements, andthe predictions were consistent with the experimental results. And the improvements,which could be also applied to the general simulation of the turbulent combustion ofpulverized coal include (1) A new method to estimate the volatile content based on theproperties of the coal;(2) The consideration of the intermediate reactions of the volatilematter in the homogeneous reaction and NO_xformation;(3) Adoption of the extinctiontheory proposed by Magnussen to cease the homogeneous chemical reaction when itscharacteristic time scale is greater than that of the turbulence;(4) The noveltwo-mechanism-zone method.
     The main conclusions are as follows:
     1) Based on the laboratory experiments, the increase of oxygen concentration andheating rate could cause the reduction of the ignition time and ignition temperature ofthe pulverized coal particles, enhancing their combustion intensity and burnt-out.
     2) The HTOEC model burner experiments showed that with the special burnerstructure and proper flow organization, the HTOEC method can be achieved for thepulverized coal with a small flow rate of oxygen-enriched flow. The HTOEC modelburner has excellent performance in flame stabilization, fuel flexibility, assisted-oilsaving and low NO_xemission, and thus has a great potential for industrial application.
     3) The numerical simulation results showed that under the high temperature andoxygen-enriched conditions, the flame temperature and combustion intensity of thepulverized coal jet increases, and the release rate of the volatile matter rises. With asmall flow rate of oxygen-enriched flow, consistent with the experimental results, NO_xemission could be remarkably reduced. NO_xemission first decreases and then increaseswith the oxygen concentration in the oxygen-enriched air flow, and the turning pointhappens at about50%.
     4) With the consideration of the intermediate reactions of the volatile matter andthe adoption of the extinction theory developed by Magnussen, the perdition accuracyof the EDC model increases in simulating the turbulent pulverized coal combustion.Combining the EDC model with the skeletal mechanizing and the traditional postprocessing method, and correction of the experimental data, NO_xemission of theturbulent pulverized coal combustion can be predicted with an acceptable accuracy.Dividing the computational domain into a core reaction zone and a non-core zone andlimiting the complex chemistry in the core reaction zone can effectively save the CPUcost and thus allow the industrial application for the modified EDC model with higheraccuracy.
引文
崔凯,张海,王卫良,等.2012.旋流燃烧器数值模拟中Realizable KE和RSM模型的比较.工程热物理学报,33(11):2006-2009.
    郭啸峰,魏小林,张宇,等.2011.采用详细化学反应机理模拟燃烧污染物生成的研究进展.力学进展,41(3):294-308.
    李金平,王启民,李红,等.2005.低挥发分煤粉燃烧NOx生成机理及其控制.动力工程,25:13-17.
    刘庆才,陈淑荣.2004.富氧燃烧的主要环境影响因素概述.节能环保技术,5:26-28.
    刘赵淼,王秀丽,于海源,等.2006.国内高温空气燃烧技术发展现状和趋势.北京大学学报,32(7):618-621.
    祁海鹰,李宇红,由长福,等.2002.高温低氧燃烧条件下氮氧化物的生成特性.燃烧科学与技术,8(1):17-22.
    祁海鹰,由长福,李宇红,等.2003.高温空气燃烧技术的国际发展动态.工业加热,32(32):1-7.
    沈光林.2002.局部增氧助燃技术及应用研究.节能与环保,7:23-26.
    田子平,缪正清,吴国江,等.2000.高温空气燃烧技术的最新进展,锅炉技术,31(3):16-20.
    魏小林,韩小海,等.2008.煤粉燃烧中NOx和SOx生成的详细反应机理模拟.力学学报,40(6):760-768.
    徐迎超,蒋孝科,毛天,等.2008.富氧气氛煤粉气流着火特性的实验研究,锅炉技术,39(1):42-26.
    阎维平,米翠丽,李皓宇.2010.初始氧浓度对锅炉富氧燃烧和NOx排放的影响.热能动力工程,25(2):216-220.
    曾汉才.2001.大型锅炉高效低NOx燃烧技术的研究.锅炉制造,1:1-11.
    周力行.1994.湍流气粒两相流动和燃烧的理论与数值模拟.陈文芳,林文漪,译.北京:科学出版社.
    周力行.1996.湍流燃烧的新二阶矩模型.工程热物理学报,17(3):353-356.
    张家元,周孑民,陈乔平,等.2007.膜法富氧局部助燃技术在煤粉锅炉上的应用,动力工程,27(4):518-521.
    张海,贾臻,毛健雄,等.2008.通过煤粉浓缩预热低NOx燃烧器实现高温空气燃烧技术的研究.动力工程,28(1):36-39.
    张海,吕俊复,刘青,岳光溪.2005.一种化石燃料的燃烧方法及装置.中国专利,专利号:200510011541.5.
    朱光俊,梁中渝,吴明全,等.2005.煤富氧燃烧对节能与环境的影响分析.工业加热,34(4):11-13.
    朱明明.2008.煤颗粒在常重力和微重力下着火特性研究.[硕士学位论文].北京:清华大学.
    Andersen J, Rasmussen C L, Giselsson T, et al.2009. Global combustion mechanisms for use inCFD modeling under oxy-fuel conditions. Energy&Fuels,23:1379-1389.
    Andersson K, Normann F, Johnsson F, et al.2008. NO emission during oxy-fuel combustion oflignite. Ind Eng Chem Res,47:1835-45.
    Annamalai K, Durbetaki P.1977. Combustion and Flame,29:193.
    Antifora A, Sala M, Perera A, et al.1997. NOxemissions in combustion systems of coal firedfurnaces with a reducing environment: predictions and measurements. In Fourth InternationalConference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal.
    Azuhata S, Narato K, Kobayashi H, et al.1986. A study of gas composition profiles for low NOxpulverized coal combustion and burner scale-up, Twenty-First Symposium (International) oncombustion, The combustion Institute, Pittsburgh, PA, pp.1199-1206.
    Banddyopadhyay S, Dhaduri D B.1972. Combustion and Flame,18:411.
    Baum M M, Street P J.1971. Predicting the combustion behavior of coal particles combust. Sci.Tech.,3(5):231-243.
    Bejarano P A, Levendis Y A.2008. Single-coal-particle combustion in O2/N2and O2/CO2environments. Combustion and Flame,153:270-87.
    Bowman C T.1991. Chemistry of gaseous pollutant formation and destruction. In W. Bartok and A.F. Sarofim, editors, Fossil Fuel Combustion. J. Wiley and Sons, Canada.
    Brooks P J, Essenhigh R H.1986. Proceedings of the21st Symposium (International) onCombustion, Combustion Institute, Pittsburgh, PP.293-302.
    Brouwer J, Heap M P, Pershing D W, et al.1996. A model for prediction of selective non-catalyticreduction of nitrogen oxides by ammonia, Urea, and Cyanuric Acid with Mixing Limitations inthe Presence of CO. In26th Symposium (Int'l) on Combusktion, Combustion Institute.
    Buhre B J, Elliott L K, Sheng C D, et al.2005. Oxy-fuel combustion technology for coal-fired powergeneration. Prog Energy Combust Sci,31:283-307.
    Cassel H M, Liebmann I.1959. Combustion and Flame,3:167.
    Chen L, Gazzino M, Ghoniem AF.2010. Characteristics of pressurized oxy-coal combustion underincreasing swirl number. In: The35th international technical conference on clean coal&fuelsystems. Clearwater, FL.
    Chen L, Yong, S Z, Ghoniem A F.2012. Oxy-fuel combustion of pulverized coal: Characterization,fundamentals, stabilization and CFD modeling. Progress in Energy and combustion Science,38:156-214.
    Cheng P.1964. Two-dimensional radiating gas flow by a moment method. AIAA J.2:1662–1664.
    Chui E H, Raithby G D.1993. Computation of radiant heat transfer on a nonorthogonal mesh usingthe finite-volume method, Numer. Heat Transfer, Part B23:269–288.
    Cogoli J G, Gray D, Essenhigh R H.1977. Combust. Sci. Technol,16:165.
    Croiset E, Thambimuthu KV.2001. NOxand SO2emissions from O2/CO2recycle coal combustion.Fuel,80:2117-21.
    Das, T K.2001. Evolution characteristics of gases during pyrolysis of maceral concentrates ofRussian coking coals. Fuel,80:489-500.
    Davidson R M, Santos S O.2010. Oxyfuel combustion of pulverised coal. London: IEA Clean CoalCentre, CCC/168.
    De Soete G G.1975. Overall reaction rates of NO and N formation from fuel nitrogen. In15th Symp.(Int'l.) on Combustion, The Combustion Institute, pp.1093-1102.
    De Soete, Rev G G.1982. Inst. Franc. Petr,37:403-530.
    Dieter Fortsch, Frank Kluger, Uwe Schnell, et al.1998. A Kinetic model for the prediction of NOemissions from staged combustion of pulverized Coal. In27th Symposium (International) oncombustion, Combustion Institute, pp:3037-3044.
    Edge P, Gubba SR, Ma L, et al.2011. LES modelling of air and oxy-fuel pulverised coal combustion-impact on flame properties. Proceedings of the Combustion Institute,33:2709-16.
    Elliott, M A.1981. Chemistry of coal utilization, Second supplementary volume. New York: Wiley.
    Ertesvag I S, Magnussen B F.1999. The eddy dissipation turbulence energy cascade model.Combust Sci Technol.
    Essenhigh R H.1988. An integration path for the carbon-oxygen reaction with internal reaction. In22th Symposium (International) on Combustion, Combust Sci Technol,159:213-235.
    Faraday, M, Lyell C, Philos.1845. Mag,26:16.
    Favre A.1965. Equation des Gaz Turbulents Compressibles:1. Formes Generals, Journal deMecanique,4:361-390.
    Fenimore C P.1971. Formation of nitric oxide in premixed hydrocarbon flames. In13th Symposium(International) on Combustion, The Combustion Institute, pp.373.
    Fletcher T H, Kerstein A R, Pugmire R J, et al.1992. Chemical percolation model fordevolatilization.3. Direct use of carbon-13NMR data to predict effects of coal type. Energy&Fuel,6:414–31.
    Fuller Jr E L.1982. Coal and coal products: analytical characterization techniques. Washington, DC:American Chemical Society.
    Godbert A L, Wheeler R V.1929. Safety in mines reasearch board paper. No.56. HMSO, London.
    Godbert A L.1930. Fuel9:57-75.
    Godbert A L, Greenwald H P.1935. U.S. Bureau of Mines Bulletin No.389.
    Hanson R K, Salimian S.1984. Survey of rate constants in H/N/O systems. In W. C. Gardiner, editor,Combustion Chemistry, pp:361.
    Hartmann I, Nagy J, Brown H R.1943. U.S. Bureau of Mines R.I. No.3722.
    Horbaniuc B, Marin O, Dumitrasscu G et al.2004. Oxygen-enriched combustion in supercriticalsteam boilers, Energy,29(3):427-448.
    Houser T J, Hull M, Always R, et al.1980. Biftu. Int. Journal of Chem, Kinet,12:579.
    Howard J B.1981. Fundamentals of coal pyrolysis and hydropyrolysis. In: Elliott M A, editor.Chemistry of coal utilization, New York: Willey.
    Hinze J O.1975. Turbulence. McGraw-Hill Publishing Co., New York.
    Howard J B, Essenhigh R H.1967. Ind.Eng. Chem. Proc. Des. In11st Symposium (International) onCombustion, The combustion Institute, Pittsburgh, P.399.
    Jones W P, Whitelaw J H.1982. Calculation methods for reacting turbulent flows. A review.Combustion and Flame,48:1–26.
    Kakaras E, Koumanakos A, Doukelis A, et al.2007. Oxyfuel boiler design in a lignite-fired powerplant. Fuel,86(14):2144-2150.
    Kandamby N, Lazopoulos G, Lockwood F C, et al.1996. Mathematical modeling of NOxemissionreduction by the use of reburn technology in utility boilers. In ASME Int. Joint PowerGeneration Conference and Exhibition, Houston, Texas.
    Karcz H, Kordlylewski, W, Rybak W. Fuel59:799.
    Katsuki M, Hasegawa T.1998. The science and technology of combustion in highly preheated air.Proceedings of the Combustion Institute,24:3135–3146.
    Kiyama K, Tsumura T, Sei N, et al.1997. Combustion technologies for high fuel ratio coals. Proc.,International Conference on Power Engineering, Vol.2, Tokyo, Japan, pp.507–512.
    Kobayashi H, Howard J B, Sarofim A F.1976. Coal devolatilization at high temperatures. In16thSymposium (International) on Combustion, The Combustion Institute, pp.411-25.
    Kurose R, Makino H, Suzuki A.2004. Numerical analysis of pulverized coal combustioncharacteristics using advanced low-NOxburner. Fuel,83:693-703.
    Launder B E, Spalding D B.1972. Lectures in mathematical models of turbulence. Academic Press,London, England.
    Launder B E, Spalding D B.1974. The numerical computation of turbulence flows. ComputerMethods in Applied Mechanics and Engineers,3:269-289.
    Launder B E, Reece G J, Rodi W.1975. Progress in the development of a Reynolds-stress turbulenceclosure. Fluid Mech.,68(3):537-566.
    Leung K M, Lindsted R P.1995. Detailed kinetic modeling of C1-C3alkane difussion flames.Combustion and Flame,102:129-160.
    Liu H.2009. Combustion of coal chars in O2/CO2and O2/N2mixtures: a comparative study withnon-isothermal thermogravimetric analyzer (TGA) tests. Energy&Fuels,23:4278-85.
    Lockwood F C, Romo-Millanes C A.1992. Mathematical modelling of fuel-NO emissions from PFburners[J]. Int. Energy,65:144-152.
    Ma J L, Fletcher T H, Webb B W.1995. Thermophoretic sampling of coal-derived soot particlesduring devolatilization. Energy&Fuels,9:802-808.
    Ma J L.1996. Soot formation during coal pyrolysis. Ph. D. Thesis, Brigham Young University.
    Magnussen B F, Hjertager B H.1976. On mathematical modeling of turbulent combustion withspecial emphasis on soot formation and combustion. In16th Symposium (International) onCombustion. The Combustion Institute, pp.719-729.
    Magnussen B F.1981. On the structure of turbulence and a generalized Eddy Dissipation Conceptfor chemical reaction in turbulent flow.19th AIAA Meeting, St. Louis.
    Maier J, Dhungel B J, M nckert P, et al.2006. Coal combustion and emission behaviour UunderOxy-fuel condition. Proceedings of the31st International Conference on Coal Utilization andFuel System, Clearwater, Florida, USA, No.7.
    Mao Jianxiong, Jia Zhen, Zhang Hai, et al.2006. Reduction NOxwith PRP burner for anthracitefired boilers [A]. Proceedings of the31st International Conference on Coal Utilization and FuelSystem [C], Clearwater, Florida, USA, No.21.
    McLean, W T, Hardesty, D R, Pohl, J H.1980. Direct observation of devolatilizing pulverized coalparticles in a combustion environment. In18th Symposium (International) on Combustion, TheCombustion Institute, pp.1239-1248.
    Melte P C, Pratt D T.1974. Measurement of atomic oxygen and nitrogen oxides in jet stirredcombustion. In15th Symposium (international) on Combustion, The Combustion Institute, pp.1061-1070.
    Menter F R.1994. Two-equation eddy-viscosity turbulence models for engineering applications.AIAA Journal,32(8):1598-1605.
    Michael F. Modest E d.2003. Radiative heat transfer. Second edition, Academic Press,84Theobald’s Road, London, WC1X8RR, UK, An Imprint of Elsevier Science.
    Miller J A, Bowman C T.1989. Mechanism and modeling of nitrogen chemistry in combustion.Prog. Energy Combust. Sci.,15:287-338.
    Muller M, Lemp O, Leiser S, et al.2010. Advanced modeling of pulverized coal combustion underoxy-fuel conditions. Proceedings of the35th International Technical Conference on Clean Coaland Fuel Systems. Clearwater, FL.
    Mondal S S, Som S K, Dash S K.2006. Influences of inlet air pressure, air temperature andsecondary air swirl on penetration histories of pulverized coal particles in a tubular combustor.International Journal of Thermal Sciences45:190-202.
    Nettleton M A, Stirling R. Proc. R.1967. Soc. A300:62-77;1971.322:207-221;1974. Combustionand Flame,22:407-414.
    Niksa S, Kerstein A R.1986. The distributed-energy chain model for rapid coal devolatilizationkinetics. Part I: formulation, Combustion and Flame,66:95-109.
    Niksa S.1986. The distributed-energy chain model for rapid coal devolatilization kinetics. Part II:transient weight loss correlations, Combustion and Flame,66:111–119.
    Niksa S, Kerstein A R.1986. On the role of macromolecular configuration in rapid coaldevolatilization. Fuel,66:1389–1399.
    Peters N, Donnerhack S.1981. In18th Symposium (International) on Combustion, The CombustionInstitute, pp.33.
    Pope S B.1985. PDF methods for turbulent reactive flows. Prog Energ Combust,11(2):119-192.
    Pope S B.1997. Computationally efficient implementation of combustion chemistry using in situadaptive tabulation. Combustion Theory and Modelling,1:41-63.
    Qin W J, Ren J Y, Egolfopoulos F N, et al.2000. Oxygen composition modulation effects on flamepropagation and NOxformation in methane/air premixed flames, Proceedings Of TheCombustion Institute28:1825-1831.
    Raithby G D, Chui E H.1990. A finite-volume method for predicting a radiant heat transfer inenclosures with participating media. Heat Transfer,112:415–423.
    Rehm M, Seifert P, Meyer B.2009. Theoretical and numerical investigation on the EDC-model forturbulence–chemistry interaction at gasification conditions. Comp Chem Eng,33:402-407.
    Roe P L.1986. Characteristic based schemes for the Euler equations. Annual Review of FluidMechanics,18:337-365.
    Roomina M R, Bilger R W.2001. Conditional moment closure (CMC) predictions of a turbulentmethane-air Jet Flame. Combustion and Flame,125:1176-1195.
    Rose J W, Cooper J R.1977. Technical Data on Fuel, Scottish Academic Press, Edinburgh.
    Santos S. Haines M, Davison J, et al.2006. Challenges in the Development of Oxy-CombustionTechnology for Coal Fired Power Plant, Proceedings of the31st International Conference onClean Coal Utilization and Fuel System, Clearwater, Florida, USA, No.1.
    Semenov N N, Physik Z.1928. Chemical Kinetics and Chain Reactions,48:571.
    Shah M M.2006. Oxy-Fuel combustion for CO2capture from PC Boilers, Proceedings of the31stInternational Conference on Clean Coal Utilization and Fuel System, Clearwater, Florida, USA,No.3.
    Shih T H, Liou W W, Shabbir A, et al.1995. A new k-ω eddy-viscosity Model for gigh Reynoldsnumber turbulent flows-model development and validation. Computers Fluids,24(3):227-238.
    Siegel R, Howell J R.1992. Thermal radiation heat transfer. Hemisphere Publishing Corporation,Washington, DC.
    Singhal A K, Li H Y, Athavale M M, et al.2001. Mathematical basis and validation of the fullcavitation model. ASME FEDSM'01, New Orleans, Louisiana.
    Smoot L D, Smith P J.1985. NOxpollutant formation in a turbulent coal system. In CoalCombustion and Gasification, Plenum, NY, pp.373.
    Solomon P R, Hamblen D G, Carangelo R M, et al.1988. General model of coal devolatilization.Energy&Fuel,2:405-422.
    Solomon P R, Hamblen D G, Carangelo R M, et al.1988. Models of tar formation during coaldevolatilization. Combustion and Flame,71:137-148.
    Solomon P R, Hamblen D G, Yu Z Z, et al.1990. Network models of coal thermal decomposition.Fuel,69:754-758.
    Spalding D B.1971. In13th Symposium (International) on Combustion, The Combustion Institute,pp.649-657.
    Spalart P, Allmaras S.1992. A one-equation turbulence model for aerodynamic flows. TechnicalReport AIAA-92-0439, American Institute of Aeronautics and Astronautics.
    Stadler H, Christ D, Habermeh M, et al.2011. Ohiger A, et al. Experimental investigation of NOxemissions in oxycoal combustion. Fuel,90:1604-11.
    Suda T, Takafuji M, Hirata T M, et al.2002. A study of combustion behavior of pulverized coal inhigh temperature air. Proceedings of the Combustion Institute,29:503-509.
    Tan Y, Douglas A M, and Thambimuthu V K.2002. CO2capture using oxygen enhancedcombustion strategies for natural gas power plants, Fuel,81(8):1007-1016.
    Tan Y, Croiset E, Douglas M A, et al.2006. Combustion characteristics of coal in a mixture ofoxygen and recycled flue gas. Fuel,85:507-12.
    Therssen, E, Gourichon, L, Delfosse, L.1995. Devolatilization of coal particles in a flat flameExperimental and modeling study. Combustion and Flame,103:115-128.
    Thomas G R, Harris I J, Evans D G.1968. Combustion and Flame,12:391-393.
    Tognotti L, Malotti A, Petarca, L, et al.1985. Combust. Sci. Technol.44:15-28.
    Toporov D, Bocian P, Heil P, et al.2008. Detailed investigation of a pulverized fuel swirl flame inCO2/O2atmosphere. Combustion and Flame,155:605-623.
    Vulis L A.1961. Thermal Regimes of combustion, Mc-Graw-Hill, New York.
    Wheeler R V.1913. Chem. Soc.103:1715.
    Weber R, Start J P, Kamp W.2005. On the (MILD) combustion of gaseous, liquid, and solid fuels inhigh temperature preheated air. Proceedings of the Combustion Institute,30:2623-2629.
    Wilcox D C.1998. Turbulence modeling for CFD. DCW Industries, Inc., La Canada, California.
    Winter F, Wartha C, Loffler G, et al.1996. The NO and N2O formation mechanism duringdevolatilization and char combustion under fluidized bed conditions. In26th Symposium(International) on Combustion, The Combustion Institute, pp.3325-3334.
    Xieu DV, Masuda T, Cogoli J G, et al.1984. Proceedings of the18th Symposium (International) onCombustion, The Combustion Institute, Pittsburgh, pp.1461-1468.
    Yakhot V, Orszag S A.1986. Renormalization group analysis of turbulence: I. Basic Theory. Journalof Scientific Computing,1(1):1-51.
    Yiannis A, Levendis, Kulbhushan Joshi.2011. Combustion behavior in air of single particles fromthree different coal ranks and from sugarcane bagasse. Combustion and Flame,158:452–465.
    Zhang Hai, Yue Guangxi, Lu Junfu et al.2007. Development of high temperature air combustiontechnology in pulverized fossil fuel fired boilers. Proceedings of the Combustion Institute:31:2779-2785.
    Zhou L X, Chen X L, Zhang J.2003. Studies on the effect of swirl on NO formation in methane-airturbulent combustion. Proceedings of the combustion Institute, Part1,29:561-568.
    Zhou L X, Wang F, Zhang J.2003. Simulation of swirling combustion and NO formation using aUSM turbulence chemistry. Fuel,82:1579-1586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700