Buck变换器在同步发电机励磁控制系统中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型燃机同步发电机励磁控制系统的研究是当前影响我国微型燃机供电技术发展的关键问题,也是实现微型燃机供电系统国产化亟待解决的问题。Buck变换器技术是微型燃机同步发电机励磁控制系统的重要研究课题,通过对Buck变换器良好的控制,使整个同步发电机励磁控制系统工作在可靠稳定的环境中。
     本论文以东北大学和沈阳航天新光集团联合开发的微型燃机同步发电机励磁控制系统为研究背景,采用IGBT作为功率开关元件,以DSP作为控制芯片,设计了基于Buck变换器的75kW级无刷同步发电机励磁控制系统,并进行了现场调试运行,各项调试结果均达到了设计要求。
     本文主要完成的工作如下:
     (1)设计了励磁控制系统的总体硬件方案,对Buck变换器的整流、降压和滤波进行了设计,并研究设计了数字信号处理单元的采样模块、频率跟踪模块、通信模块、PWM驱动模块等。
     (2)根据现场噪声比较严重的情况,对励磁控制系统Buck变换器的电磁兼容性进行了分析,设计了保护电路。
     (3)在原有的励磁控制系统中增加了辅助闭环控制,用来稳定地控制Buck变换器的输出电压,使整个励磁控制系统运行更快速稳定。在Buck变换器的建模设计中,采用状态空间平均法和模糊建模二种方法,仿真结果证明模糊建模方法为最优控制方法。
     (4)针对控制系统非线性特点,运用T-S模糊控制方法设计了模糊控制器,并对其结果进行仿真分析,经过与P1D控制方式相比较,验证了本文提出方法的有效性。
     (5)由于系统要求稳定性比较高,而且现场环境比较复杂,难以采集精确的状态量,本文设计了模糊观测器,将观测器与控制器的设计统一到LMI的框架内,利用Matlab中LMI工具的功能,从而得到观测器和控制器的参数,并对结果进行了仿真,取得了优于常规PID控制方法的良好效果。
Micro-turbine generator excitation system is not only the key issue which is the impact of China's technological development of micro-turbine power, but also one of the issues to be settled urgently which is the localization of micro-turbine power supply system.
     Buck converter technology is one of the main technical of a micro-turbine generator excitation system, through the Buck converter was well analysised and controlled, the entire system will works reliably and stably.
     Under this background, this thesis was written on the basis of micro-turbine excitation control system which was developed by Northeastern University and Shenyang Aerospace Xinguang Group. A Buck converter control system for the 75kW brushless synchronous generator excitation was designed in this thesis with the help of IGBT as power switch component and DSP as control chip, site debugging was completed, the results reached the design requirements.
     The main works of this thesis are shown as follows:
     (1) The entire scheme of hardware for the excitation control system was designed, including the rectifier, depressurization and filtration of the Buck converter. The sampling module, the frequency tracking module, the communication module, the PWM driver module were designed after well studing.
     (2) For the Situation of more serious noise environment, the electromagnetic compatibility of Buck convertor of the excitation control system had been analysised and improved, and the protection circuit was designed.
     (3) The auxiliary closed-loop control was increased based on the original excitation control system to control the output voltage of the Buck converter steadily which made the whole excitation control system running faster and steadier. In the modeling design of the Buck converter, the state space average method and fuzzy modeling method were employed. The simulation result proved that fuzzy modeling method was the optimum control method.
     (4) For the nonlinear response in the program, the T-S fuzzy control was used in the excitation system to design the fuzzy controller, then the results was simulated and compared to the results which was obtained by PID, it proved that the method in the thesis was valid.
     (5) Due to the more stability required in the system and the more complexity of the environment, the precise state parameter was difficult to acquire, as a result, the fuzzy observer was designed, further the observer and controller were united in the frame of LMI, then utilized the LMI tool in Matlab to get the parameter of the observer and controller, at last simulating the results to get the better effect than the general PID control method.
引文
1. Allan C M, Richard M C. Digital excitation enhances performance and improves diagnostics [J], IEEE Industry Application Magazine,2001:28-36.
    2.张卫平.开关变换器的建模与控制[M],北京:中国电力出版社,2006,1-55.
    3.欧阳长莲.DC-DC开关变换器的建模分析与研究[D],南京航空航天大学,2004.
    4.赵益波,罗晓曙,方锦清.电压反馈型DC-DC变换器的稳定性研究[J],物理学报,2005,54(11):5022-5026.
    5.伍言真.DC-DC开关变换器的建模分析及其变结构控制方法的研究[D],广州华南理工大学,1998.
    6.米翠丽.多模型自适应控制及其在电场中的应用[D],保定市华北电力大学,2006.
    7.王立新.自适应模糊系统与控制——设计与稳定性分析[M],北京:国防工业出版社,1995,20-30.
    8.张天平.间接自适应模糊控制器的设计与分析[J],自动化学报,2002,28(6):977-983.
    9.王伟.全桥共振型DC-DC开关变换器的模糊神经网络控制方法研究[D],泉州华侨大学,2002.
    10.欧阳长莲,章国宝,严仰光.模糊控制DC-DC变换器的仿真研究[J],厦门大学学报,2001,40(11):1022-1126.
    11.郑宏.电力电子技术应用[M],北京:国防工业出版社,2005,5-10.
    12.华光辉.微型燃机同步发电机励磁控制系统的设计与研究[D],沈阳东北大学,2005.
    13.曹军军,陈小勤,吴超.TMS320F2812型数字信号处理器与PC的串行通信[J],国外电子元器件,2005.
    14.孙先绪,孙朔冬.IGBT驱动模块EXB841使用方法的改进[J],煤矿机电,2006,1:74-76.
    15.周志敏,周纪海,纪爱华.单片机开关电源——应用电路、电磁兼容、PCB布线[M],北京:电子工业出版社,2007,268-347.
    16.郝晓冬,乔恩明,吴保芳.电源系统的电磁兼容设计与应用[M],北京:中国电力出版社,2007,26-70.
    17.马伟明.电力电子系统中的电磁兼容[M],武汉:武汉水利电力大学出版社,2000,13-50.
    18.陈义怀,胡卫华,王彦.IGBT的保护[J],电子技术应用,2004,7(5):282-284.
    19.陈晓宏.IGBT的工作原理及其保护问题分析[J],机械与电子,2007,7(20):368-378.
    20.曾繁玲.IGBT驱动与保护电路的研究[J],仪表技术,2007,(7):62-64.
    21.钱金川,朱守敏.电力电子器件IGBT应用于保护[J],仪表技术,2008,38(7):41-47.
    22.黄俊,王兆安.电力电子技术[M],北京:机械工业出版社,2000,13-50.
    23.孔凡燕.基于DSP的DC-DC变换器模糊控制器设计与实现[D],无锡江南大学,2008.
    24.曹文思.一种DC-DC开关变换器建模方法研究[D],郑州大学,2007.
    25.张卫平,吴兆麟,李洁.开关变换器建模方法综述[J],浙江大学报,1999,33(2):170-173.
    26. Chen Y F, Qiu S S, Long M. Nonlinear large-Signal modeling of PWM DC-DC switching Power converter [J], IEEE Transactions on Power Electronics,2004,7(4): 1507-1510.
    27. Venkata D. Modeling and simulation of multiple nonlinearities using TLM [C], International Conference on Power Systems Transients in Montreal, Canada,2005,1-8.
    28.陈果,谢运祥.PWM开关变换器的建模方法综述[J],通信电源技术,2006,23(1):22-24.
    29.Kuang Y, Lian M. LMI-Based Integral Fuzzy Control of DC-DC Converters [J], IEEE Transactions On Fuzzy Sysrems,2006,14(1):71-80.
    30.夏顺贵.DC-DC变换器的模糊控制方法研究[D],无锡市江南大学,2008.
    31.尹丽云.DC-DC开关变换器建模及其非线性控制研究[D],南宁广西大学,2007.
    32.王艳,吴正成,纪志成.基于Buck-Boost变换器的T-S模糊建模和仿真研究[J],计算机与应用化学,2008,25(7):910-912.
    33.伍磊.基于LMI的模糊控制器和观测器的设计研究[D],保定市华北电力大学,2005.
    34.柴飞燕,陈希平,车玫芳.基于LMI的模糊控制器设计[J],系统仿真学报,2006,8(2):872-875.
    35. Tanaka K, Sugeno M. Stability and design of fuzzy control systems [J], Fuzzy Sets and Systems,1992,45(2):135-156.
    36. Lam H K, Lee T H, Leung F H. Fuzzy Control of DC-DC Switching Converters: Stability and Robustness [J], IEEE Industrial Electronics Society,2001,1(27):899-902.
    37. Forsyth A J, Mollov S V. Modeling and control of DC-DC converters [J], Power Engineering Journal,1998,17(6):2661-2666.
    38.Ngo K D, Webster R. Steady-state analysis and design of a switched-capacitor DC-DC converters [J], IEEE PESC,1992,92:378-385.
    39.张化光,何希勤.模糊自适应控制理论及其应用[M],北京:北京航空航天大学出版社,2002,1-5,297-311.
    40. Ali V, Juri J, Farza D R. Numerical state-space average-value modeling of PWM DC/DC converters operating in DCM and CCM [J], IEEE Transactions on power Electronics,2006,21(4):1003-1012.
    41.全永兵.非线性系统的模糊建模与控制方法研究[D],沈阳东北大学,2001.
    42. Kim J H, Euntai P M. T-S fuzzy model-based synchroniza-tion of time-delay chaotic system with input saturation [J], IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2004, E87-A(12):3372-3380.
    43. Hu L S, Huang B. Multirate robust digital control for fuzzy systems with periodic Lyapunov function [J], IEEE Transactions on Fuzzy Systems,2005,13(4):436-443.
    44.张化光,全永兵.模糊双曲正切模型的建模方法与控制其设计[J],自动化学报,2000,26(6):729-735.
    45.杨东升,张化光,李爱平,孟子怡.基于模糊模型的不同结构的混沌系统同步[J],物理学报,2007,56(6):3121-3126.
    46.郑大钟.线性系统理论[M],北京:清华大学出版社,2002,1-5,32-45.
    47. Garofalo F, Marino P, Scala S, Vasca F. Control of DC-DC converters with linear optimal feedback and nonlinear feedforward [J], IEEE Trans.Power Electron,1994, 32(54):607-615.
    48. Venkataramanan R, Sabanovic A, Cuk S. Sliding mode control of DC-DC converters [C], IEEE Conference on Industrial Electronics,1995,251-258.
    49. Lin S C, Tsat C C. Adaptive voltage regulation of PWM Buck DC-DC converters using backstepping sliding mode control [C], IEEE International Conference,2004,2-4.
    50. Perry A, Feng G, Liu Y. A new design method for PI-like fuzzy logic controllers for DC-DC converters [C],35th Annual IEEE Power Electronics Specialists Conference, 2004:3751-3757.
    51.李亚钊,杨成功.基于线性不等式设计非线性系统的模糊控制与观测器[J],盐城工学院学报,2007,20(3):11-14.
    52. Ruzbehani M, Louwei Z. A new approach in combining one-cycle controller and PID controller [C], IEEE Industrial Electronics,2004:1173-1177.
    53.贺乃宝,姜长生.基于Lyapunov方法的非线性系统自适应观测器设计[J],南京航空航天大学学报,2006,38(3):268-271.
    54.全西岳,李东旭.基于观测器的输出控制设计的迭代LMI方法[J],控制工程,2007,14(5):501-504.
    55.吴忠强,黎小燕.基于模糊观测器的模糊控制系统的稳定性[J],电工技术杂志,2002,(4):23-26.
    56.赵艳秋,刘树成,于江利.模糊控制器的设计与仿真[J],河北建筑工程学院学报,2008,26(4):64-66.
    57.王庆林,陈锦锑,黄西土,谢建华,吴金中.智能模糊控制器[J],北京理工大学学 报,2008,13(3):362-365.
    58. Churilov A N, Gessen A V. LMI approach to stabilization of a linear plant by a pulse modulated signal [J], Int.J.Hybrid Systems,2003,3(4):375-388.
    59. Veerachary M. Signal flow graph modelling of multi-state boost DC-DC converters [J], IEEE Industrial Electronics,2004,47(6):78-89.
    60.诸峰,陈再良.基于线性不等式的观测器设计方法的仿真研究[J],苏州大学学报,2007,27(6):24-26.
    61.董敏.基于模糊控制器的故障诊断和容错控制研究[D],南京航空航天大学,2007.
    62.贺乃宝,姜长生.基于Lyapunov方法的非线性系统自适应观测器设计[J],南京航空航天大学学报,2006,38(3):267-270.
    63.吴娜桐.Takagi-Sugeno模糊控制器仿真与稳定性分析[J],南京航空航天大学学报,,2008,(135):27-30.
    64. Boyd S, Ghaoui L E. Linear Matrix Inequalitie System and Control Theory [M], Philadelphia, PA:SIAM,1994.
    65.Farza M, Rossignol L. Observer design for a class of MIMO nonlinear systems [J], Automatica,2003,39(5):885-892.
    66. Bergsten P, Palm R, Driankov D. Observers for Takagi-Sugeno fuzzy systems [J], IEEE Transactions on Systems Man and Cybernetics,2002,32(1):114-121.
    67.薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M],北京:清华大学出版社,2002,253-353.
    68.王忠礼,段慧达,高玉峰.MATLAB应用技术—在电气工程与自动化专业中的应用[M],北京:清华大学出版社,2007,80-81.
    69.洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M],北京:机械工业出版社,2007,79-80.
    70.石辛民,郝整清.模糊控制及其MATLAB仿真[M],北京:清华大学出版社,2007.
    71.钟麟.MATLAB仿真技术与应用教程[M],北京:国防工业出版社,2004.
    72.薛定宇,陈阳泉.控制数学问题的MATLAB求解[M],北京:清华大学出版社,2007,308-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700