多通道时延光子相关器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子相关技术是以光子统计学为基础、多学科交叉的一门技术,作为纳米颗粒粒径及其分布的主要测量方法,在颗粒测量领域受到广泛关注。光子相关器是实现光子相关技术的核心装置,用于对散射光信号进行实时相关运算,其性能的优劣决定了光子相关测量的准确性。目前国内尚未实现光子相关器的产品化生产,随着纳米颗粒测量仪器市场需求的日趋增加,研究和开发出具有自主知识产权的光子相关器产品具有重要的经济和社会效益。
     本文工作围绕扩大相关器动态范围及提高光子相关运算精度展开,主要内容包括:
     一、基于光子相关理论,研究了线性、指数和多通道时延(multi tau)光子相关器结构,分析了三种相关器结构下光子相关器动态范围及分辨率问题。
     二、提出了每个线性相关通道组共享一个监视通道的简化对称归一化方法,并对标准归一化、对称归一化和简化对称归一化的估计偏差进行了理论分析与实验对比。理论分析与实验结果表明,简化对称归一化方法,只需增加少量的附加通道资源,即可有效解决多通道时延光子相关结构中归一化光强自相关函数估计偏差随延迟时间增加而增大问题。
     三、为降低相关器硬件成本以及缩短相关器最小采样时间以提高相关函数曲线分辨率,研究了clip相关技术,并对clip相关器与full相关器运算速度和精度进行了实验对比。
     四、为提高光子相关器应用的灵活性,提出了光子相关器动态范围的自适应调整方法,通过初始采样时间的选择和相关通道采样时间的再分配,可在测量过程中自动调整相关器动态范围,使其与待测相关函数曲线衰减区间相匹配,从而保证在任意颗粒系的测量中都能得到分辨率最佳的自相关函数曲线。
     五、基于FPGA技术,实现了256通道的多通道时延clip相关器,以及256通道的多通道时延full相关器。所实现的多通道时延clip相关器和多通道时延full相关器的最小采样时间分别达到28ns和36ns。
     近年来,国外相关的仪器制造商相继推出了一批性能优良的商用光子相关器,并在国内市场形成了垄断局面。尽快实现高性能光子相关器的国产化,降低相应测量仪器在国内市场的价格,已成为相关应用领域的迫切要求,本文所进行的研究,将有助于加快这一进程。
Photon correlation technology, based on photon statistics, is an interdisciplinary science. As the main method for nano particle size distribution testing, photon correlation technology has attracted wide spread attention. Photon correlator, which carries out real time correlation operations, is the key equipment of photon correlation instruments. The performance of correlator determines the precision of photon correlation measurements. Up to now there are still no available domestic photon correlator products while the market demanding keeps increasing. Under such circumstance, the promotion of technology research and commercial industrialization of photon correlator product with independent intellectual property has become urgent which will brings huge economy and social benefits.
     Based on the preliminary work of the research group, the subjects of this paper expand around the extending of the correlater dynamic range and improving of the precision. The main work of this paper consists of:
     1. The linear, exponential and multi tau correlator structure was studied, and the conflict encountered in linear correlator between dynamic range and resolution was analyzed.
     2. A new reduced symmetric normalization method was presented in which a single monitor channel is shared by all the channels with the same sample time. Statistical accuracy of standard, symmetric and the proposed reduced symmetric normalization methods was analyzed. Both theory and measurements results showed that the new reduced normalization method can effectively offset the increasing evaluation bias in the utilization of multi tau correlator with apparently less hardware resource addition.
     3. In order to reduce the hardware costs and decrease the inferior limit of sample time, the clip correlation technology was studied. The calculation speed and accuracy of both clip correlator and full correlator were compared in practical measurements.
     4. A correlator dynamic ranges adaptive adjust method was presented in this paper. Through the selection of original sample time and redistributeon of correlator channel sample times, photon correlater dynamic range can be adaptively adjusted to match the decay range of autocorrelation function in measurements of random particle systems.
     5. Based on FPGA technology, a 256 channel multi tau clip correlater and a 256 channel multi tau full correlater were implemented respectively. The inferior sample time was about 28ns for the clip correlator and 36ns for the full correlator.
     In recent years, the main correlater producers have launched series of high pormance correlater products. To accelerate domestic manufacturing of correlator, lower the price in the native market has become an emergency problem. The work in this paper would contribute for this procedure.
引文
[1]R. Foord, E. Jakeman, C. Oliver et al.. Determination of Diffusion Coefficients of Haemocyanin at Low Concentration by Intensity Fluctuation Spectroscopy of Scattered Laser Light[J]. Nature, 1970,227:242-245
    [2]S. P. Lee, W. Tscharnuter, B. Chu. Calibration of an optical self-beating spectrometer by polystyrene latex spheres and confirmation of the Stokes-Einstein formula[J]. J. Polym. Sci. Phys., 1972,10:2453-2459
    [3]Tadakazu Maeda, Satoru Fujime. Dynamic light-scattering study of suspensions of fd virus. Application of a theory of light-scattering spectrum of weakly bending filaments[J].Macromolecules, 1985,18(12): 2430-2437
    [4]Pusey, P. N., Van Megen, W. Detection of small polydispersities by photon correlation spectroscopy[J]. The Journal of Chemical Physics, 1984, 80(8):3513-3520
    [5]M. Corti, V. Degiorgio. Measurement of the thermal diffusivity of pure fluids by Rayleigh scattering of laser light[J]. J. Phys. C: Solid State Phys. 1975, 8: 953-960
    [6]Kenneth S. Schmitz, Donald J. Ramsay. A QELS-SEF study on high molecular weight poly(lysine) field strength dependent apparent diffusion coefficient and the ordinary-extraordinary phase transition[J]. Macromolecules, 1985,18(5): 933-938
    [7]Lal, J., Abemathy, D., Auvray,L. et al. Dynamics and correlations in magnetic colloidal systems studied by X-ray photon correlation spectroscopy[J]. Eur. Phys. J. E 2001,4(3):263-271
    [8]G. Gonz(?)lez-Gaitano, P. Rodr(?)guez, J.R. Isasiet al. The aggregation of cyclodextrins as studied by photon correlation spectroscopy[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2002,44:101-105
    [9]F. Ru, H. Michel, P. Gartner et al.. Determination of size distributions of submicron particles by dynamic light scattering experiments taking into account normalization errors [J]. Progress in Colloid & Polymer Science, 1993, 93: 159-166
    [10]Anthony E. Smart, Robert V. Edwards, and William V. Meyer. Quantitative Simulation of Errors in Correlation Analysis[J]. Appl. Opt.. 2001,40(24):4064-4078
    [11]S. W. Provencher. Inverse problem in polymer characterization: Direct analysis of polydispersity with photon correlation spectroscopy[J]. Makromol. Chem., 1979, 180(1):201-209
    [12]Shen, Jin; Cheng, Yanting; Han, Qiuyan; Liu, Wei; Song, Jingling. Influence of noise to PCS particle sizing with Tikhonov regularization inverse algorithm[C]. Proceedings of SPIE. 2008, 7156:71560V-71560V-8
    [13]Pecora, R. Doppler Shifts in Light Scattering from Pure Liquids and Polymer Solutions[J]. Journal of Chemical Physics. 1964, 40(6)1604-1614
    [14]H. Z. Cummins, N. Knable, and Y. Yeh. Observation of diffusion broadening of Rayleigh scattered light[J]. Phys. Rev. Lett. 1964,12(6): 150-153
    [15]R Foord, E Jakeman, C Oliver. Determination of Diffusion Coefficients of Haemocyanin at Low Concentration by Intensity Fluctuation Spectroscopy of Scattered Laser Light[J]. Nature, 1970,227:242-245
    [16]K. Sch(?)tzel. Correlation techniques in dynamic light scattering[J]. Applied Physics B: Lasers and Optics,1987,42(4):193-213
    [17]Brian Von Herzen.Signal processing at 250 MHz using high-performance FPGA's[C].IEEE Trans.VLSI Syst.1998,6(2):238-246
    [18]M Engels,B Hoppe,H Meuth,et al.A Single Chip 200 MHz Digital Correlation System for Laser Spectroscopy with 512 Correlation Channels[J].Proceedings of the IEEE International Circuits and Systems Conference ISCAS99.1999,5(90):160-163
    [19]I.Janiszewski,B.Hoppe and H.Meuth.VHDL-based design and design methodology for reusable high performance direct digital requency synthesizers[C].Proceedings of the 38th conference on Design automation.2001:573-578
    [20]Jakob,C.,Schwarzbacher,A.Th.Hoppe,B.Peters,R.The Development of a Digital Multichannel Correlator System for Light Scattering Experiments[C].Irish Signals and Systems Conference,2006:99-103
    [21]彭虎.光子相关器的计算机软件、硬件的实现[D]:[硕士学位论文].合肥:中国科学技术大学,1990
    [22]余加莉.采用光子计数器做成光子相关仪[J].工科物理,1996,1:17-19
    [23]王乃宁.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000.306-310
    [24]Kojro,Z.,Riede,A.,Schubert,M.et al.systemetic and statistical errors in correlation estimators obtained from various digital correlators[J].Review of Scientific Instruments.1999,70(12):4487-4496
    [25]Jakob,C.Schwarzbacher,A.Th.Hoppe,B.Peters,R.A FPGA Optimised Digital Real-Time Mutichannel Correlator Architecture[C].Proceedings of the 10th Euromicro Conference on Digital System Design Architectures,Methods and Tools.2007(s):35-42
    [26]Engels,M.Hoppe,B.Meuth,H.et al.Fast digital photon correlation system with high dynamic range[C].Proceedings.13th Annual IEEE International 2000:18-22
    [27]Von Herzen,B.Signal processing at 250 MHz using high-performance FPGA's[C].Very Large Scale Integration(VLSI) Systems,IEEE Transactions on.1998,6(2):238-246
    [28]A.G.Podoleanu,R.K.Harding,and D.A.Jackson.Practical implementation of a high-speed multichannel correlator with fiber-optic delays[J].Appl.Opt.1997,36:7523-7530
    [29]H.Ruf,E.Grell and E.H.K.Stelzer.Size distribution of submicron particles by dynamic light scattering measurements:analyses considering normalization errors.European Biophysics Journal[J].1992,21(1):21-28
    [30]Gian Francesco Lorusso,Antonio Minafra,and Vito Capozzi.Noise dependence of correlation and structure functions on mean count rate and sampling time[J].Appl.Opt..1993,32:3867-3870
    [31]LORUSSO G.F.,MINAFRA A.,CAPOZZI V.Noise dependence of correlation and structure functions on mean count rate and sampling time:Photon correlation and scattering[J].Applied optics.1993,32(21):3867-3870
    [32]K.Sch(a|¨)tzel,M.Drewel,S.Stimac.Photon Corelation Measurements at large lag Times:Improving Statistical Accuracy[J].J.Mod.Opt.1988,35(4):711-718
    [33]K.Sch(a|¨)tzel,E.O.Schulz-DuBois.Improvements of photon Correlation Techniques[J].Infrared Phys.1991,32:409-416
    [34]Schaetzel,Klaus.Noise on photon correlation data:I.Autocorrelation Functions[J].Quantum Opt.1990,2:287-305
    [35]成艳亭,申晋,刘伟等.多tau光子相关器中自相关函数的归一化方法研究[J].中国激光.2009,36(2):444-448
    [36]E.Jakeman,E.R.Pike.Spectrum of clipped photon-counting fluctuations of Gaussian light[J].J.Phys.A:Gen.Phys.1969,2(2):411-412
    [37]E Jakeman,C J Oliver,E R Pike.Clipped correlation of integrated intensity fluctuations of gaussian light[J].J.Phys.A:Gen.Phys.1971,4(6):827-835
    [38]Cummins,H.Z.,Pike,E.R.Photon Correlation and Light Beating Spectroscopy[M].1974.New York:Plenum Press:75-179
    [39]Bendjaballah,C.Analysis of clipped photocount autocorrelation formulae for nongaussian light[J].J.Phys.A:Math.Nucl.Gen.1973,6(6):837-843
    [40]B.E.A.Saleh,J Hendrix.Clipped correlation of integrated intensity fluctuations of thermal light with an arbitrary spectrum.1975 J.Phys[J].A:Math.Gen.8(7):1134-1139
    [41]J Blake,R Barakat.Two-fold photoelectron counting statistics:the clipped correlation function.J.Phys.A:Math.Nucl.Gen.1973,6(8):1196-1210
    [42]S.H.Chen,P.Tartaglia and P.N.Pusey.Light scattering from independent particles-nonGaussian correction to the clipped intensity correlation function[J].J.Phys.A:Math.Nucl.Gen.1973,6(4):490-495
    [43]H.C.Kelly,J.G.Blake.A direct measurement of the generating function for photoelectron counting experiments in the case of a Lorentz spectral line[J].J.Phys.A:Gen.Phys.1971,4(6):L103-L105
    [44]Richard Barakat.Clipped photon-counting covariance functions[J].J.Opt.Soc.Am.A.1988,5(8):1248-1253
    [45]Chu,Benjamin.Laser Light Scattering:Basic Principles and Practice.1991.New York:Academic Process:102-106
    [46]S.K.Srinivasan.Dead-time effects in photon counting statistics[J].J.Phys.A:Math.Gen.1978,11:2333-2340
    [47]Z.Kojro.Influence of statistical errors on size distributions obtained from dynamic light scattering data.Experimental limitations in size distribution determination[J].J.Phys.A:Math.Gen.1990,23:1363-1383
    [48]Jin Shen,Yanting Cheng,Wei Liu,Yajing Wang.Appropriate sampling quantity and its influence on particle sizing results in PCS technique[C].Proceedings of SPIE.2009,7283:728339
    [49]G.F.Lorusso,V.Capozzi,and A.Minafra.Experimental analysis of the noise in photon-correlation and photon-structure functions[J].Phys.Rev.A.1992(6),45:R3391-R3393
    [50]Douglas A.Ross,Nichola(u|¨)(u|¨)(u|¨)s Dimas.Particle Sizing by Dynamic Light Scattering:Noise and Distortion in Correlation Data[J].Particle & Particle Systems Characterization.1993,10(2):62-69
    [51]Dieter Maier,Michael Marth,Josef Honerkamp et al.Influence of Correlated Errors on the Estimation of the Relaxation Time pectrum in Dynamic Light Scattering[J].Applied Optics,1999,38(21):4671-4680
    [52]K.Sch(a|¨)tzel.Noise on Photon Correlation Data:I.Autocorrelation functions[J]. Quantum Optics.1990,2:287-305
    [53]Sch(a|¨)tzel,K.Dead time correction of photon correlation functions[J].Applied Physics B Photophysics and Laser Chemistry.1986,41(2):95-102
    [54]E Jakeman,E R Pike and S Swain.Statistical accuracy in the digital autocorrelation of photon counting fluctuations[J].J.Phys.A:Gen.Phys.1971,4(4):517-534
    [55]J.N.Shaumeyer,Matthew E.Briggs,and Robert W.Gammon.Statistical fitting accuracy in photon correlation spectroscopy[J].Applied Optics,1993,32(21):3871-3879
    [56]Aleksey Lomakin.Fitting the Correlation Function[J].Applied Optics.2001,40(24):4079-4086
    [57]Z Kojro.Influence of statistical errors on size distributions obtained from dynamic light scattering data.Experimental limitations in size distribution determination[J].J.Phys.A:Math.Gen.1990,23:1363-1383
    [58]Jakeman,E.,Jordan,D.L.Statistical accuracy of measurements on Gaussian random fractals[J].Journal of Physics D:Applied Physics.1990,23(4):397-405
    [59]Dieter Maier,Michael Marth,Josef Honerkamp et al.Influence of Correlated Errors on the Estimation of the Relaxation Time Spectrum in Dynamic Light Scattering[J].Appl.Opt.1999,38(21):4671-4680
    [60]Richard C.Haskell and Gary L.Pisciotta.Problems of channel correlation and statistical bias in photon-correlation spectroscopy[J].J.Opt.Soc.Am.B 1985,2(5):714-720
    [61]K.ch(a|¨)tzel.Signal preprocessing for digital correlators[J].Applied Physics A:Materials Science & Processing.1980,22(2):251-256
    [62]E.Jakeman.Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations[J].J.Phys.A:Gen.Phys.1970,3(2):201-215
    [63]Nieuwenhuysen,P.,Clauwaert,J.Clipping level dependence of the photon count autocorrelation amplitude from Gaussian-Lorentzian light[J].Review of Scientific Instruments.1977,48(6):699-700
    [64]J.C.Brown,E.Jakeman,J.G.McWhirter et al.Clip-level crossing rates in photon correlation and analogue signal processing[J].J.Phys.A:Math.Gen.1977,10:1791-1801
    [65]成艳亭,申晋,.刘伟等.一种光子相关器动态范围自适应调整方法与实现[J].中国激光.2008,35(s2):132-136
    [66]D.Magatti,F.Ferri.Fast multi-tau real time software correlator for dynamic light scattering[J].Applied Optics,2001,40(24):4011-4021
    [67]D.Magatti,F.Ferri.25 ns software correlator for photon and fluorescence correlation spectroscopy[J].Rev.Sci.Instr.,2003,74:1135-1144
    [68]Shen Jin,Zheng Gang,Li Mengchao et al..The sdudy on the estimation of autocorrelation function in PCS particle sizing technique[J].Chinese Journal of Scientific Instrument,2003,24(6):585-88
    [69]T.A.Laurence,S.Fore,T.Huser.Fast,flexible algorithm for calculating photon correlations[J].Optics Letters,2006,31(6):829-83
    [70]David D.Sampson,William T.Dove,and David A.Jackson.High bandwidth,optical fiber delay line multichannel digital correlator[J].Applied Optics.1993,32(21):3905-3916
    [71]H.S.Dhadwal,B.Chu and R.Xu.A Time of Arrival Photo-electron Correlator.Review Scientific Instruments.1989,58(8):1445-1449
    [72]Michael Wahl,Ingo Gregor,Mattias Patting et al.Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting[J].Optics Express.2003,11(26):3583-3591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700