光纤光栅器件的V-I传输矩阵法特性分析及声光调制、级联检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:基于光纤布拉格光栅(FBG)的光器件在高速光通信系统及物联网应用中发挥着重要作用。快速有效地获得单个或级联FBG器件的光谱特性,是优化设计基于FBG型光纤激光器、滤波器、放大器等各种光纤器件以及复杂分布式光传感网的重要基础和保障。本文采用V-I传输矩阵法(VITMM)对基于FBG的光器件特性进行了深入的理论和实验研究,理论分析并优化设计了全光纤声光光栅调制器,研究了准分布式FBG和啁啾叠栅两类级联光纤光栅检测系统的设计及应用。主要创新成果如下:
     1、首次建立了用于分析光纤光栅法布里-珀罗(F-P)腔谱特性的V-I传输矩阵模型,证明了该模型与常见的四种理论分析方法(类传输矩阵法、平行板干涉叠加法、递推法及多层膜法)相比,在理论分析和仿真计算光纤光栅法布里-珀罗腔反、透射谱特性时,能够在保证计算精度的前提下有效提高运算效率。
     2、采用VITMM,从谱线间隔与谱线数目、光栅反射率对谱线深度的影响、单纵模输出条件及阈值腔长三方面分析了分布布拉格反射(DBR)光纤激光器谐振腔参数对模式选择及激光输出特性的影响。分析了基于FBG的单腔谐振腔和双腔谐振腔两种类型光纤激光器的传输谱特性。制作了由均匀光纤布拉格光栅(UFBG)和啁啾光纤光栅(CFBG)作为谐振腔反射镜的DBR光纤激光器,实验获得的激光输出谱与仿真分析结果一致。
     3、针对FBG型超声探测,首次提出利用VITMM分析超声波的几何应变效应和弹光效应对FBG折射率分布以及周期的调制,获得了超声波波长与FBG长度比值变化对FBG反射光谱漂移的影响,所设计装置的声频率响应范围为15-1380KHz。
     4、采用三层均匀圆波导结构建立了单模光纤型声光光栅理论模型,并对其应变特性进行了实验验证。采用傅里叶模式耦合算法(FMC)获得了FBG型声光光栅在不同超声波频率及声致应变幅度下的反射谱,与传统计算方法相比,FMC算法可以有效提高运算效率。提出利用剪切模PZT产生纵向声波,具有较高的声光耦合效率。
     5、利用由1000个弱反射FBG构成的级联光纤光栅传感系统进行了温度测试,温度变化范围为40℃-150℃, FBG的温度灵敏度为10.7pm/℃。给出了当输入光功率一定时,不同FBG反射率下,任意FBG反射光功率及一阶串扰光功率与FBG个数的关系。提出了系统的信噪比优化方案,通过调整电光调制器的工作状态以及采用增加可调谐滤波器的方法,将系统的信噪比由5dB提高到15dB。分别采用移动相位掩膜板法和调节应力法实验制作了啁啾叠栅,其自由光谱范围可以通过改变相位掩膜板的位移量或者改变光纤轴向应力加以调节,其作为传感探头可实现温度、应力及应变等的检测。
ABSTRACT:The Fiber Bragg Grating(FBG) based optical devices play an important role in the high-speed fiber optic communication system and the applications in Web of Things. Fast and efficient access to spectra performances of single or cascaded fiber gratings is the fundation to ensure optimizing the design of fiber laser, filter, amplifier, other fiber optic devices and complex distributed sensing network. In this thesis, the Ⅴ-Ⅰ transmission matrix method (VITMM) was presented to deeply research the characteristics of FBG based optical devices with theoretical analysis and experiment demonstration. The all fiber acousto-optic grating modulator was theoretically analyzed and experimentally optimized. The design philosophy and applications of two kinds of cascaded fiber grating testing system, quasi distributed FBG and superimposed chirped fiber grating, were introduced. The main achievements of this thesis are listed as follows.
     1-. The Ⅴ-Ⅰ transmission matrix model was firstly established to analyze the spectra characteristics of fiber grating Fabry-Perot(F-P) cavity. Compared with four common theoretical analysis methods(quasi transmission matrix method, parallel-plate interference superimposing method, recurrence method and multi-layer method), the VITMM can improve the computing efficiency under the premise of ensuring analysis accuracy when it was applied to simulate the reflection and transmission spectra of fiber grating F-P cavity.
     2、The VITMM was applied to analyze the influences of resonator's parameters on the mode selection and laser output of Distributed Bragg Reflector(DBR) fiber laser in three aspects:the interval and number of spectral lines, the effect of grating reflectivity on the depth of spectra lines and the condition of single longitudinal mode output and threshold cavity length. Then the transmission spectra analysis of fiber grating laser with FBG based single-cavity resonator and double-cavity resonator was performed, respectively. The experiment setup of DBR fiber laser whose resonator was formed by a uniform fiber Bragg grating(UFBG) and a chirped fiber Bragg grating(CFBG) was carried out. The spectra of laser output in experiment was consistent with the simulation result.
     3、For the ultrasonic detection by FBG, the VITMM was firstly presented to analyze the refractive index distribution and the period change of uniform FBG caused by the geometric and strain-optic effect of ultrasonic wave. The relation of the shift of FBG reflected spectra with the ratio of the wavelength of ultrasonic wave to the FBG length was obtained, and the system was able to detect ultrasonic wave ranging from15to1380KHz.
     4、The theoretical model of single-mode fiber based acousto-optic grating was established by the three-layer uniform circular waveguide structure, and the strain performance was demonstrated experimentally. Fourier mode coupling(FMC) method was applied to achieve the reflected spectra of FBG based acousto-optic grating under various ultrasonic frequencies and acoustically induced strains. The FMC method can improve the computing efficiency effectively compared to tranditional computing method. A new way for generating longitudinal acoustic wave by shear-mode PZT, which has high acousto-optic coupling efficiency, was presented
     5、The temperature test was carried out by using a sensing system composed by1000cascaded FBGs with low reflectivites. The temperature ranged from40to150℃, and the sensitivity of FBG was10.7pm/℃. As the input optical power keeping the same, the relation between the returning optic power and the first-order crosstalk power of any FBG with FBG numbers, at various FBG reflectivities, was given. Two ways for optimizing the signal-noise-ratio of system were proposed:adjusting the working status of electro-optical modulator or adding tunable filter. After the optimization, the signal-noise-ratio of system was raised from5dB to15dB. The superimposed chirped fiber grating was fabricated by moving phase mask and adjusting stress, respectively. The free spectra range of that grating can be adjusted by changing the displacement of phase mask or the stress along the fiber axis. The superimposed chirped fiber grating can be used as a sensor employed in the measurement of tempreture, stress, strain and so on.
引文
[1]延凤平,裴丽,宁提纲.光纤通信系统,北京:科学出版社,2006.
    [2]I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, and N. J. Doran, "Uv-written in-fibre Bragg gratings," Opt Quant Electron,1996,28(2):93-135.
    [3]Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, "Polarization-Independent, Multifunctional All-Fiber Comb Filter Using Variable Ratio Coupler-Based Mach-Zehnder Interferometer," Journal of Lightwave Technology,2012,30(12):1857-1862.
    [4]L. Zhang, J. M. Hu, J. H. Wang, and Y. Feng, "Tunable all-fiber dissipative-soliton laser with a multimode interference filter," Optics Letters,2012,37(18):3828-3830.
    [5]A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, "A tunable fiber parametric oscillator for the 2 mu m wavelength range employing an intra-cavity thulium doped fiber active filter," Optics Communications,2011,284(21):5218-5220.
    [6]J. J. Guo, Y. H. Yang, and G. D. Peng, "Analysis of polarization-independent tunable optical comb filter by cascading MZI and phase modulating Sagnac loop," Optics Communications,2011,284(21): 5144-5147.
    [7]Z. C. Luo, A. P. Luo, and W. C. Xu, "Tunable and switchable all-fiber comb filter using a PBS-based two-stage cascaded Mach-Zehnder interferometer," Optics Communications,2011,284(18): 4167-4170.
    [8]G. Rajan, D. Callaghan, Y. Semenova, M. McGrath, E. Coyle, and G. Farrell, "A Fiber Bragg Grating-Based All-Fiber Sensing System for Telerobotic Cutting Applications," Sensors Journal, IEEE,2010,10(12):1913-1920.
    [9]G. Wild, "Optical fiber bragg grating sensors applied to gas turbine engine instrumentation and monitoring," in Sensors Applications Symposium (SAS),2013 IEEE,2013,188-192.
    [10]G. Raj an, L. Yanhua, P. Gang-Ding, and L. Bing, "Etched singlemode polymer fiber Bragg gratings for high sensitivity tensile force measurements," in Photonics Global Conference (PGC),2012,2012, 1-3.
    [11]L. June-Ho, K. Soo-Gil, P. Hyoung-Jun, and S. Minho, "Investigation of Fiber Bragg Grating Temperature Sensor for Applications in Electric Power Systems," in Properties and applications of Dielectric Materials,2006.8th International Conference on,2006,431-434.
    [12]G. Weibing and W. Yueming, "Application of the distributed optical fiber grating temperature sensing technology in high-voltage cable," in Electronic and Mechanical Engineering and Information Technology (EMEIT),2011 International Conference on,2011,4538-4541.
    [13]Q. Ye, W. Quan-bao, Z. Hai-tao, C. Ji-an, and W. Yue-ying, "Applications of FBG Sensors for Airship Structural Health Monitoring," in Photonics and Optoelectronics (SOPO),2012 Symposium on,2012, 1-3.
    [14]G. Allwood, S. Hinckley, and G. Wild, "Optical Fiber Bragg grating based intrusion detection systems for homeland security," in Sensors Applications Symposium (SAS),2013 IEEE,2013,66-70.
    [15]M. L. Filograno, P. Corredera Guillen, A. Rodriguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andres-Alguacil, and M. Gonzalez-Herraez, "Real-Time Monitoring of Railway Traffic Using Fiber Bragg Grating Sensors," Sensors Journal, IEEE,2012,12(1):85-92.
    [16]W. Chuliang, C. Zemin, T. Hwa-yaw, S. L. Ho, and X. Qin, "Reliability Verification of a FBG Sensors Based Train Wheel Condition Monitoring System," in Intelligent System Design and Engineering Application (ISDEA),2012 Second International Conference on,2012,1091-1094.
    [17]Y. Zhang, T. T. Sun, L. Y. Xiong, M. Z. Alam, and J. Albert, "Distributed transverse load sensing with tilted fiber Bragg gratings using optical frequency domain reflectometry," in 22nd International Conference on Optical Fiber Sensors, Pts 1-3. vol.8421, Y. Liao, et al, Eds., ed,2012.
    [18]H. Xia, "Advanced Fiber Optical Sensor and Instrumentation for Power Generation Industrial Monitoring and Diagnostics," in Fiber Optic Sensors and Applications Ix. vol.8370, H. H. Du, et al, Eds., ed,2012.
    [19]G Liu, Z. Guo, F. Wu, and Y. Li, "Temperature and Pressure Detection System of Gas Tanks Using Fiber Bragg Grating," in Control, Automation and Systems Engineering (CASE),2011 International Conference on,2011,1-3.
    [20]J. W. Arkwright, S. N. Doe, N. G. Blenman, I. D. Underhill, S. A. Maunder, B. Lim, M. M. Szczesniak, P. G. Dinning, and I. J. Cook, "The use of wavelength division multiplexed fiber Bragg grating sensors for distributed sensing of pressure in the gastrointestinal tract," in PhotonicsGlobal@Singapore,2008. IPGC 2008. IEEE,2008,1-4.
    [21]M. Shuhua, G. Qiongchan, and L. Jiangtao, "A CO detection system based on double fiber bragg gratings," in Photonics Global Conference (PGC),2012,2012,1-3.
    [22]J. F. Akki, A. S. Lalasangi, U. S. Raikar, V. K. Kulkarni, P. Radhakrishnan, and I. I. Pattanshetty, "Chemical sensor for nitrate in water using long period optical fiber grating fabricated by point by point method," in Optical Engineering (ICOE),2012 International Conference on,2012,1-4.
    [23]A. F. Fernandez, B. Brichard, F. Berghmans, H. E. Rabii, M. Fokine, and M. Popov, "Chemical composition fiber gratings in a high mixed gamma neutron radiation field," Nuclear Science, IEEE Transactions on,2006,53(3):1607-1613.
    [24]A. Boersma, M. Saalmink, T. Lucassen, S. Wiegersma, R. Jansen, and C. Lun, "Fiber Bragg distributed chemical sensor," in Sensors,2011 IEEE,2011,1480-1483.
    [25]G Rajan, B. Liu, Y. Luo, E. Ambikairajah, and G. D. Peng, "High Sensitivity Force and Pressure Measurements Using Etched Singlemode Polymer Fiber Bragg Gratings," Sensors Journal, IEEE, 2013,13(5):1794-1800.
    [26]F. Berghmans, T. Geernaert, S. Sulejmani, H. Thienpont, G Van Steenberge, B. Van Hoe, P. Dubruel, W. Urbanczyk, P. Mergo, D. J. Webb, K. Kalli, J. Van Roosbroeck, and K. Sugden, "Photonic crystal fiber Bragg grating based sensors-opportunities for applications in healthcare," in Communications and Photonics Conference and Exhibition,2011. ACP. Asia,2011,1-10.
    [27]S. Hoseok, K. Kim, and J. Lee, "Development of optical fiber Bragg grating force-reflection sensor system of medical application for safe minimally invasive robotic surgery," Review of Scientific Instruments,2011,82(7):074301-074301-9.
    [28]A. V. Koulaxouzidis, M. J. Holmes, C. V. Roberts, and V. A. Handerek, "A shear and vertical stress sensor for physiological measurements using fibre Bragg gratings," in Engineering in Medicine and Biology Society,2000. Proceedings of the 22nd Annual International Conference of the IEEE,2000, 55-58 vol.1.
    [29]L. K. Cheng, W. Vliegenhart, and T. Habisreuther, "Optical fiber grating based technologies and their applications:From nuclear fusion to medical," in Photonics Global Conference (PGC),2012,2012, 1-5.
    [30]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Applied Physics Letters,1978,32(10):647-649.
    [31]S. C. Feng, S. H. Lu, W. J. Peng, Q. Li, T. Feng, and S. S. Jian, "Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber," Optics and Laser Technology,2013,47:102-106.
    [32]X. M. Liu, X. F. Yang, F. Y. Lu, J. H. Ng, X. Q. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Optics Express, 2005,13(1):142-147.
    [33]W. H. Loh, F. Q. Zhou, and J. J. Pan, "Novel designs for sampled grating-based multiplexers demultiplexers," Opt. Lett.,1999,24(21):1457-1459.
    [34]C. L. Lee and Y. Lai, "Evolutionary programming synthesis of optimal long-period fiber grating filters for EDFA gain flattening," Photonics Technology Letters, IEEE,2002,14(11):1557-1559.
    [35]Y. Zhijun, W. Hushan, Z. Kaiming, W. Yishan, Z. Wei, and Z. Lin, "Broadband Tunable All-Fiber Polarization Interference Filter Based on 45° Tilted Fiber Gratings," Lightwave Technology, Journal of,2013,31(1):94-98.
    [36]P. Li, T. Li, F. Yan, W. Jian, T. Ning, and S. Jian, "Study on PMD of conventional single mode fiber transmitting system with FBG for dispersion compensation," Microwave and Optical Technology Letters,2004,40(5):371-374.
    [37]P. Li, J. Shuisheng, Y. fengping, N. Tigang, and W. Zhi, "Long-haul WDM system through conventional single mode optical fiber with dispersion compensation by chirped fiber Bragg grating," Optics Communications,2003,222(1-6):169-178.
    [38]L. Pei, H. D. You, T. G. Ning, J. Li, S. Gao, and L. Yang, "Bidirectional 60 GHz RoF System With Two Millimeter-Wave Signals Generated by a Novel Generation Scheme," Journal of Optical Communications and Networking,2012,4(9):703-708.
    [39]L. Jing, N. Tigang, P. Li, Q. Chunhui, H. Xudong, and Z. Qian, "An Improved Radio Over Fiber System With High Sensitivity and Reduced Power Degradation by Employing a Triangular CFBG," Photonics Technology Letters, IEEE,2010,22(7):516-518.
    [40]裴丽,刘观辉,宁提纲,高嵩,李晶,张义军,”基于偏振稳定双波长保偏光纤光栅激光器的可调谐微波/毫米波产生技术,”物理学报,2012,61(6):64203-064203.
    [41]W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Applied Physics Letters,2005,86(15)
    [42]K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, "A fibre Bragg grating refractometer," Measurement Science & Technology,2001,12(7):757-764.
    [43]G Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett.,1989,14(15):823-825.
    [44]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Applied Physics Letters,1993,62(10):1035-1037.
    [45]P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres," Electronics Letters,1993,29(13):1191-1193.
    [46]D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, "Long-period fibre grating fabrication with focused CO2 laser pulses," Electronics Letters,1998, 34(3):302-303.
    [47]A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, "Direct writing of fibre Bragg gratings by femtosecond laser," Electronics Letters,2004,40(19):1170-1172.
    [48]S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, "Fiber Bragg grating inscription by high-intensity femtosecond UV laser light:comparison with other existing methods of fabrication," Journal of the Optical Society of America B-Optical Physics,2005,22(2):354-361.
    [49]T. Erdogan, "Fiber grating spectra," Lightwave Technology, Journal of,1997,15(8):1277-1294.
    [50]H. J. Patrick, A. D. Kersey, and F. Bucholtz, "Analysis of the response of long period fiber gratings to external index of refraction," Lightwave Technology, Journal of,1998,16(9):1606-1612.
    [51]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," Lightwave Technology, Journal of,1996,14(1):58-65.
    [52]裴丽,简水生,延凤平等,’'4xlOGb/s 400km啁啾光纤光栅色散补偿,”物理学报,2003,52(3):615-619.
    [53]J. L. Corral, J. Marti, S. Regidor, J. M. Foster, R. Laming, and M. J. Cole, "Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber grating," Microwave Theory and Techniques, IEEE Transactions on,1997,45(8):1531-1536.
    [54]K. Ennser, M. N. Zervas, and R Laming, "Optimization of apodized linearly chirped fiber gratings for optical communications," Quantum Electronics, IEEE Journal of,1998,34(5):770-778.
    [55]R. L. Sandberg, Q. McCulloch, A. M. Dattelbaum, K. W. Staggs, and G. Rodriguez, "Nondestructive calibration of Chirped Fiber Bragg Grating sensors using a fiber-based ultrafast laser," in Lasers and Electro-Optics (CLEO),2012 Conference on,2012,1-2.
    [56]A. Fraser, M. Bernier, E. Weynant, and R. Vallee, "Tunable birefringent phase-shift induced in fiber Bragg grating by a shape memory alloy ferrule," in Optical Communication,2009. ECOC '09.35th European Conference on,2009,1-2.
    [57]Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, "Fiber-Optic Pressure Sensor Based on pi-Phase-Shifted Fiber Bragg Grating on Side-Hole Fiber," Photonics Technology Letters, IEEE, 2012,24(17):1519-1522.
    [58]L. Bo, J. Meng, T. Swee Chuan, P. P. Shum, G Yao, and H. Yan, "Tunable microwave generation based on a phase-shifted chirped fiber Bragg grating," in Wireless and Optical Communications Networks (WOCN),2011 Eighth International Conference on,2011,1-3.
    [59]L. Shenping, K. S. Chiang, and W. A. Gambling, "Wavelength tuning in self-seeded gain switched Fabry-Perot laser diode with moire grating," Electronics Letters,1999,35(25):2209-2210.
    [60]D. C. J. Reid, C. M. Ragdale, I. Bennion, J. Buus, and W. J. Stewart, "Phase-shifted Moire grating fibre resonators," Electronics Letters,1990,26(1):10-12.
    [61]A. Carballar, M. A. Muriel, and J. Azana, "WDM channel selector based on transmissive chirped moire fibre grating," Electronics Letters,1999,35(5):386-388.
    [62]L. R. Chen, D. J. F. Cooper, and P. W. E. Smith, "Transmission filters with multiple flattened passbands based on chirped moire gratings," Photonics Technology Letters, IEEE,1998,10(9): 1283-1285.
    [63]S. Doucet, S. LaRochelle, and M. Morin, "Reconfigurable Dispersion Equalizer Based on Phase-Apodized Fiber Bragg Gratings," Lightwave Technology, Journal of,2008,26(16):2899-2908.
    [64]R. J. Williams, C. Voigtlander, G. D. Marshall, A. Tunnermann, S. Nolte, M. J. Steel, and M. J. Withford, "Modeling of apodized point-by-point fiber Bragg gratings," in Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM),2011,2011,133-135.
    [65]B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, "Long periodic superstructure Bragg gratings in optical fibres," Electronics Letters,1994,30(19):1620-1622.
    [66]H. Lee and G P. Agrawal, "Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings," Photonics Technology Letters, IEEE,2004,16(2):635-637.
    [67]C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Megret, and J. Albert, "Tilted Fiber Bragg Grating Refractometer Using Polarization-Dependent Loss Measurement," Photonics Technology Letters, IEEE,2008,20(24):2153-2155.
    [68]L. Yu-Chun, G. Rui, W. Chuncan, Z. Fan, L. Chu, N. Tigang, and S. Jian, "Polarization Effects in Tilted Fiber Bragg Grating Refractometers," Lightwave Technology, Journal of,2010,28(11): 1677-1684.
    [69]H. Yuheng, G. Tuan, L. Chao, and T. Hwa-yaw, "VCSEL-Based Tilted Fiber Grating Vibration Sensing System," Photonics Technology Letters, IEEE,2010,22(16):1235-1237.
    [70]A. C. L. Wong, M. Giovinazzo, T. Hwa-yaw, L. Chao, and P. Gang-Ding, "Simultaneous Two-Parameter Sensing Using a Single Tilted Moire Fiber Bragg Grating With Discrete Wavelet Transform Technique," Photonics Technology Letters, IEEE,2010,22(21):1574-1576.
    [71]A. C. L. Wong, M. Giovinazzo, T. Hwa-yaw, L. Chao, and P. Gang-Ding, "Tilted Moire Fiber Bragg Grating Optical Filters With Controllable Passband and Stopband," Lightwave Technology, Journal of, of,2010,28(6):898-904.
    [72]P. Childs, G. Kan, and P. Gang-Ding, "Multiplexed Moire Long Period Grating Temperature Sensors," Lightwave Technology, Journal of,2008,26(17):3173-3180.
    [73]饶云江,王义平,朱涛.光纤光栅原理及应用,北京:科学出版社,2006.
    [74]V. Mizrahi and J. E. Sipe, "Optical properties of photosensitive fiber phase gratings," Lightwave Technology, Journal of,1993,11(10):1513-1517.
    [75]江毅,唐才杰.光纤Fabry-Perot干涉仪原理及应用,北京:国防工业出版社,2009.
    [76]W. Bo, L. Yongzhi, and D. Zhiyong, "Narrow Linewidth Fiber Grating F-P Cavity Laser and Application," in Communications, Circuits and Systems Proceedings,2006 International Conference on,2006,1971-1974.
    [77]H. K. Hisham, G. A. Mahdiraji, A. F. Abas, M. A. Mahdi, and F. R. M. Adikan, "Characterization of Turn-On Time Delay in a Fiber Grating Fabry-Perot Lasers," Photonics Journal, IEEE,2012,4(5): 1662-1678.
    [78]Y. Liu, K. S. Chiang, and P. L. Chu, "Interrogation of fiber Bragg grating sensors using dual-wavelength pulses generated from a self-seeded Fabry-Perot laser diode," 2005:27-38.
    [79]H. K. Hisham, A. F. Abas, G. A. Mahdiraji, M. A. Mahdi, and A. S. Muhammad Noor, "Improving the characteristics of the modulation response for fiber Bragg grating Fabry-Perot lasers by optimizing model parameters," Optics & Laser Technology,2012,44(6):1698-1705.
    [80]R. C. Tao, X. H. Feng, Y. Cao, Z. H. Li, and B. O. Guan, "Tunable Microwave Photonic Notch Filter and Bandpass Filter Based on High-Birefringence Fiber-Bragg-Grating-Based Fabry-Perot Cavity," IEEE Photonics Technol. Lett.,2012,24(20):1805-1808.
    [81]Y. Du, X. P. Dong, M. X. Chen, and J. L. Zhou, "Novel tunable single-longitunal mode fiber ring laser with two FBG-FP filters," Microwave and Optical Technology Letters,2012,54(5):1230-1234.
    [82]S. Liu, X. Y. Dong, J. Q. Sun, and P. Shum, "Free-spectral range tunable Fabry-Perot filter with superimposed fiber Bragg gratings," Optics Communications,2009,282(24):4729-4732.
    [83]X. F. Yang, C. L. Zhao, J. H. Ng, J. Zhang, X. Y. Dong, K. N. Ng, X. Guo, X. Q. Zhou, and C. Lu, "Simultaneous dispersion slope compensation for WDM channels using a Fabry-Perot Etalon formed by double FBGs," Optics Communications,2004,231(1-6):227-231.
    [84]Z. G. Guan, C. Daru, and H. Sailing, "Coherence Multiplexing of Distributed Sensors Based on Pairs of Fiber Bragg Gratings of Low Reflectivity," Lightwave Technology, Journal of,2007,25(8): 2143-2148.
    [85]S. Niu, Y. Liao, Q. Yao, and Y. Hu, "Resolution and sensitivity enhancements in strong grating based fiber Fabry-Perot interferometric sensor system utilizing multiple reflection beams," Optics Communications,2012,285(12):2826-2831.
    [86]G. A. Ball, W. W. Morey, and W. H. Glenn, "Standing-wave monomode erbium fiber laser," Photonics Technology Letters, IEEE,1991,3(7):613-615.
    [87]J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, "Er3+:Yb3+-codoped fiber distributed-feedback laser," Opt. Lett.,1994,19(24):2101-2103.
    [88]Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, "Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter," Opt. Lett.,1995,20(8):875-877.
    [89]M. J. Guy, J. R. Taylor, and R. Kashyap, "Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter," Electronics Letters,1995,31(22):1924-1925.
    [90]X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, "Single-Longitudinal-Mode Erbium-Doped Fiber Ring Laser Based on High Finesse Fiber Bragg Grating Fabry-Perot Etalon," Photonics Technology Letters, IEEE,2008,20(12):976-978.
    [91]C.-C. Lee and S. Chi, "Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback," Opt. Lett.,2000,25(24):1774-1776.
    [92]J. Sun, X. Yuan, X. Zhang, and D. Huang, "Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry-Perot filters and variable saturable absorbers," Optics Communications,2006, 267(1):177-181.
    [93]I. R. Bedwell and D. R. Jones, "Fiber laser sensor hydrophone performance," in OCEANS 2010 IEEE-Sydney,2010,1-5.
    [94]Y. Leguillon, K. Hey Tow, P. Besnard, A. Mugnier, D. Pureur, and M. Doisy, "First demonstration of a 12 DFB fiber laser array on a 100 GHz ITU grid, for underwater acoustic sensing application," 2012: 84390J-84390J.
    [95]G. A. Cranch, G. Flockhart, and C. K. Kirkendall, "Distributed Feedback Fiber Laser Strain Sensors," Sensors Journal, IEEE,2008,8(7):1161-1172.
    [96]M. Shlagin, V. Miridonov, D. Tentori, and J. Castillo, "Twin grating-based interferometric fiber sensor," in Optical Fiber Sensors, Optical Society of America,1997.
    [97]X. Wan and H. F. Taylor, "Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors," Optics Letters,2002,27(16):1388-1390.
    [98]J. H. Chow, I. C. Littler, G De Vine, D. E. McClelland, and M. B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," Lightwave Technology, Journal of,2005, 23(5):1881-1889.
    [99]G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, "Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques," Journal of Optics A:Pure and Applied Optics, 2006,8(7):S507.
    [100]任文华,”智能光纤传感网络中关键器件的研制和应用,”北京交通大学博士论文,2009
    [101]D. Atkinson, G Hayward, and A. Cochran, "Propagation of ultrasound along fibres for the non-destructive testing of plates," in Ultrasonics Symposium,1997. Proceedings.,1997 IEEE,1997, 797-800 vol.1.
    [102]S. N. Ramadas, J. Dziewierz, R. L. O"Leary, A. Gachagan, A. Velichko, and P. D. Wilcox, "An annular array with fiber composite microstructure for far field NDT imaging applications," in Ultrasonics Symposium (IUS),2009 IEEE International,2009,2557-2560.
    [103]J. Tae Seong, L. Seung Seok, K. Il-Bum, L. Wang-Joo, and L. Jung Ju, "Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2002,49(6):767-775.
    [104]D. Wei, Z. Zhenggan, and X. Ni, "Application of linear frequency modulation pulse compression in air-coupled ultrasonic testing," in Advanced Computer Control (ICACC),2010 2nd International Conference on,2010,53-57.
    [105]H. Zhang, X. Sun, X. Qi, X. Liu, and D. Lu, "Ultrasonic Lamb Wave Inspection Using Fiber Bragg Gratings," in Microwave Conference,2008 China-Japan Joint,2008,805-808.
    [106]A. Gachagan, G. Hayward, A. McNab, P. Reynolds, S. G Pierce, W. R. Philp, and B. Culshaw, "Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1999,46(1):72-81.
    [107]J. Liang, Y. Qingxin, L. Suzhen, Z. Chuang, and L. Peng, "Electromagnetic Stimulation of the Acoustic Emission for Fatigue Crack Detection of the Sheet Metal," Applied Superconductivity, IEEE Transactions on,2010,20(3):1848-1851.
    [108]F. G. Mitri, G. T. Silva, J. F. Greenleaf, and M. Fatemi, "Simultaneous sum-frequency and vibro-acoustography imaging for nondestructive evaluation and testing applications," Journal of Applied Physics,2007,102(11):114911-114911-7.
    [109]R. Montonen, T. Karppinen, A. Salmi, K. Mustonen, and E. Haggstrom, "Ultrasonic stiffness measurements of single plant fibers during humidity cycling," in Ultrasonics Symposium (JUS),2009 IEEE International,2009,2561-2563.
    [110]L. Yi-Hsun, H. Chih-Chung, and W. Shyh-Hau, "Quantitative assessment on the orientation and distribution of carbon fibers in a conductive polymer composite using high-frequency ultrasound," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2012,59(5):970-980.
    [111]F. A. Firestone, "The Supersonic Reflectoscope, an Instrument for Inspecting the Interior of Solid Parts by Means of Sound Waves," The Journal of the Acoustical Society of America,1946,17(3): 287-299.
    [112]J.-P. Monchalin, "Heterodyne interferometric laser probe to measure continuous ultrasonic displacements," Review of Scientific Instruments,1985,56(4):543-546.
    [113]J. F. Dorighi, S. Krishnaswamy, and J. D. Achenbach, "Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1995,42(5):820-824.
    [114]G. A. Cranch, G. A. Miller, and C. K. Kirkendall, "Fiber-optic, cantilever-type acoustic motion velocity hydrophone," Journal of the Acoustical Society of America,2012,132(1):103-114.
    [115]R. Sato and S. Saito, "Expansion of Dynamic Range in Interferometric Fiber Optic Hydrophone," Japanese Journal of Applied Physics,2013,52(1)
    [116]W. T. Zhang, F. Li, and Y. L. Liu, "Theoretical Analysis of Acoustic Sensitivity of Fiber Optic Hydrophone with Multilayer Fiber Coils," Sensor Letters,2012,10(7):1450-1453.
    [117]S. Zulic, P. Mihailovic, and S. J. Petricevic, "Frequency response analysis of the fiber optic hydrophone optimized for large diameter core fibers," Optoelectronics and Advanced Materials-Rapid Communications,2012,6(7-8):683-686.
    [118]Y. M. Hu, Z. L. Hu, H. Luo, L. N. Ma, S. D. Xiong, Y. B. Liao, and M. Zhang, "Recent Progress toward Fiber Optic Hydrophone Research, application and commercialization in China," in 22nd International Conference on Optical Fiber Sensors, Pts 1-3. vol.8421, Y. Liao, et al, Eds., ed,2012.
    [119]廖延彪,黎敏,张敏,匡武.光纤传感技术与应用,北京:清华大学出版社,2009.
    [120]J. Carroll and D. Huber, "A fiber-optic hydrophone with a mechanical anti-aliasing filter," Lightwave Technology, Journal of,1986,4(1):83-86.
    [121]W. W. Lin, C. F. Chang, C. W. Wu, and M. C. Chen, "The configuration analysis of fiber optic interferometer of hydrophones," in OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04,2004, 589-592 Vol.2.
    [122]O. H. Waagaard, G. B. Havsgard, and W. Gunnar, "An investigation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones," Lightwave Technology, Journal of,2001, 19(7):994-1003.
    [123]C. Wurster, J. Staudenraus, and W. Eisenmenger, "The fiber optic probe hydrophone," in Ultrasonics Symposium,1994. Proceedings.,1994 IEEE,1994,941-944 vol.2.
    [124]W. Zefeng and H. Yongming, "Frequency response of fiber-optic hydrophone with a novel mechanical anti-aliasing filter of side cavities," in Communications and Photonics Conference and Exhibition (ACP),2009 Asia,2009,1-5.
    [125]P. Nash, "Review of interferometric optical fibre hydrophone technology," IEEE Proceedings-Radar, Sonar and Navigation,1996,143(3):204-209.
    [126]P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg grating ultrasonic sensor," Optical Engineering,2003,42(4):956-963.
    [127]R. P. T. C.C.Ye, "Ultrasonic sensing using Yb3+/Er3+ codoped distributed feedback fibre grating lasers," Smart materials and structures,2005,14(1); 170-176.
    [128]W.-F. L. Ming-Yue Fu, Tzu-Chiang Chen, Ping-Ju Tseng, "Multi-wavelength switchable comb filter based on acousto-optic interaction in superstructure fiber gratings," in Conference on Lasers and Electro-optics(CLEO),2003.
    [129]F. Abrishamian, Y. Nakai, S. Sato, and M. Imai, "An efficient approach for calculating the reflection and transmission spectra of fiber Bragg gratings with acoustically induced microbending," Optical Fiber Technology,2007,13(1):32-38.
    [130]A. Rosenthal, D. Razansky, and V. Ntziachristos, "High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating," Opt. Lett.,2011,36(10):1833-1835.
    [131]T. A. Birks, D. O. Culverhouse, S. G. Farwell, and P. S. J. Russell, "2×2 Single-mode fiber routing switch," Opt. Lett.,1996,21(10):722-724.
    [132]C. A. F. Marques, R. A. Oliveira, A. A. P. Pohl, and R. N. Nogueira, "Adjustable EDFA gain equalization filter for DWDM channels based on a single LPG excited by flexural acoustic waves," Optics Communications,2012,285(18):3770-3774.
    [133]I. L. Villegas, C. Cuadrado-Laborde, A. Diez, J. L. Cruz, M. A. Martinez-Gamez, and M. V. Andres, "Yb-doped strictly all-fiber laser actively Q-switched by intermodal acousto-optic modulation," Laser Physics,2011,21(9):1650-1655.
    [134]M. Bello-Jimenez, C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, "Actively mode-locked fibre ring laser based on in-fibre acousto-optic amplitude modulation," in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC),2011 Conference on and 12th European Quantum Electronics Conference,2011,1-1.
    [135]I. Abdulhalim, I. Gannot, and C. N. Pannell, "All-fiber and fiber compatible acousto-optic modulators with potential biomedical applications-art. no.60830K," in Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VI, vol.6083,1. Gannot, Ed., ed,2006, pp. K830-K830.
    [136]D. Y. Wang, W. Yunmiao, G. Jianmin, and W. Anbo, "Fully Distributed Fiber-Optic Hydrogen Sensing Using Acoustically Induced Long-Period Grating," Photonics Technology Letters, IEEE,2011, 23(11):733-735.
    [137]S. E. Harris and R. W. Wallace, "Acousto-Optic Tunable Filter," J. Opt. Soc. Am.,1969,59(6): 744-747.
    [138]B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett.,1986,11(6):389-391.
    [139]J. N. Blake, B. Y. Kim, and H. J. Shaw, "Fiber-optic modal coupler using periodic microbending," Opt. Lett.,1986,11(3):177-179.
    [140]P. S. J. Russell, "Versatile Acousto-optical Flexural Wave Modulator, Filter and Frequency Shifter in Dual-Core Fibre," Int. J. Optoelectron,1992,7
    [141]D. Ostling and H. E. Engan, "Narrow-band acousto-optic tunable filtering in a two-mode fiber," Opt. Lett.,1995,20(11):1247-1249.
    [142]W. F. Liu, P. S. J. Russell, and L. Dong, "Acousto-optic superlattice modulator using a fiber Bragg grating," Opt. Lett.,1997,22(19):1515-1517.
    [143]K. Hyo Sang, Y. Seok Hyun, K. Hyang Kyun, P. Namkyoo, and K. Byoung Yoon, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," Photonics Technology Letters, IEEE,1998,10(6):790-792.
    [144]Y. Seok Hyun, L. Bong Wan, K. Hyang Kyun, and K. Byoung Yoon, "Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters," Photonics Technology Letters, IEEE,1999,11(10):1229-1231.
    [145]W.-F. Liu, I. M. Liu, L.-W. Chung, D.-W. Huang, and C. C. Yang, "Acoustic-induced switching of the reflection wavelength in a fiber Bragg grating," Opt. Lett.,2000,25(18):1319-1321.
    [146]H. Ding-Wei, L. Wen-Fung, and C. C. Yang, "Q-switched all-fiber laser with an acoustically modulated fiber attenuator," Photonics Technology Letters, IEEE,2000,12(9):1153-1155.
    [147]D. A. Satorius, T. E. Dimmick, and G. L. Burdge, "Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity," Photonics Technology Letters, IEEE, 2002,14(9):1324-1326.
    [148]M. S. Kang, M. S. Lee, J. C. Yong, and B. Y. Kim, "Characterization of Wavelength-Tunable Single-Frequency Fiber Laser Employing Acoustooptic Tunable Filter," J. Lightwave Technol.,2006, 24(4):1812.
    [149]S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, "Highly-efficient broadband acoustic transducer for all-fibre acousto-optic devices," Electronics Letters,2003,39(18):1309-1310.
    [150]M. Delgado-Pinar, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, "Wavelength-switchable fiber laser using acoustic waves," Photonics Technology Letters, IEEE,2005,17(3):552-554.
    [151]K. J. Lee, H. C. Park, H. S. Park, and B. Y. Kim, "Highly efficient all-fiber tunable polarization filter using torsional acoustic wave," Optics Express,2007,15(19):12362-12367.
    [152]M. Han, Y. Wang, Y. Wang, and A. Wang, "Fiber-optic physical and biochemical sensing based on transient and traveling long-period gratings," Opt. Lett.,2009,34(1):100-102.
    [153]D. Y. Wang, Y. Wang, J. Gong, and A. Wang, "Fully distributed fiber-optic temperature sensing using acoustically-induced rocking grating," Opt. Lett.,2011,36(17):3392-3394.
    [154]L. Duan, T. Ke, Y. Zhengyu, and L. Deming, "A Fiber Bragg Grating Sensor Network Using an Improved Differential Evolution Algorithm," Photonics Technology Letters, IEEE,2011,23(19): 1385-1387.
    [155]H. Y. Fu, H. L. Liu, W. H. Chung, and H. Y. Tam, "A Novel Fiber Bragg Grating Sensor Configuration Configuration for Long-Distance Quasi-Distributed Measurement," Sensors Journal, IEEE,2008, 8(9):1598-1602.
    [156]A. Kerrouche, J. Leighton, W. J. O. Boyle, Y. M. Gebremichael, S. Tong, K. T. V. Grattan, and B. Taljsten, "Strain Measurement on a Rail Bridge Loaded to Failure Using a Fiber Bragg Grating-Based Distributed Sensor System," Sensors Journal, IEEE,2008,8(12):2059-2065.
    [157]D. A. Singlehurst, C. R. Dennison, and P. M. Wild, "A Distributed Pressure Measurement System Comprising Multiplexed In-Fibre Bragg Gratings Within a Flexible Superstructure," Lightwave Technology, Journal of,2012,30(1):123-129.
    [158]Z. Yang and G Bai-Ou, "High-Sensitivity Distributed Bragg Reflector Fiber Laser Displacement Sensor," Photonics Technology Letters, IEEE,2009,21(5):280-282.
    [159]W. W. Morey, G. Meltz, and W. H. Glenn, "Fiber optic Bragg grating sensors," in Proc. SPIE,1989, 98-107.
    [160]M. G Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, "Optical in-fibre grating high pressure sensor," Electronics Letters,1993,29(4):398-399.
    [161]M. G Xu, H. Geiger, and J. P. Dakin, "Fibre grating pressure sensor with enhanced sensitivity using a glass-bubble housing," Electronics Letters,1996,32(2):128-129.
    [162]Z. Ying, F. Dejun, L. Zhiguo, G. Zhuanyun, D. Xiaoyi, K. S. Chiang, and B. C. B. Chu, "High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating," Photonics Technology Letters, IEEE,2001,13(6):618-619.
    [163]H. J. Sheng, F. Ming-Yue, C. Tzu-Chiang, L. Wen-Fung, and B. Sheau-Shong, "A lateral pressure sensor using a fiber Bragg grating," Photonics Technology Letters, IEEE,2004,16(4):1146-1148.
    [164]V. r. Pachava, S. Kamineni, P. Kishore, and S. S. Madhuvarasu, "Enhanced Sensitivity of FBG Pressure Sensor Using Thin Metal Diaphragm," Optical Society of America,2012, TPo.20.
    [165]祁耀斌,吴敢锋,王汉熙,”光纤布拉格光栅传感复用模式发展方向,”中南大学学报(自然科学版),2012,43(8):3058-3072.
    [166]A. D. Kersey and T. A. Berkoff, "Dual wavelength fibre interferometer with wavelength selection via fibre Bragg grating elements," Electronics Letters,1992,28(13):1215-1216.
    [167]K. P. Koo and A. D. Kersey, "Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation," Electronics Letters,1995,31(14):1180-1182.
    [168]A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett.,1993,18(16):1370-1372.
    [169]M. A. Davis and A. D. Kersey, "Matched-filter interrogation technique for fibre Bragg grating arrays," Electronics Letters,1995,31(10):822-823.
    [170]M. Froggatt and J. Moore, "Distributed Measurement of Static Strain in an Optical Fiber with Multiple Bragg Gratings at Nominally Equal Wavelengths," Appl. Opt.,1998,37(10):1741-1746.
    [171]Y. Yu, H. Tam, H. Ho, and W. Chung, "Time-domain addressing technique for a single-channel output and high-resolution fiber Bragg grating sensor system," Acta Optica Sinica,2001,21(7):874-7.
    [172]C. Z. Shi, N. Zeng, C. C. Chan, Y. B. Liao, W. Jin, and L. Zhang, "Improving the performance of FBG sensors in a WDM network using a simulated annealing technique," Photonics Technology Letters, IEEE,2004,16(1):227-229.
    [173]Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, "A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring," Optics and Lasers in Engineering,2009, 47(10):1028-1033.
    [174]姜德生,左军,信思金,”光纤Bragg光栅传感器在水布垭工程锚杆上的应用,”传感器技术,2005,24(1):72-74.
    [175]E. J. Friebele, "Fiber Bragg Grating STRAIN SENSORS:PRESENT AND FUTURE APPLICATIONS IN SMART STRUCTURES," Opt. Photon. News,1998,9(8):33.
    [176]P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, "Applications of Bragg grating sensors in Europe," in Optical Fiber Sensors, Optical Society of America,1997.
    [177]L. Pei, F. Yan, Z. Wang, Z. Tong, and S. Jian, "Application of an optical fiber grating pressure sensor on a high-speed-train real-time tracing system," Microwave and Optical Technology Letters,2003, 37(2):148-51.
    [178]王燕花,简水生,任文华,刘艳,谭中伟,“基于WDM和TDM的串联FBG高速列车定位系统,”光电子.激光,2008,19(8):1084-1087.
    [179]X.-G. Qiao, F. Ding, Z.-A. Jia, H.-W. Fu, X.-D. Ying, R. Zhou, and J. Song, "High-accuracy quasi-distributed optical fiber Bragg grating seismic demodulation system," Acta Physica Sinica, 2011,60(7):074221 (6 pp.).
    [180]王月明,”光纤光栅传感产业化技术研究及应用,”武汉理工大学博士论文,2009
    [1]W.-P. Huang and J. Mu, "Complex coupled-mode theory for optical waveguides," Opt. Express, 2009,17(21):19134-19152.
    [2]M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," Lightwave Technology, Journal of,2000,18(2):236-242.
    [3]T. Erdogan, "Fiber grating spectra," Lightwave Technology, Journal of,1997,15(8):1277-1294.
    [4]M. Prabhugoud and K. Peters, "Modified transfer matrix formulation for bragg grating strain sensors," Lightwave Technology, Journal of,2004,22(10):2302-2309.
    [5]J. Skaar and K. M. Risvik, "A Genetic Algorithm for the Inverse Problem in Synthesis of Fiber Gratings," J. Lightwave Technol.,1998,16(10):1928.
    [6]L. A. Weller-Brophy and D. G. Hall, "Analysis of waveguide gratings:a comparison of the results of Rouard?s method and coupled-mode theory," J. Opt. Soc. Am. A,1987,4(1):60-65.
    [7]L. A. Weller-Brophy and D. G. Hall, "Analysis of waveguide gratings:application of Rouard?s method," J. Opt. Soc. Am. A,1985,2(6):863-871.
    [8]J. Capmany, M. A. Muriel, S. Sales, J. J. Rubio, and D. Pastor, "Microwave Ⅴ-Ⅰ transmission matrix formalism for the analysis of photonic circuits:application to fiber Bragg gratings," Lightwave Technology, Journal of,2003,21(12):3125-3134.
    [9]王燕花,”新型光纤传感系统的研究与实现,”北京交通大学博士论文,2009
    [10]江毅,唐才杰.光纤Fabry-Perot干涉仪原理及应用,北京:国防工业出版社,2009.
    [11]B.-O. Guan, Y. Yu, C. Ge, and X. Dong, "Theoretical studies on transmission characteristics of fiber grating Fabry-Perot cavity," Acta Optica Sinica,2000,20(1):34-38.
    [12]柯林.微波工程基础,北京:人民邮电出版社,1981.
    [13]J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photonics,2007, 1(6):319-330.
    [14]A. J. Seeds and K. J. Williams, "Microwave photonics," Lightwave Technology, Journal of,2006, 24(12):4628-4641.
    [15]C. Caloz and T. Itoh. Electromagnetic metamaterials:transmission line theory and microwave applications:Wiley-IEEE Press,2005.
    [16]R. A. Minasian, "Photonic signal processing of microwave signals," Microwave Theory and Techniques, IEEE Transactions on,2006,54(2):832-846.
    [17]纪荣栋,施解龙,陈冠群,胡瑞红,”传输矩阵方法在布拉格光纤光栅分析中的运用,”量子电子学报,2008,25(1)
    [18]O. Xu, S.-H. Lu, and S.-S. Jian, "Theoretical investigation on the characteristics of transmission spectra of the two-cavity Fabry-Perot structure based on fiber gratings for single-frequency fiber laser," Acta Physica Sinica,2008,57(10):6404-11.
    [1]J. L. Archambault and S. G Grubb, "Fiber gratings in lasers and amplifiers," Lightwave Technology, Journal of,1997,15(8):1378-1390.
    [2]K. Lawniczuk, C. Kazmierski, J. G Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, "InP-Based Photonic Multiwavelength Transmitter With DBR Laser Array," IEEE Photonics Technol. Lett.,2013,25(4):352-354.
    [3]X. S. Zhu, W. Shi, J. Zong, D. Nguyen, R. A. Norwood, A. Chavez-Pirson, and N. Peyghambarian, "976 nm single-frequency distributed Bragg reflector fiber laser," Optics Letters,2012,37(20): 4167-4169.
    [4]J. H. Wo, M. Jiang, M. Malnou, Q. Z. Sun, J. J. Zhang, P. P. Shum, and D. M. Liu, "Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser," Optics Express,2012,20(3): 2844-2850.
    [5]F. Yang, Z. Q. Pan, Q. Ye, D. J. Chen, H. W. Cai, and R. H. Qu, "Effect of active fiber birefringence on polarization properties of DBR all-fiber laser," Laser Physics,2012,22(4):778-783.
    [6]P. P. Wang, J. Chang, C. G. Zhu, W. J. Wang, Y. J. Zhao, X. L. Zhang, G. D. Peng, G. P. Lv, X. Z. Liu, and H. Wang, "Investigation intensity response of distributed-feedback fiber laser to external acoustic excitation," Laser Physics Letters,2012,9(8):596-601.
    [7]S. Foster and A. Tikhomirov, "Experimental and theoretical characterization of the mode profile of single-mode DFB fiber lasers," Ieee Journal of Quantum Electronics,2005,41(6):762-766.
    [8]M.Born, E. Wolf. Principles of Optics.杨葭荪 译.北京:科学出版社,1975.
    [9]C.-j. Ye and Z.-q. Yang, "Study on characteristics of Fabry-Perot filter based on fiber Bragg grating," Semiconductor Optoelectronics,2008,29(1):29-33.
    [10]K. A. Winick, "Effective-index method and coupled-mode theory for almost-periodic waveguide gratings:a comparison," Appl. Opt,1992,31(6):757-764.
    [11]Z. Li, L. Pei, C. Qi, T. Ning, R. Zhao, S. Gao, and W. Peng, "V-I transmission matrix method for analyzing mode characteristics of fiber grating laser," Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering,2011,40(12):2370-2375.
    [12]B.-O. Guan, Y. Yu, C. Ge, and X. Dong, "Theoretical studies on transmission characteristics of fiber grating Fabry-Perot cavity," Acta Optica Sinica,2000,20(1):34-8.
    [13]Y.-H. Wang, W.-H. Ren, Y. Liu, Z.-W. Tan, and S.-S. Jian, "Phase-modified coupled mode theory for calculation of fiber Bragg grating Fabry-Perot cavity transmission spectrum," Acta Physica Sinica, 2008,57(10):6393-6399.
    [14]C.-G. Lu, Y.-P. Cui, Z.-Y. Wang, and B.-F. Yun, "A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating," Acta Physica Sinica,2004,53(1):145-50.
    [15]Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiro, J. L. Cruz, and M. V. Andres, "Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings," Opt. Express,2006,14(14): 6394-6399.
    [16]X. Ou, L. Shaohua, F. Suchun, and J. Shuisheng, "Proposal and analysis of two-cavity Fabry-Perot structures based on fiber Bragg gratings," Journal of the Optical Society of America A (Optics, Image Science and Vision),2009,26(3):639-49.
    [17]O. Xu, S. Lu, X. Dong, B. Li, T. Ning, and S. Jian, "Theoretical analysis of transmission characteristics for all fiber, multi-cavity Fabry-Perot filters based on fiber Bragg gratings," Science in China Series F (Information Science),2008,51(9):1391-400.
    [1]Y. M. Hu, Z. L. Hu, H. Luo, L. N. Ma, S. D. Xiong, Y. B. Liao, and M. Zhang, "Recent Progress toward Fiber Optic Hydrophone Research, application and commercialization in China," in 22 nd International Conference on Optical Fiber Sensors, Pts 1-3. vol.8421, Y. Liao, et al., Eds., ed,2012.
    [2]I. F. Saxena, N. Guzman, and S. Pflanze, "Frequency Response Comparison of Two FBG-based Hydrophones," in Photonic Applications for Aerospace, Transportation, and Harsh Environment lii. vol.8368, A. A. Kazemi, et al., Eds., ed,2012.
    [3]C. Kin Seng, H. L. W. Chan, and J. L. Gardner, "Detection of high-frequency ultrasound with a polarization-maintaining fiber," Lightwave Technology, Journal of,1990,8(8):1221-1227.
    [4]J. J. Alcoz, C. E. Lee, and H. F. Taylor, "Embedded fiber-optic Fabry-Perot ultrasound sensor," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1990,37(4):302-306.
    [5]P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, "Compact phase-shifted Sagnac interferometer for ultrasound detection," Optics & Laser Technology,1997,29(6):333-338.
    [6]汪钱纯,”光纤光栅检测超声波系统设计,”浙江大学硕士论文,2009
    [7]C. Koch, "Coated fiber-optic hydrophone for ultrasonic measurement," Ultrasonics,1996,34(6): 687-689.
    [8]C. Koch, "Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor," Applied optics,1999,38(13):2812-2819.
    [9]梁艺军,”光纤声发射检测技术研究,”哈尔滨工程大学博士论文,2005
    [10]单宁,史仪凯,赵江海,姚钦,袁小庆,”光纤Fabry-Perot超声传感系统设计与应用,”光电子.激光,2008,19(7):881-883.
    [11]A. Bernasconi, M. Carboni, and L. Comolli, "Monitoring of fatigue crack growth in composite adhesively bonded joints using Fiber Bragg Gratings," Procedia Engineering,2011,10(0):207-212.
    [12]B. Sorazu, G. Thursby, and B. Culshaw, "Wavefront Integrating Fiber Sensors for Ultrasonic Detection," Sensors Journal, IEEE,2011,11(7):1623-1631.
    [13]L. Tongqing and H. Ming, "Analysis of Pi-Phase-Shifted Fiber Bragg Gratings for Ultrasonic Detection," Sensors Journal, IEEE,2012,12(7):2368-2373.
    [14]F. Ming-Yue, "The Improvement of the Backward Cladding-Core Coupling in a Tilted Fiber Grating by Two Acoustic Flexural Waves," Lightwave Technology, Journal of,2007,25(9):2751-2756.
    [15]P. Fomitchov and S. Krishnaswamy, "Response of a fiber Bragg grating ultrasonic sensor," Optical Engineering,2003,42(4):956-963.
    [16]F. Abrishamian, Y. Nakai, S. Sato, and M. Imai, "An efficient approach for calculating the reflection and transmission spectra of fiber Bragg gratings with acoustically induced microbending," Optical Fiber Technology,2007,13(1):32-38.
    [17]A. Rosenthal, D. Razansky, and V. Ntziachristos, "High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating," Opt. Lett.,2011,36(10):1833-1835.
    [18]江毅,唐才杰.光纤Fabry-Perot干涉仪原理及应用,北京:国防工业出版社,2009.
    [19]J. Staudenraus and W. Eisenmenger, "Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water," Ultrasonics,1993,31(4):267-273.
    [20]D.-H. Kim, Y.-H. Kim, and C.-G Kim, "Directivity evaluation of fiber optic sensor for detecting Lamb waves," Smart materials and structures,2005,14(5):1037.
    [21]Z. Jiang-hai, L. Min-zhou, S. Yi-kai, and H. Jia-li, "Detection of impact induced stress waves using a novel optical fiber Fabry-Perot sensor," in Measuring Technology and Mechatronics Automation (ICMTMA),2010 International Conference on, IEEE,2010,1093-1096.
    [22]Y. Youlong, T. Hwayaw, and C. Wenghong, "Technique for fiber Bragg grating array interrogation with a tunable Fabry-Perot filter," Chinese Journal of Lasers,2000, A27(12):1103-6.
    [23]Y. Jiang, "Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors," Photonics Technology Letters, IEEE,2008,20(2):75-77.
    [24]G. Wild and S. Hinckley, "Acousto-ultrasonic optical fiber sensors:Overview and state-of-the-art," Sensors Journal, IEEE,2008,8(7):1184-1193.
    [25]A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, "Response of fiber Bragg gratings to longitudinal ultrasonic waves," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2005,52(2):304-312.
    [1]B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett.,1986,11(6):389-391.
    [2]H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, "All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile," Opt. Lett.,1997,22(19):1476-1478.
    [3]K. Hyo Sang, Y. Seok Hyun, K. Hyang Kyun, P. Namkyoo, and K. Byoung Yoon, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," Photonics Technology Letters, IEEE,1998,10(6):790-792.
    [4]L. Qun, A. A. Au, C.-H. Lin, E. R. Lyons, and H. P. Lee, "An efficient all-fiber variable optical attenuator via acoustooptic mode coupling," Photonics Technology Letters, IEEE,2002,14(11): 1563-1565.
    [5]D. Y. Wang, W. Yunmiao, G Jianmin, and W. Anbo, "Fully Distributed Fiber-Optic Hydrogen Sensing Using Acoustically Induced Long-Period Grating," Photonics Technology Letters, IEEE,2011, 23(11):733-735.
    [6]W. Zhang, L. Huang, F. Gao, F. Bo, L. Xuan, G. Zhang, and J. Xu, "Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber," Opt. Lett.,2012,37(7):1241-1243.
    [7]S. Nai-Hsiang, C. Chin-Cheng, C. Ming-Jen, L. Chin-Nan, Y. Chin-Chung, K. Yean-Woei, and L. Wen-Fung, "Analysis of phase-matching conditions in flexural-wave modulated fiber Bragg grating," Lightwave Technology, Journal of,2002,20(2):311-315.
    [8]F. Abrishamian, Y. Nakai, S. Sato, and M. Imai, "An efficient approach for calculating the reflection and transmission spectra of fiber Bragg gratings with acoustically induced microbending," Optical Fiber Technology,2007,13(1):32-38.
    [9]P. S. J. Russell and W. F. Liu, "Acousto-optic superlattice modulation in fiber Bragg gratings," J. Opt. Soc. Am. A,2000,17(8):1421-1429.
    [10]R. A. Oliveira, P. T. Neves Jr, J. T. Pereira, and A. A. P. Pohl, "Numerical approach for designing a Bragg grating acousto-optic modulator using the finite element and the transfer matrix methods," Optics Communications,2008,281(19):4899-4905.
    [11]苗韧,”基于光纤声光相互作用的光纤光栅级联模式耦合,”清华大学博士论文,2009
    [12]S. D. Lim, K. J. Park, S. Eom, J.-M. Jeong, B. Y. Kim, and S. B. Lee, "Ultrawidely tunable single-mode fiber acousto-optic filter," Optics Letters,2011,36(7):1101-1103.
    [13]李福良,”基于PA85的新型压电陶瓷驱动电源,”压电与声光,2005,27(4):392-394.
    [14]伍硕群,樊可清,”混凝土检测的超声波发射系统研究与设计,”五邑大学学报(自然科学版)2009,23(2):38.
    [15]吴重庆.光波导理论,北京:清华大学出版社,2000.
    [16]T. A. Birks, P. S. J. Russell, and D. O. Culverhouse, "The acousto-optic effect in single-mode fiber tapers and couplers," Lightwave Technology, Journal of,1996,14(11):2519-2529.
    [17]刘国祥,胡力,叶昆珍,“用于光纤声光器件的超声换能器与模式转换器,”压电与声光,2006,28(3):275-277.
    [1]P. Henderson, D. Webb, D. Jackson, L. Zhang, and I. Bennion, "Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges," Spie-Int Soc Optical Engineering,1999.
    [2]K. P. Koo, A. B. Tveten, and S. T. Vohra, "Dense wavelength division multiplexing of fibre Bragg grating sensors using CDMA," Electronics Letters,1999,35(2):165-167.
    [3]M. FROGGATT, B. CHILDERS, J. MOORE, and T. ERDOGAN, "High density strain sensing using optical frequency domain reflectometry," in Proceedings of SPIE, the International Society for Optical Engineering, Society of Photo-Optical Instrumentation Engineers,2000,249-255.
    [4]A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Characterization of fiber Bragg gratings using spectral interferometry based on minimum-phase functions," Lightwave Technology, Journal of,2006,24(4): 1739-1757.
    [5]P. Bao-Jin, Z. Yong, Z. Yan, and Y. Jian, "Tilt sensor with FBG technology and matched FBG demodulating method," Sensors Journal, IEEE,2006,6(1):63-66.
    [6]K. Sung Chul, K. Se Yoon, L. Sang-Bae, K. Seo-Won, C. SangSam, and L. Byoungho, "Temperature-independent demodulation technique for fiber Bragg grating strain sensors using a tilted fiber Bragg grating," in Lasers and Electro-Optics,1998. CLEO 98. Technical Digest. Summaries of papers presented at the Conference on,1998,329-330.
    [7]L. S. Yan, A. Yi, W. Pan, and B. Luo, "A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser," Photonics Technology Letters, IEEE,2010, 22(18):1391-1393.
    [8]J. Zhongxie and S. Minho, "Fiber grating sensor array interrogation with time-delayed sampling of a wavelength-scanned fiber laser," Photonics Technology Letters, IEEE,2004,16(8):1924-1926.
    [9]C. Zhang, C. Miao, H. Li, H. Gao, and J. Gan, "Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter," in Proceedings of SPIE,2011,820110.
    [10]F. Hongyan, Z. Wei, M. Chengbo, S. Xuewen, Z. Lin, H. Sailing, and I. Bennion, "High-Frequency Fiber Bragg Grating Sensing Interrogation System Using Sagnac-Loop-Based Microwave Photonic Filtering," Photonics Technology Letters, IEEE,2009,21(8):519-521.
    [11]H. Su and X. G. Huang, "A novel fiber Bragg grating interrogating sensor system based on AWG demultiplexing," Optics Communications,2007,275(1):196-200.
    [12]M. Davis and A. Kersey, "Application of a fiber Fourier transform spectrometer to the detection of wavelength-encoded signals from Bragg grating sensors," Lightwave Technology, Journal of,1995, 13(7):1289-1295.
    [13]Z. Cai, J. Phuaa, J. Haoa, B. Donga, X. Wanga, Y. S. Mengb, and T. M. Chiama, "Design and development of a low power, low cost, portable fiber Bragg grating (FBG) sensor interrogation system," in Proc. of SPIE Vol,2012,83320C-1.
    [14]A. V. Tsarev, F. De Leonardis, and V. Passaro, "Compact interrogator for fiber optic Bragg sensors based on an acousto-optic filter formed by photonic crystal rows of air holes," Optics Letters,2011, 36(19):3756-3758.
    [15]Z. Cai, J. Hao, B. Dong, J. Phua, and T. M. Chiam, "Design of a Fiber Bragg Grating Sensor Interrogation System using Volume Phase Grating and CCD Detection," in Proc. of SPIE Vol,2012, 84213N-1.
    [16]W. Yunmiao, G. Jianmin, D. Y. Wang, D. Bo, B. Weihong, and W. Anbo, "A Quasi-Distributed Sensing Network With Time-Division-Multiplexed Fiber Bragg Gratings," Photonics Technology Letters, IEEE,2011,23(2):70-72.
    [17]S. Doucet, R. Slavik, and S. LaRochelle, "High-finesse large band Fabry-Perot fibre filter with superimposed chirped Bragg gratings," Electronics Letters,2002,38(9):402-403.
    [18]R. Slavik, S. Doucet, and S. LaRochelle, "High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings," Lightwave Technology, Journal of,2003,21(4):1059-1065.
    [19]Q. J. Wang, Z. Ying, and S. Yeng Chai, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," Photonics Technology Letters, IEEE,2005,17(2): 387-389.
    [20]D. Xinyong, P. Shum, C. C. Chan, and Y. Xiufeng, "FSR-tunable Fabry-Perot filter with superimposed chirped fiber Bragg gratings," Photonics Technology Letters, IEEE,2006,18(1): 184-186.
    [21]X. O. L. S. D. Xiaowei, "Research Progress for Filters Based on Superimposed Chirped Fiber Bragg Gratings [J]," Laser & Optoelectronics Progress,2007,3:010.
    [22]D. J. Cooper, T. Coroy, and P. W. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays," Applied optics,2001,40(16):2643-2654.
    [23]C. Chan, W. Jin, D. Wang, and M. Demokan, "Intrinsic crosstalk analysis of a serial TDM FGB sensor array by using a tunable laser," Microwave and Optical Technology Letters,2003,36(1):2-4.
    [24]林洪榕,迟晓玲,李利军,”光滤波器:结构、原理与特性,”激光与光电子学进展,2001,11:31-37.
    [25]L. Zhang, K. Sugden, I. Bennion, and A. Molony, "Wide-stopband chirped fibre moire grating transmission filters," Electronics Letters,1995,31(6):477-479.
    [26]J. Cong, X. Chen, and X. Zhang, "On the group delay characteristics of chirped dual overwritten fiber Bragg gratings," Acta Photonica Sinica,2004,33(3):299-302.
    [27]L. A. Everall, K. Sugden, J. A. R. Williams, I. Bennion, X. Liu, J. S. Aitchison, S. Thorns, and R. M. De La Rue, "Fabrication of multipassband moire resonators in fibers by the dual-phase-mask exposure method," Opt. Lett.,1997,22(19):1473-1475.
    [28]M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, "Structured Chirped Fiber Bragg Gratings," Lightwave Technology, Journal of,2008,26(12):1613-1625.
    [29]张自嘉.光纤光栅理论基础与传感技术,北京:科学出版社,2009.
    [30]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Applied Physics Letters,1993,62(10):1035-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700