中国薯蓣属(Dioscorea L.)周生翅组(Sect.Enantiophyllum)的系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周生翅组(Sect.Enantiophyllum)隶属薯蓣科(Dioscoreaceae)薯蓣属(Dioscorea L.),全世界约120种,我国仅14种5变种,广泛分布于长江以南的广大省区。周生翅组茎右旋,单叶,全缘;雄花序为穗状花序,单生或簇生于叶腋,或排列成圆锥状;雌花序为穗状花序,单一或分支,1-3个着生于叶腋;蒴果不反折,种翅周生;是薯蓣属中一个进化的自然类群。本研究运用形态学、解剖学和分子生物学的方法对周生翅组进行了研究,得到了以下结论:
     1.借助于SEM(Scanning Electron Microscopy,扫描电子显微镜)观察了周生翅组10种1变种植物叶片下表皮细胞、表皮毛和气孔的超微结构。结果表明:薯蓣属周生翅组主脉,二级脉和叶肉上均存在表皮毛,且主脉和二级脉的密度大于叶肉。表皮毛的类型有两种,即单细胞不分枝的非腺毛和多细胞头、单细胞柄的腺毛。表皮细胞大多呈不规则形,表皮细胞蜡质有粉末状、屑状、颗粒状、片状,或稀疏或密集。气孔器以不定型为主,三胞型也占有一定的比例。气孔内缘壁光滑或呈波浪形。副卫细胞平周壁角质层具颗粒状、颗粒状-条纹状及条纹状3种纹饰,气孔器保卫细胞垂周壁呈拱形弯曲,气孔周围纹饰有弯曲条纹、环绕后扩散形条纹和放射形条纹3种。本研究结果还表明表皮细胞、表皮毛和气孔器的超微结构均在周生翅组系统演化和种类鉴别中均具有十分重要的意义。
     2.利用LM(Light microscopy,光学显微镜),对薯蓣属周生翅组10种1变种植物脉序进行观察。周生翅组植物均为掌状弧形脉序,基出脉5-9枚,弧形,聚顶。最高脉次5-6,二级脉均有分支;二级脉与一级脉夹角大多大于65°,二级间脉为复合型;网眼发育不完全,大多呈类方形、多角形;网眼内盲脉大多简单,不分枝,边缘末次脉大多发育不完全。虽然周生翅组植物脉序的变异程度不大,但在薯蓣属中单复叶类群的脉序还是呈现出明显的演化趋势,脉序特征在薯蓣属及周生翅组系统演化研究中的地位不容忽视。
     3.在总结了前人研究结果的基础上,对5种周生翅组植物的退化雄蕊的形态特征进行了观察。除丽叶薯蓣和多毛叶薯蓣雄花中3枚雄蕊具花药,3枚雄蕊退化外,周生翅组其余种雄花中均具6枚雄蕊,雌花中大多具有6枚退化雄蕊,一般柱头所对的退化雄蕊较大,花药的颜色较深,花丝几乎透明,除无翅参薯退化雄蕊具少量花粉外,其余均没有花粉。周生翅组植物雌花中具有退化雄蕊的现象无疑是一种进化的性状。
     4.利用LM对周生翅组10种1变种地下储藏器官—块茎的组织结构进行了观察。周生翅组块茎由外到内是由周皮、基本组织和散生在基本组织内的维管束组成。周皮是最外层的褐色、黄褐色或棕褐色的保护组织,它是由原来表皮下方的基本薄壁组织细胞次生分化而产生的,包括多层栓质化(或带木质化)的木栓层,1~2层扁平细小由切向分裂能力的木栓形成层和由其衍生的栓内层薄壁细胞。外侧基本组织为薄壁细胞组成,比较菲薄,组织中有粘液细胞(内含草酸钙针晶束)、树脂、鞣质细胞(统称树脂细胞)。内侧基本组织占广大部位,由基本薄壁细胞组成,维管束散生,外韧型,无形成层,后生木质部中有大形管胞或导管,韧皮部中有大形筛管,有些种类有树脂细胞和粘液细胞。
     5.利用LM对薯蓣属周生翅组11种1变种植物的淀粉粒形态特征进行了观察。周生翅组植物的淀粉粒有单粒和复粒之分。单粒淀粉粒主要以类圆形为主,兼有有贝壳形、三角形和长条形等形状;脐点多为点状,飞鸟状和裂缝状也比较常见。复粒淀粉粒有两种类型,A型由2-3小粒构成,形状以卵圆形、三角形为主,脐点点状,大多不明显,少数种层纹清晰;B型由10个以上的淀粉粒构成,形状以圆形为主,脐点不明显,无层纹。按照颗粒的大小,周生翅组淀粉粒可以分为3种类型:小粒类型(长径小于14μm)、中粒类型(长径在15-40μm之间)和大粒类型(长径大于41μm)。淀粉粒脐点和层纹的有无与其大小有关,小粒类型淀粉粒的脐点和层纹都不明显,大粒类型绝大多数都很清晰,中粒类型部分清晰,部分难以辨认。
     6.测定了周生翅组共10种1变种的trnL-F、rbcL和matK序列。序列分析结果表明:周生翅组trnL-F序列长689-834bp;加上外类群,当空位始终作缺失处理时,有变异位点67个,其中信息位点11个,占序列总长度1.52%;种间碱基差异百分率为2.2%;序列的(G+C)含量为32.5%。周生翅组rbcL序列长1096-1160bp;加上外类群,存在变异位点42个,其中信息位点10个,占序列总长度的0.93%;种间碱基差异百分率为0.9%;序列(G+C)含量为44.1%。周生翅组mark序列长1032-1165bp,排序后,两端切平,序列长1031bp;加上外类群,序列中存在变异位点67个,其中信息位点8个,占序列总长度的0.78%;种间碱基差异百分率为1.3%;序列的(G+C)含量达32.4%。基于trnL-F、rbcL和matK序列分别重建了薯蓣薯周生翅组的系统发育树。三个系统树的结构基本一致。同时,本研究也证实叶绿体基因组序列是周生翅组植物及药材鉴定快速、可靠、有效的方法。
     7.采用简单重复序列间区(ISSR)标记,研究了薯蓣属周生翅组9种1变种植物的遗传特点,共使用了11条简单的重复序列引物,扩增出92个位点,其中88个多态性位点,多态百分率为95.67%。根据ISSR分子标记数据用POPGENE软件计算的周生翅组植物的遗传距离和遗传相似系数。其中褐苞薯蓣和薯莨的遗传距离最远,达0.7151,薯蓣与光叶薯蓣和多毛叶薯蓣之间的遗传距离最近,均为0.2733。种间Nei's基因多样性为(h)0.3156,有效等位基因数为(Nei)1.6198,Shannon多样性指数(I)为0.5276。聚类分析将周生翅组植物分为3个类群。本研究结果还表明ISSR能快速把形态相似的周生翅组植物区分开来。
     8.基于45个广义的形态学性状,运用spss13.0软件,UPGMA聚类分析,构建了周生翅组表征树系图。聚类结果将周生翅植物分成3个类群。基于广义形态学性状,去掉淀粉粒、脉序等演化特征不明显的9个指标,运用PAUP软件,采用最大简约法(MP)构建薯蓣属周生翅组系统发育树。采用启发式搜索共搜索到6棵最佳树。从种系发生上看,丽叶薯蓣和多毛叶薯蓣属较原始的种类,薯莨、异块茎薯莨和光叶薯蓣为最进化的种类。表征聚类分析和分支分析及分子系统学分析对周生翅组植物种间亲缘关系的分析基本一致。但基于ISSR遗传相似系数的聚类树与表征聚类树和分支树的差异都比较大。
     9.采用随机扩增多态性DNA(RAPD)标记对周生翅组重要药用植物薯蓣的遗传多样性进行了研究,共使用了11条寡聚核苷酸引物,扩增出82个位点,其中65个多态性位点,多态百分率为79.27%。居群间Nei's基因多样性为(h)0.3159,有效等位基因数为(Ne)1.5552,Shannon多样性指数(I)为0.4626。聚类分析将8个薯蓣居群分为两类。遗传多样性分析结果表明,薯蓣的野生种群的基因库已经萎缩,其分子水平的遗传多样性正在下降,有必要采取相应的措施,加快薯蓣的新品种培育进程,这将有助于更加合理、充分、有效的利用这种重要的资源。
Sect. Enantiophyllum belongs to Dioscorea L. Dioscoreaceae. There are about 120species in the section in the world, but only 14 species, 5 varieties in China. They widelydistribute in many provinces south of Yangtse Rive. Stem twining to right. Maleinflorescences spikes, solitary or clustered, or grouped into axillary or terminal panicles.Flowers solitary, sessile; Female spike sometimes branched. Seeds inserted near middle ofcapsule, winged all round. This section is an evolutive natural group in Dioscorea L.Researches on Sect. Enantiophyllum were conducted by micromorphological, anatomical andmolecular biological means. The results were stated as follows:
     1 The ultrastructure of leaf epidermis cells, epidermis hair and stomatal of 10 species and1 variety in Sect. Enantiophyllum were observed by SEM (Scanning Electron Microscopy)There are epidermis hairs both on nervure and mesophyll. And there exsit 2 types ofepidermis hair: single cell nonglandular hairs and multicell glandular hairs. Leaf epidermiscells of most species are irregular. Appurtenances of leaf epidermis are grain, bits or pieces,which are sparseness or denseness. Most stomatal are ambiquity. The inner margin of stomatalis smooth or lumpy. The appurtenances of periclinal wall is grain, grain-stripe, stripe or cluster.The style of anticlinal wall is arciform. The decorations around stomatal are curving stripe,diffusing stripe after circle or stripe diffusing in 4 directions. This research proved thatultrastructure of leaf epidermis cells, epidermis hair and stomatal are of significance inphylogeny of Sect. Enantiophyllum.
     2 Using LM (Light microscopy), leaf venation was studied. The vein type of Sect.Enantiophyllum is actinodromous; the number of primary vein is 5-9; the grade of primaryvein is 5-6; the secondary veins' angle is more than 65°; the intersecondaries is complex;areola develops unconsummate, which is square or polygon; bland vein is not ramified; mostmarginal vein ateliosis. Venation characters should not be neglected in the phylogeny of Sect.Enantiophyllum.
     3 Based on the former results, the conditions of staminodes of 5 species wereobserved. There are 6 staminodes in the female flowers except for D.aspersa and D.decipiens.Generally, the staminodes against chapiters are bigger. The colour of anthers is darker thanthat of the chapiters. Staminodes have no pollen except that of D.alata. Staminodes in femaleflowers may be one of the evolutive characters in Sect. Enantiophyllum.
     4 The tuber of Sect. Enantiophyllum is built up by periderm, ground tissue and vascularbundle. Outside the periderm, there is brown defence tissue, which is differentiation fromground weak-wall tissue under epidermis, including phellem, phellem cambium andendophellem weak-wall cells. The outer ground tissue is made up with ground weak-wallcells, thinner, which contains mucous cells (raphides), resiniferous cells. The inner groundtissue is also made up of ground weak-wall cells, vascilar bundle scattering, without anycambium, tracheid or vessel in the center of metaxylem; sieve tube in the center of phloem.There are mucous cells and resiniferous cells in inner ground tissue in some species.
     5 The micromorphology of starch granules of Sect. Enantiophyllum were described withthe help of LM. There have two forms of starch granules:single and compound. Most singlegranules are similar to round, and a few of them are like shells, triangle or stip. The hilumsseem like dot, flying bird or slit. There are 2 types of compound granules. Type A is consistof 2-3 single granules, which mainly are ovum and trangle and the hilums are like dot whichcan't be seen clearly, but only annular striation of a few species are clear. Type B is consist ofmore than 10 granules, which are round and have illegible hilum and no annular striation.According to the size, starch granules can be devided into 3 types:tiny (long diameterrange, LR<14μm), Middle (40μm>LR>14μm),and Big (LR>41μm).The hilum & annularstriation and size relate to one another. Specifically, tiny granule has illegible hilum & annularstriation while Big grain has clear hilum & annular striation. Some of the middle sizedgranules have clear hilum & annular striation and some do not.
     6 Total DNA was isolated by CTAB technique and the PCR products were applied tosequence directly. We analyzed cpDNA trnL-F, rbcL and matK of 11 species of Sect. Enantiophyllum. The results were as follows.: The length of trnL-F is 689-834bp. When thegaps were always treated as missing, there were 67 variable sites, of which 11 wereporsim-info, account for 1.52% of the total length. The (G+C) content was 32.5%. Thepairwise distance between species was 2.2%, of which 0.8% was transitions and 1.4% wastransversions. The total length of rbrL was 1096-1160bp. When the gaps were always treatedas missing, there wa 42 variable sites, of which 10 were parsim-info ones, and account for0.93% of the total length. The pairwise distance between species was 0.9%, of which 0.6%was the transitions and 0.3% was the transversions. The (G+C) content was 44.1%. The totallength of matK was 1032-1165bp. When the gaps were always treated as missing, there were67 variable sites, of which 8 were parsim-info ones, and account for 0.78% of the total length.The pairwise distance between species was 1.3%, of which 0.8% was transitions and 0.5%was the transversions. The (G+C) content was 32.4%. Based on the 3 sequences, thephylogeny trees were constructed by bootstrap test. The molecular trees held the same pointwith the classification of the morphological and anatomical characters. Besides, it is provedthat the cpDNA sequecing is the rapid, efficient, credible way to distinguish RhizomaDioscoreae and its related species.
     7 Genetic character from 10 species in Sect. Enantiophyllum of Dioscorea L. was studied byISSR markers.92 loci were identified with 11 primers, out of which 88 were polymorphic andaccount for 95.67% of total genetic diversity above species level, shannons indices of diversity(I) was 0.5236 at the section among species level, and nei's gene diversity was 0.3516 and theeffective number of alleles was 1.6068. The genetic distance between D.persimilis andD.cirrhosa is farthest to 0.7051, while the genetic distance between D.polystachya andD.glabra or D.decipiens is nesearest to 0.2733.Cluster analysis grouped all the 10 speciesinto 3 groups. Besides, the results proved that the ISSR marker can be successfully used todistinguish the plants in Sect. Enantiophyllum that have similar exterior.
     8 Based on 46 morphological characters, using SPSS13.0, phenetic tree was constructedby UPGMA. The tree grouped 10 species and 1 variety into 3 groups. Throwing awaycharacters without plesiomorphy or apomorphy (e.g., the characer of starch and venation), using PAUP, the cladistic tree was constructed by MP. 6 trees were obtained. According to thephylogeny, D.aspersa and D.deipiens are original species, while D.cirrhosa and D.cirrhosavar.cylindrica are more evolutive ones. Phenetic cluster held the same points on the relative ofSect. Enantiophyllumwith cladistic analysis. But they didn't agree with the tree base oncoefficients of ISSR.
     9 Genetic diversity from 8 populations of D. polystachya Turcz. was studied by RAPDmarkers. 82 loci were identified with 11 primers, out of which 65 were polymorphic andaccounted for 79.27% of total genetic diversity among species level. Shannons indices ofdiversity (I) was 0.4626 among species level, while nei's gene diversity was 0.3159 and theeffective number of alleles was 1.5552. Cluster analysis grouped all the 8 population into 2groups. The results of genetic diversity analysis showed that the gene library of wildpopulation of D.polystachya Turcz. is shrunk and the genetic diversity on molecular leveal isdropping. It is necessary to quick the breeding programe, and this will be helpful to use theimportant medical resource reasonably, sufficiently and efficitively.
引文
Ayensu ES, Anatomy of the monocotyledons VI: Dioscoreales (Metcalfe, CR, eds)[M]. Clarendon Press, Oxford, 1972,1-165
    Bremer K and Wanntorp HE, Phylogenetic systematics in botany [J].Taxon, 1978,27(4):317-329
    Burkill IH,The organography and the evolution of the Dioscoreaceae, the family of the yams[J]. Botanical Journal of the Linnean Society, 1960, 56: 319-412
    Caddick LR, Rudall PJ, Wilkin P, et al, Phylogenetics of Dioscoreales based on combined analyses of morphological and molecular data[J]. Botanical Journal of the Linnean Society, 2002,138(2):123-144
    Campbell MR, Li J, Berke TG, et al, Variation of starch granule size in tropical maize germplasm[J]. Cereal Chemistry., 1996,73(5):536-538
    Charlesworth B and Charlesworth D ,The genetic basis of inbreeding depression [J]. Genetic Research,1999, 74: 329-340
    Chase M, Soltis D, Olmstead R,et al, Phylogenetics of seed plants:An analysis of nucleotide sequences from the plastid gene rbcL[J]. Annals Missouri Botanical Garden, 1993, 80:528-580
    Crane PR , Phylogenetic analysis of seed plants and the origin of angiosperms[J]. Annals Missouri Botanical Garden ,1985, 72:716-793
    Crane PR, Friss EM and Pedersen KR,The origin and early diversificafion of angiosperms[J]. Nature,1995, 374:27-33
    Cronquist A, An integrated system of classification system of flowering plants[M]. Columbia Univ Press, New York, 1981,65
    Dahlgren RMT and Rasmussen F, Monocotyledon evolution: characters and phylogenetic estimation [J]. Evolution Biology. 1983, 16: 255-395
    Ding Z and Gilbert MG ,Dioscoreaceae [M]. 276-296 In: Flora of China, 2000, Vol 24, Flagellariaceae through Marantaceae. eds. Wu Z and Raven PH, Science Press: Beijing and Missouri Botanical Garden Press: St. Louis
    Doyle JA and Donoghue MJ, The importance of fossils in elucidancing seed plant phylogeny and macroevolution[J].Review Palaeobotany Palynology, 1987a,50:63-95
    Doyle JA and Donoghue MJ, The origin of angiopserms: a cladistic approach. In: Friis EM, Chaloner WG and Crane PR (Eds.). The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge. 1987b, 17-49
    Fang QQ and Roose ML, Identification of closely related citrus cultivars with inter-simple sequence repeat markers [J]. Theory & Applied Genetics, 1997,95:408-417
    Foster, Proc.7th Int.Bot.Cong.,Stockholm,1953,586-587
    Fryns-Claessens E and Van Cotthem W,A new classification of the ontogenetic types of stomata [J]. Botanical Review, 1973,39:71-138
    Hart JA, A cladistic analysis of conifers: preliminary results[J]. Journal of Arnold Arban,1987,68:269-307
    Hennig, Phylogenetic systematics [J].Annals Review Entomology,1965,10:97-116
    Hennig, Phylogenetic systematics[M]. Urbana: Univ of Illinis Press (Tranal. by Davis D and Det Zangerl R),1966,1- 263
    Hickey LJ, A revised classification of the architecture of dicotyledonous leaves. In:Metcalfe CR, Chalk L, (eds.) Anatomy of the dicotyledons[M].second edition, vol 1,Oxford: Clarendon Press, 1979, 25-39
    Hickey LJ, Classification of the architecture of dicotyledonous leaves[J]. American Journal of Botany,1973, 60:17-33
    Hili CR and Crane P R, Evolutionary cladistics and the origin of angiosperms In:Joysey KA and Friday AE (eds),Problems of phylogenetic reconstruction[M]. London: Academic Press, 1982,1
    Hillis DH , Approach for assessing phylogenetic accuracy[J]. Systemic Biology, 1995, 44(1):3-16
    Hrycan WC and Davis AR, Comparative structure and pollen production of the stamens and pollinator-deceptive staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae) [J]. Annals of Botany (Lond), 2005 ,95(7): 1113-30
    Humphries CJ, Cladistic Biogeography In: PL Forey, Humphries CJ, Kitchung JJ, et al,(eds)Cladistics:A practical course in systematics [M].Oxford University Press.Oxford,1983,93-96
    John LA and Soltis DE, matK DNA sequences and phylogenetic reconstruction in Saxifregaceae S.Str. [J]. Systemic Botany, 1994,19:143-156
    Johnson HB, Plant pubesence: An ecological perspecctive[J].Botanical Review, 1975, 41:233—258
    Knuth R, Dioscoreaceae[M]. In: Engler (eds.), Pflanzenreich, 1924, 87(IV.43): 1-387
    Kumar S, Tamura K, Jakobsen IB, et al, MEGA2:molecular evolutionary genetics analysis software. Bioinformatics, 2001,17,1244-1245
    Kurashige Y, Mine M, Kobayashi N, et al, Investigation of sectional relationships in the genus Rhododendron (Ericaceae) based on matK sequences [J]. Journal of Japanese Batany, 1998,73:143-154
    Lawton JR, The development of the tuber in seedlings of five species of Dioscorea from Nigezia[J]. Botanical Journal of the Linnean Society, 1969,62:223-232
    Liere K and Gerhard L, RNA binding activitg of the matK protein encoded by chloroplast trnk intron from murstard (Sinapis alba L.) [J]. Nucleic Acids Research, 1995,23:917-921
    Martin FW, Sex Ratio and Sex Determination in Dioscorea.[J]. Heredity. 1966,57:95-99
    Martin SM, Phytodermology and testa topography in Ononis (Papilionanceae) [J].Willdenowia,1992, 22: 37-47
    Maudcio R, Costs of resistance to naturnal enemies in field populations of the annual plant Arabidopsis thaliana [J]. American Nature,1998,151:20—28.
    Mayr E, Cladistic analysis or cladistic classification? Zeitschr. Zool. Syst. Evolutionsfotch,1974,12:94-128
    Meyen SV, Basic feature of gymnosperm systematics and phylogeny as evidenced by the fossil record [J]. Botanical Review, 1984,50(1):1-112
    Nelson GJ and Plamick NI, Systematics and biogeography:cladistics and vicance[M]. Columbia University Press, New York, 1981,100-150
    Nelson,Cladistics and evolutionary models[J]. Cladistics, 1989,5: 275-289
    Neuhaus H and Link G, The chloroplast tRNA-lys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide [J].Current Genetics, 1987,11:251-257
    Onyilagha JC and Lowf J, Studies on the relationship of Dioscorea cayenensis and D. rotoudlata cultivars [J]. Euphytica, 1985,35:733-739
    Paterson AH , Brubaber CL and Wendel JF, A rapid method for extraction of cotion(Gossypium spp.) genomic DNA suitable for RFLP of PCR analysis[J].Plant Molecular Biology reproduction, 1993, 11(3): 122-127
    Plamick NI and Nelson G, A method of analysis for historical biogeography[J]. Systematic Zoology, 1987, 27:1-16
    Platnick NI and Nelson G, Amethod of analysis for historical biogeography[J].1978, Systematic Zoology, 21: 1-16.
    Ridley M, Evototion Blackwell Scientific Publications[M].Boston,1993,l-50
    Roth-nebelsick, Uhl, Mosbrugger, et al, Evolution and function of leaf venation architecture: A review[J]. Annals of Botany, 2001,87:553-566
    Schoch RM, Phylogeny reconstruction in paleontology[M].Van Nostrand Reinhold Company, New York, 1986,1-95
    Schols P, Furness C A ,Wilkin P et al, Morphology of pollen and orbicules in some Dioscorea species and its systematic implications[J] .Botanical Journal of the Linnean Society,2001,136:295-331
    Schols P, Furness C A,Wilkin P, et al, Pollen morphology of Dioscorea (Dioscoreaceae) and its relation to systematics[J]. Botanical Journal of the Linnean Society,2003,143:375-390
    Schols P, Wilkin P, and Furness C, Pollen evolution in Yams (Dioscorea, Dioscoreaceae) [J]. Systematic Botany ,2005, 30(4): 750-758
    Shah GL and Gopal BV, Some observations on the diversity of stomatalta and trichomes in six species of Dioscorea[J].Annals of Botany, 1972, 36: 997-1004
    Shanma OP, Anatomy and development of tuber of Dioscorea glabra [J]. Phytomarphology, 1974, Sept. -Dec. :297-305
    Sharma OP, Anatomy,origin and development of the rhizome of Dioscorea deltoidea Wallich [J] . Proceedings of the Indian Academy of Sciences,Sec B,1976,84B(2):50-55
    Simpson GG, Recent advances in methods of phylogenetic inference,In :Luckett WP, Szalay FS (eds.), Phylogeny of the primates,A multi-disciplinary approach[A].Pienum:New York and London,1976,3-19
    Sober ER , Parsimony methods in systematics[A]. In:Plamick NI and Funk VA (eds), Advances in ciadistics, vol 2, Proceedings of the Second Meeting of the Wllii Hennig Society.Columbia University Press, New York , 1983,104-154
    Stebbin GL and Khusk GS,Variation in the organization of the stomatal complex in the leaf epideimis of monocotyledons and its beating on their phylogeny[J]. Amercan Journal of Botany, 1961, 48:51—59
    Steele KP and Vilalys R, Phylogenetic analgsis of Polemoniaceae using nucleotide sequences of plastid gene matK [J]. Systematic Botany, 1994, 19:126-142
    Sternfls WL and Judd WS, Comparative anatomy and systematics of Catasetinae (Orchidaceae) [J]. Botanical Journal of Linnean Society, 2001, 136(2):153-178
    Swoford DL, PAUP, Phylogenetic analysis using parsimony( and other metheds). Version 4.0b10, 2002, Massachusetts: Sinauer Associates.
    Szynumski DB, LloydAM and Marks MD, Progress in the molecular genetic analysis of trichome initiation and morphogenesis inAarabidopsis[J]. Trends Plant Science, 2000, 5: 214—219.
    Tsumura Y, Ohba K and Strauss SH, Diversity and inheritance of inter-simple sequence polymorphisms in Douglas-fir (Pseudotauga menziesii) and sugi (Cryptorneuia japonica) [J]. Theory & Applied Genetics, 1996, 92: 40-45
    Walker-Larsen and J Harder LD, Vestigial organs as opportunities for functional innovation: the example of the Penstemon staminode[J]. Evolution Int J Org Evolution, 2001, 55(3):477-87
    Walker-Larsen J, Harder LD, The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional reinvention[J]. American Journal of Botany, 2000, 87(10):1367-1384
    Welsh J and McClelland M, Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Research, 1990, 18:7213-7218
    Wiley EO and Popper KR, Systematic, and classificationt:a reply to Waler Book and other evolotionary taxonomist[J]. Systematic Zoology, 1975, 24:233-243
    Wiley EO, Phylcgeneties: the theory and pratice of phylogenetie systematics [M], John Wiley and Sons, New York, 1981, 1-158
    Wilkin P, Schols P, Chase MW, et al, A plastid gene phylogeny of the Yam genus, Dioscorea: roots, fruits and Madagascar[J]. Systematic Botany, 2005, 30(4):736-749
    Wilkinson HP, The plant surface (mainly leaf)[A]. In :Metcalfe CR & Chalk L (eds.), Anatomy of the dicotyledon[M]. Vol.1, 2nd ed., Oxford: Clarendon Press, 1979, 97-165
    Williams JK, Kubelik AR, Livak J, et al, DNA ploymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research., 1990, 18:6531-6535
    Wu D, Wang H, Lu J, et al, Comparative morphology of leaf epidermis (Parnassiaceae) from China[J]. Acta Phytotaxonomica Sinica, 2005, 43(3):210-224
    Yeh FC and Yang R, POPGENE v 1.31, 1994. download from http://www.ualberta.ca/~fyeh/
    Zietkiewicz E, Rafalski A and Labuda D, Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification[J]. Genomica, 1994, 20:176-183
    曹玉芳,林如,胡正海,盾叶薯蓣根状茎发育解剖学研究[J].西北植物学报,2003b,23(2):297-303
    曹玉芳,林如,胡正海,盾叶薯蓣根状茎的发育解剖学和组织化学研究[J].武汉植物学研究,2003a,21(4):288-294
    陈建辉,玉米叶脉发育的研究[J].广西植物,1999,19(1):65-69
    陈俊华,淀粉粒在中药显微鉴别中的应用[J].中国中药杂志,1991,16(8):454-456
    陈士超,邱英雄,王艾丽,等,菝葜科基于形态学证据的系统发育分析[J].植物分类学报,2006,44(2):113-125
    陈泽濂,华南木本双子叶植物叶的宏观结构资料II:安息香科(Styracaceae)[C].见:中国科学院华南植物研究所集刊,广州:广东科技出版社,1986,99-109
    邓传良,周坚,石蒜属植物分支系统学分析[J].植物研究,2005,25(4):393-399
    丁志遵,唐世蓉,秦慧贞,等.甾体激素药源植物[M].北京:科学出版社,1983:14-108
    丁志遵,王意成,周雪林,等,甾体激素原料植物—盾叶薯蓣的单株筛选[A].南京中山植物园研究论文集,南京:江苏科技出版社,1980,81-85
    方炎明,樊汝汶,中国金缕梅科叶表皮毛的变异与演化[J].植物分类学报,1993,31(2):14-152
    方玉霖,刘剑秋,姜业芳,福建薯蓣属植物叶脉序特征及其分类学意义[J].福建师范大学学报(自然科学版),2002,18(2):65-69
    杭悦宇,国产日本薯蓣主要化学成分含量和药理实验测定[J].植物资源与环境,1996,5(2):5-8
    杭悦宇,秦慧贞,徐珞珊,等,薯蓣属根状茎的组织结构和萆薜类鉴别[J].西北植物学报,已录用,待发表
    杭悦宇,周太炎,丁志遵,等,山药类中药材的氨基酸和微量元素的分析[J].中药通报,1988,13(7):37
    杭悦宇,周太炎,丁志遵,等,山药类中药的鉴定研究[A].南京中山植物园研究论文集,南京:江苏科技出版社,1987,122-129
    何小兰,敖志文,中国东北泥炭藓植物的分支系统学分析[J].植物分类学报,1991,29(2):131—141
    黄彩萍,黄安,华南胡椒属植物的脉序结构及其在分类中的意义[J].广东林业科技,2004,20(2):16-19
    黄春洪,杭悦宇,周义锋,等,我国盾叶薯蓣居群的遗传结构分析[J].云南植物研究,2003,25(6):641-647
    江苏省植物研究所薯预课题研究组,中国薯预属根状茎组植物的分类和染色体数的研究[J].植物分类学报,1976,14(1):66-72.
    解新明,张寿洲,李勇,等,根据DNA的序列资料探讨翅子树族的系统位置[J].西北植物学报,2005,25(4):700-706
    李岗,分支系统学评述[J].植物分类学报,1993,31(1):80-89
    李楠,傅立国,朱政德,松科系统学研究[J].植物研究,1996,16(1):32-45
    李浩敏,Hickey LJ,金缕梅科(广义)的叶结构及分类[J].植物分类学报,1988,(2):96-100
    粱红平,任宪威,刘一樵,等,中国常绿栎类叶表皮毛形态与分类的研究[J].植物分类学报,1990,28(2):112-121
    凌萍萍,薯蓣属(Dioscorea L.)植物的过氧化物同工酶及其在分类上的意义[A].南京中山植物园研 究论文集,南京:江苏科技出版社,1984,19-24
    凌萍萍,张美珍,秦慧贞,薯蓣属(Dioscorea L)叶表皮气孔类型在分类上的意义[A].南京中山植物园研究论文集,南京:江苏科技出版社,1982,11-16
    刘林德,张洪军,祝宁,等,刺五加花粉活力和柱头可授性的研究[J].植物研究,2001,21(3):375-380
    刘玉萍,何报作,曹晖,基因测序技术在中药质量研究中的应用(Ⅱ)—山药基原的DNA测序鉴别[J].中草药,2001,32(11):1026-1030
    路安民,陈之瑞,被子植物系统学的原理和方祛,见:陈家宽,杨继主编,植物进化生物学[M].武汉:武汉大学出版社,1994
    潘开玉,路安民,温浩,金缕梅科(广义)叶表皮特征[J].植物分类学报,1990,28(1):10-26
    裴鉴,丁志遵,秦慧贞,等,中国薯蓣属根状茎组系统分类初步研究[J].植物分类学报,1979,17(3):61-71
    裴鉴,丁志遵,秦慧贞,等,中国薯蓣属根状茎组系统分类的初步研究[J].植物分类学报,1979,17(3):61-72
    裴鉴,丁志遵,中国植物志16卷第1分册[M].北京:科学出版社,1985,60-119
    普莉,索金凤,薛勇彪,植物表皮毛发育的分子遗传控制[J].遗传学报,2003,30:1078-1084.
    秦慧贞,李碧媛,吴竹君,盾叶薯蓣的胚胎发育及其在演化上的意义[A].南京中山植物园研究论文集,南京:江苏科技出版社,1991,7-14
    秦慧贞,张美珍,凌萍萍,等,中国薯蓣科植物细胞分类学的研究—染色体数与该属起源与演化[J].植物分类学报,1985,23(1):11-18
    秦慧贞,张美珍,凌萍萍,等,中国薯蓣属细胞分类的研究—染色体与该属起源和进化[J].植物分类学报,1985,23(1):11-18
    任东,洪友祟,现生和化石蛇蛉科的支序分析(昆虫纲:蛇蛉目)[J].中国地质科学院院报,1994,29:103-117
    任毅,胡正海,星叶草叶脉序的形态学及其系统学意义[J].植物分类学报,1997,35(3):219-224
    任建伟,白云,张榕村,等,盾叶薯蓣愈伤组织诱导及培养[J].中国药学杂志,1993,28(9):532-534
    施之新,裸藻类植物的分支系统学研究[J].植物分类学报,1996,34(3):265-275
    史德荣,秦慧贞,杭悦宇,等,中国薯蓣属植物地下茎淀粉粒形态及其分类意义的探讨[J].植物资源与环境学报,已录用,待发表
    史德荣,中国薯蓣属复叶类群的系统学研究[D].江苏省中国科学院硕士学位论文,2006,22-27
    史立群,分支系统学简介[J].化石,1997,3:28-30
    舒璞,中国薯蓣属花粉形态的初步研究[J].植物分类学报,1987,25(5):357-365
    谭敦炎,张震,李新蓉,等,老鸦瓣属(百合科)的恢复:以形态性状的分支分析为依据[J].植物分类学报,2005,43(3):262-270
    唐世蓉,庞自洁,小花盾叶薯蓣甾体皂甙的分离鉴定[A].南京中山植物园研究论文集,南京:江苏 科技出版社,1984,108-109
    唐世蓉,吴余芬,庞自洁,盾叶薯蓣皂甙成分的分离和应用研究[A].南京中山植物园研究论文集,南京:江苏科技出版社,1981,136-137
    唐世蓉,吴余芬,薯蓣属植物氨基酸成分比较[A].南京中山植物园研究论文集,南京:江苏科技出版社,1982,117-119
    田欣,李德铢,DNA序列在植物系统学研究中的应用[J].云南植物研究,2002,24(2):170-184
    万金荣,丁志遵,秦慧贞,薯蓣科植物地理学的研究[J].西北植物学报,1994,14(2):128-135
    万金荣,丁志遵,薯蓣科植物地理学的研究[J].西北植物学报,1994,14(2):128-135
    万金荣,丁志遵,周太炎,叉蕊薯蓣分类学的初步研究[A].南京中山植物园研究论文集,1990,3:41-44
    王峰,李德铢,基于广义形态学性状对木通科的分支系统学分析[J].云南植物研究,2002,24(4):445-454
    王祺,郝守刚,王德明,亚鳞木属及其相关属的分支系统学研究[J].北京大学学报:自然科学版,2003,39(6):858-870
    王艇,苏应娟,Parks CR,木兰亚纲的分子系统学研究进展(一):叶绿体rbcL基因序列的分支分析[J].植物学通报,1994,11(4):1-7
    王艇,苏应娟,郑博,等,红豆杉科及相关类群叶绿体rbcL基因与trnL—trnF间隔区序列的分支分析[J].中山大学学报:自然科学版,2002,41(4):70-74
    王建波,ISSR分子标记及其在植物遗传学研究中的应用[J].遗传,2002,24(5):613-616
    王太霞,李金亭,李景原,等,怀地黄块根的形态发生和结构发育[J].西北植物学报,2003,23(7):1217-1223
    王文采,铁线莲属单性铁线莲组修订[J].植物分类学报,2004,42(2):97-135
    王晓鸣,孟津,系统发育系统学—对现代生物系统学的理解和探讨[J].古脊椎动物学报,1990,28(1):71-78
    王亚玲,张寿洲,崔铁成,trnL内含子及trnL—trnF间隔区序列在木兰科系统发育研究中的应用[J].西北植物学报,2003,23(2):247—252
    王印政,高致明,峨眉尖舌苣苔(苦苣苔科)花部形态发生及其系统学意义[J].云南植物研究,1997,19(3):265-270
    魏宏图,丁志遵,徐克学,应用群分析研究薯蓣的分类[J].云南植物研究,1983,5(3):231-237
    温太辉,何晓玲,竹类果实与淀粉形态及系统位置[J].植物分类学报,1989,27(5):365-377
    吴国正,薯莨治疗应激性溃疡58例临床报告[J].中国中西医结合外科杂志,2000,6(3):178-179
    吴国正,祝继明,薯莨治疗急性胃粘膜病变的初步报告[J].浙江临床医学,2000,2(6):414
    奚镜清,毛宗秀,杨建伟,等,浙江省薯预科植物的数量分类研究[J].植物分类学报,1999,28(6):442-451
    肖培根主编,新编中药志[M].北京:化学工业出版社,2002,942-945
    肖小河,钟国跃,舒光明,等,国产姜黄属药用植物根状茎的组织形态学观察[J].中国中药杂志, 2004,29(5):395-340
    谢涛,谢碧霞,石栎属植物淀粉粒特性研究[J].湖南农业大学学报(自然科学版),2003,29(1):32-34
    谢德镕,薯蓣储藏器官的初生结构特征研究[J].汉中师范学院学报(自然科学版),1991,2:61-66
    谢德镕,薯蓣根-茎的发育形态学研究[A].见:中国植物学会编,中国植物学会55周年年会学术论文摘要汇编.北京:中国植物学会55周年年会学术组,1988,307
    谢德镕,薯蓣块茎顶端分生组织的解剖学研究[J].汉中师范学院学报(自然科学版),1990,1:64-68
    谢德镕,杨培君,薯蓣变态根状茎次生结构的解剖学研究[J].汉中师范学院学报(自然科学版),1991,2:64-66
    徐杰,赵一之,田桂泉,蒙古高原天门冬属植物分支系统演化的研究[J].内蒙古大学学报:自然科学版,2003,34(3):325-329
    徐克学,数量分类学[M].北京:科学出版社,1994,195-305
    徐向丽,刘选明,周朴华,等,盾叶薯蓣组织培养及微块茎的离体诱导[J].湖南农业大学学报,2000,26(4):282-285
    杨晓燕,吕厚远,刘东生,等,粟、黍和狗尾草的淀粉粒形态比较及其在植物考古研究中的潜在意义[J].第四纪研究,2005,25(2):224-227
    于永福,傅立国,杉科植物的系统发育分析[J].植物分类学报,1996,34(2):124-141
    喻诚鸿,陈泽濂,华南木本双子叶植物叶的宏观结构资料Ⅰ:术语与方法[C].见:中国科学院华南植物研究所集刊,广州:广东科技出版社,1986,83-96
    张利,周永红,郑有良,等,3仲彬草属6个物种的核型与进化研究[J].四川大学学报:自然科学版,2003,40(2):61-366
    张奠湘,简约性、极性分析及中值淘汰法—与李朝銮先生商榷[J].植物分类学报,1991,29(3):283-287
    张林斌,赵南先,葛学军,广义飞蛾藤属(旋花科)的分支系统学分析[J].武汉植物学研究,2003,21(4):308-315
    张美珍,吴竹君,秦慧贞,等,薯蓣属(Dioscorea L.)茎的比较解剖学及在分组上的意义[A].南京中山植物园研究论文集,南京:江苏科技出版社,1982,1-8
    张敏华,李鸿钧,湖北薯蓣属植物资源[J].植物资源与环境,1995,4(1):19-22
    张明理,黄耆属簇毛黄耆亚属系统学研究[J].云南植物研究,2002,24(5):543-553
    赵国华,李志孝,山药多糖的免疫调节作用[J].营养学报,2002,24(2):187-188
    郑博,红豆杉科及相关类群叶绿体rbcL基因与trnL—trnF间隔区序列的分支分析[J].中山大学研究生学刊(自然科学、医学版),2002,23(4):104-114
    郑惠兰,菊叶薯蓣生长发育的研究[J].云南植物研究,1990,12(1):75-79
    郑玉红,夏冰,杭悦宇,等,黄独(Diosocorea bulbifera L.)遗传多样性研究[J].西北植物学报,2006,26(10):2011-2017
    中国科学院昆明植物研究所主编,云南植物志第3卷[M].北京:科学出版社,1983,741-748
    钟扬,陈家宽,黄德世,数量分类的方法与程序[M].武汉:武汉大学出版社,1990,209-305
    钟扬,李伟,黄德世,分支分类的理论与方法[M].北京:科学出版杜,1994,1-293
    周桂玲,魏岩,张丽萍,独行菜族叶片脉序及其分类学意义[J].新疆农业大学学报,1997,20(3):5-11
    周延清,景建洲,李振勇,等,怀山药ISSR扩增体系的优化[J].西北植物学报,2004,24(1):6-11
    周云龙主编,植物生物学[M].北京:高等教育出版社,1999,124
    周志炎,古植物整体研究和重建[J].古生物学报,1992,31(1):117-126
    周志炎,进化分支(支序)系统学—个古植物工怍者的评述[C].见:穆西南主编,古生物学研究的新理论新假说.北京:科学出版杜,1993,
    周志炎译,克利斯托弗·希尔,彼得·克伦著,进化分支系统学和被子植物起源[M].南京:南京大学出板社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700