体外冲击波促进肩袖损伤修复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外冲击波促进大鼠冈上肌止点重建后腱-骨愈合的组织学观察
     目的观察体外冲击波(ESW)治疗大鼠冈上肌腱止点重建后腱-骨愈合的影响。
     方法健康SD大鼠(365.6±20.5克)35只,随机分为2组:冲击波干预组(16只)、模型组(16只),其余3只备用(以备手术失败、感染、意外死亡使用)。干预组、模型组建立大鼠冈上肌损伤后止点重建动物模型。其中,干预组术后第2天始给予连续一周、一次/天的冲击波治疗,冲击波能量密度流为0.16mJ/mm2,单次冲击量为500次(5Hz,2kPa);模型组不给予冲击波治疗。两组分别于术后1周、2周、4周、8周各取4只大鼠标本进行组织切片HE染色,观察大鼠冈上肌腱骨结合部组织病理学改变情况。
     结果组织切片HE染色示:冈上肌止点重建术后1、2周标本示:腱-骨间组织结构连接较为松散,以富含炎细胞、毛细血管的肉芽组织填充;成纤维细胞、胶原蛋白含量少。术后4周炎细胞数目较2周时减少,见较多细胞核呈长梭形的成纤维细胞、类圆形的软骨细胞增生,胶原含量增多,胶原纤维排列较前规则,干预组标本胶原纤维排列更为规则,炎细胞数目减少幅度较大。术后8周腱骨界面由致密结缔组织连接,胶原纤维大量合成,呈垂直纵向规则排列,在干预组中,可见部分区域出现胶原纤维-纤维软骨组织-骨组织的移行带改变,形成类似韧带直接止点样结构。总体上,干预组腱骨界面愈合过程较模型组愈合快(约2-4周)。
     结论1、SD大鼠是建立动物肩袖损伤模型的理想选择。2、体外冲击波对SD大鼠冈上肌止点重建模型的腱-骨早期愈合具有明显的促进作用。
     第二部分体外冲击波促进大鼠冈上肌止点重建后腱骨愈合的生物学机制
     目的探讨ESW促进SD大鼠冈上肌止点重建后腱骨愈合的生物学机制。
     方法健康SD大鼠(383.6±22.75克)70只,随机分为2组:冲击波干预组(32只)、模型组(32只),其余6只备用。冲击波干预方法同第一部分。两组分别于术后1周、2周、4周、8周各取8只大鼠标本,其中的一半(4只)大鼠采用实时PCR技术检测,另外一半大鼠采用免疫组织化学技术检测,观察体外冲击波对SD大鼠冈上肌止点重建后血管内皮生长因子(VEGF)、血管性血友病因子(vWF)、骨钙素(OC,BGP)及Ⅱ型胶原蛋白(Collagen-Ⅱ)表达的影响。
     结果实时PCR:模型组VEGF的表达于术后1周明显增高,至2周时达到最高点,随后表达逐渐减少,至术后4周时降至1周时水平,至8周时降至损伤前水平。干预组表达趋势同模型组。术后1、2、4周,干预组VEGF上升速度和峰值都明显高于模型组;vWF于术后2周开始表达逐渐增高,至4周时达到最高点,随后表达逐渐减少,至8周时降至2周时水平。干预组表达趋势同模型组,术后4、8周,干预组上升速度和峰值都明显高于模型组;Collagen-Ⅱ于术后2周时的表达明显增高,至4周时达到最高点,至8周时有所下降,仍维持在较高的表达水平。在术后2、4、8周,干预组Collagen-Ⅱ上升速度和峰值都明显高于模型组;骨钙素OC(BGP)从术后2周开始表达增多,至4周时增速较快,至8周时仍保持增高趋势。术后4、8周,干预组OC(BGP)上升速度和峰值都明显高于模型组,差别有统计学意义。免疫组织化学:各检测指标均随着时间的推移表达量逐步增加。vWF、胶原蛋白-Ⅱ、骨钙素均于术后4、8周时表达明显增多,与模型组相比,差别有统计学意义。
     结论体外冲击波可通过调节SD大鼠冈上肌止点重建后腱骨结合部血管内皮生长因子、血管性假血友病因子、骨钙素及Ⅱ型胶原蛋白表达,增强腱骨结合部血管形成、软骨组织的再生及成骨作用,促进大鼠冈上肌止点重建后腱骨结合部的早期愈合。
Part one Histological analysis of extracorporeal shock wave promoting the bone-to-tendon healing after the rat supraspinatus tendon insertion reconstruction
     Objective To observe the effects of extracorporeal shock waves therapy (ESWT) on tendon-bone healing after the rat supraspinatus tendon reconstruction.
     Method 35 SD rats (365.6±20.5g) were randomly classified into 2 groups: ESW group (n=16), model group (n=16) and the other 3(reserved for use in case of death and wound infection). The ESW group and model group were used to establish the rat supraspinatus tendon reconstruction models. The ESW group was given extracorporeal shock wave therapy on the 2nd day after the operation, with a frequency of once a day for 7 days on end. The energy flux density was 0.16 mJ/mm2 and the impact of volume 500 (5Hz, 2kPa)) and the model group was not given ESWT. 4 animals from ESW group and the other 4 from model group were sacrificed at 1、2、4 and 8 weeks after operation for general and histological examinations. The specimens were stained with hematoxylin-eosin to investigate pathological change of the tendon-bone healing tissue.
     Result The histological examination revealed that at 1 and 2 weeks after operation, within the model group and ESW group, tendon-bone interface was observed to be comparatively loose and filled with granulation cells、inflammatory cells、fibroblasts and angiogenesis etc, and the content of chondrocytes and collagen fibers was obviously not enough. At 4 weeks after reconstruction, the number of inflammatory cells decreased. Instead, more fibroblasts and chondrocytes, the content of collagen fibers were increased and the fiber arrangement more regular than before. The ESW group, the fiber arranged more regular and the number of inflammatory cells reduced rapidly. At 8 weeks after operation, the healing tissue at the bone-tendon interface had developed into dense connective tissue and the collagen fibers were formed in abundance and the perpendicular collagen fibers were regularly and longitudinally arranged. As for the ESW group, a change of these issues occurred in the transition zones of collagen fibers, fibrocartilage and bone (a structure like a direct ligamentous insertion). On the whole, the histological observations showed that the tissue healing at tendon-bone interface of the ESW group were quicker than those of the control group(about 2-4weeks).
     Conclusion 1.SD rat is the ideal choice for establishing animal model of rotator cuff injury. 2. The treatment of ESW can significantly enhance the tendon-bone healing in the early stage after reconstruction of the rat supraspinatus tendon.
     The mechanism of extracorporeal shock wave promoting the bone-to-tendon healing after the rat supraspinatus tendon insertion reconstruction
     Objective To investigate the mechanism of tendon-bone healing of SD Rats supraspinatus muscle that ESWT promates after the rat supraspinatus tendon reconstruction.
     Method 70 SD rats (383.6±22.75g) were randomly classified into 2 groups: ESW group (n=32), model group (n=32) and the other 6 (spared). The ESW group and model group were used to establish the rat supraspinatus tendon reconstruction models. A half of the 8 specimens was used to evaluate VEGF、vWF、OC(BGP) and Collagen-ⅡmRNA expression of the tendon-bone healing tissue by real-time PCR method; another half of the 8 specimens was used to investigate vWF、OC(BGP) and Collagen-Ⅱprotein expression of the tendon-bone healing tissue by immunohistochemisty..
     Result Real time PCR data showed that the expression levels of VEGF in the model group went up at 1 week after the operation, and reached to the highest level at 2 weeks after the operation, then gradually dropped after 8 weeks, it recovered to the pre-injury level. The expression levels of VEGF in the ESW group seemed better than that of model group.vWF of ESW group went up rapidly at 2 weeks, and reached its peak at 4 weeks, then dropped gradually to the same level as that was at 2 weeks after the operation. The ESW group had similar results as the model group, the expression levels of vWF in the ESW group seemed better than that of model group at 4 and 8 weeks. The expression level of Collagen-Ⅱincreased rapidaly at 2 weeks after the operation and reached to the peak at 4 weeks and continued with a steady growth until 8 weeks, the expression levels of Collagen-Ⅱin the ESW group seemed better than that of model group at 2、4 and 8 weeks. At 4 and 8 weeks, the expression levels of BGP in ESW group were higher than that of model group. There were significant differences between the model and ESW groups in this experiment. Immunohistochemistry results: The detection index expression gradually increased over time. vWF, Collagen-Ⅱand BGP all increased substantially 4 and 8 weeks after surgery and compared with model group, the difference was statistically significant.
     Conclusion The treatment of ESW can enhance the tendon-bone healing in the early stage after reconstruction of the rat supraspinatus tendon by regulating the VEGF, vWF, BGP and typeⅡcollagen expression, promoting angiogenesis, cartilage regeneration and bone formation.
引文
[1]刘玉杰,卢世壁.肩袖损伤的诊断和进展[J].中华创伤杂志,1998,14(5):340-342.
    [2] Codman EA, Akerson IB.The pathology associated with rupture of the supraspinatus tendon [J].Arm Surg, 1931, 13:348.
    [3] Audenaert E, Van Nuffel J, Schepens A. et al.Reconstruction of massive rotator cuff lesions with a synthetic interposition graft. Knee Surg Sports Traumatol Arthrosc 2006, 14:360–364.
    [4] Sclamberg SG, Tibone JE, Itamura JM, et al. Six month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg 2002, 13: 538–541.
    [5]周红平,王惺惺,张怡云,等.肩袖损伤的发病及其诊治[J].中医正骨, 1998, 5(10):15-16.
    [6] Benjamin M, Evans EJ, Copp L.The histology of tendon attachments in man. J Anat 1986, 149:89-100.
    [7] Cooper RR, Misol S. Tendon and ligament insertion: a light and electron microscopic study. J Bone Joint Surg Am, 1970, 52:1-20.
    [8] Woo SL, Maynard J, Butler D. Tendon and joint capsule insertions to bone. In: Woo S, Buckwalter J, eds. Injury and Repair of Musculoskeletal Soft Tissues. Park Ridge, IL: The American Academy of Orthopaedic Surgeons.1988, 30:129-166.
    [9] Paulos LE, France EP, Boam GW, et al.Augmentation of rotator cuff repair: in vivo evaluation in primates.Orthop Trans, 1990, 14:404-410.
    [10] Aoki M, Oguma H, Fukushima S, et al. Fibrous connection to bone after immediate repair of the canine infraspinatus: the most effective bony surface for tendon attachment. J Shoulder Elbow Surg, 2001, 10:123–128
    [11] Fujioka H, Thakur R, Wang GJ, et al.Comparison of surgically attached and nonattached repair of the rat Achilles tendon-bone interface.Cellular organization and type X collagen expression. Connec Tissue Res 1998, 37: 205– 218.
    [12] Saw A.Extracovporeal shock wave therapy for musculoskeletal pathology-aliterature review.Med J Malaysia 2005, 60(Suppl C): 8-10.
    [13]邢更彦,姚建祥,刘玉祥,等.体外冲击波技术治疗肱骨外上髁炎.中华理疗杂志1995;18(4):23545.
    [14] Schaden W,Thiele R,Kolpl C,et a1.Shock wave therapy for acute and chronic soft tissue wounds:a feasibility study. J Surg Res, 2007, 143(1):1-12.
    [15] Wang CJ, Wang FS,Yang KD, et al. Shock wave therapy induces neovascularization at the tendon-bone junction a study in rabbits. Journal of Orthopaedic Research, 2003, 6: 984-989.
    [16] Wang CJ, Wang FS, Yang KD, et al.The effect of shock wave treatment at the tendon-bone interface an histomorphological and biomechanical study in rabbits. Journal of Orthopaedic Research, 2005, 23(2):274-281.
    [17] S J Warden.Animal models for the study of tendinopathy. Br. J. Sports Med. 2007; 41; 232-240.
    [18] Thomopoulos S, Hattersley G, Rosen V, et al. The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study.Journal of Orthopaedic Research. 2002, 20(3):454-63.
    [19] Soslowsky LJ, Carpenter JE, DeBano CM, et al. Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elbow Surg 1996; 5: 383–392.
    [20] Lee H, Wang VM, Laudier DM, et al.A novel in vivo model of tendon fatigue damage accumulation. Trans Orthop Res Soc 2006; 31:1058.
    [21] Schaden W, Fischer A,Sailler A. Extracorporeal shock wave therapy of non union or delayed osseous union, Clin Orthop Relat Res, 2002 , (410):268.
    [22] Schatz KD, Nehrer S, Dorotka R, et al. 3D-navigated high energy shock wave therapy and axis correction after failed distraction treatment of congenital tibial pseudarthrosis. Orthopadic, 2002, 31: 663 - 666.
    [23]钟俊,李家元,彭昊,等.不同能量体外冲击波治疗骨不连的实验研究.湖北医科大学学报, 2000, 21: 312.
    [24]安华,李小雯,于长隆,等.应用体外冲击波治疗末端病的疗效观察.中国运动医学杂志, 2004, 23(3):297.
    [25]秦岭,陈俊伟,符立勤,等.兔髌骨髌腱复合体中骨愈合和骨腱愈合的比较研究,医用生物力学, 2003, 18: 65.
    [26] Wang CJ. An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med J, 2003, 26: 220-232.
    [27] Chung B, Wiley J P. Extracorporeal shockwave therapy: a review. Sports Med, 2002, 32: 851-865.
    [28] Gross MW, Sattler A, Haake M, et al. The effectiveness of radiation treatment in comparison with extracorporeal shock wave therapy (ESWT) in supraspinatus tendon syndrome, Strahlenther Onkol, 2002, 178: 314 - 320.
    [29] Schmitt J, Tosch A, Hunerkopf M, et al.Extracorporeal shock wave therapy (ESWT) as therapeutic option in supraspinatus tendon syndrome. One year results of a placebocontrolled study. Orthopade, 2002, 31: 652-657.
    [30] Wang CJ, Huang HY, Pai CH. Shock wave enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg, 2002, 41: 16-22.
    [31] Pleiner J, Crevenna R, Langenberger H , et al. Extracorporealshockwave treatment is effective in calcific tendonitis of the shoulder.A randomized controlled trial. Wien Klin Wochenschr, 2004, 116: 536-541.
    [32] Wong MW, Qin L, Tai JK, et al. Engineered allogeneic chondrocyte pellet f or reconstruction of fibrocartilage zone at bone-tendon junction a preliminary h -istological observation. J Biomed Mater Res, 2004, 70B: 362-367.
    [33] Rompe JD, Kullmer K, Vogel J, et al. Extracorporeal shock wave therapy. Experimental basis, clinical application.Orthopade, 1997, 26: 215-228.
    [34] Wang CJ, Chen HS, Chen WS, et al.Treatment of painful heels using extracorporeal shock wave, J Formos Med Assoc, 2000, 99: 580-583.
    [35] Steinbach P,Hofstadter F,Nicolai H,et al. In vitro investigations on cellular damageinduced by high energy shock wave [J]. Ultrasound Med Biol,1992,18(8)691-699.
    [36]张继英,侯宇,薛涛等。不同频率冲击波促进兔管状骨成骨的实验研究.中国运动医学杂志2010,1(29):51-55。
    [37]刘沐青,郭霞,邝适存,等。冲击波在骨折不愈合或延迟愈合中的应用[J].北京大学学报:医学版,2004,36(3):327-329.
    [38] Leung KS, Qin L, Fu LK, et al. A comparative study of bone to bone repair and bone to tendon healing in patella–patellar tendon complex in rabbits, Clin B iomech, (Bristol, Avon)2002, 17: 594-602.
    [39] Shimizu M,Saitoh Y,Itoh H. Immunohistochemical staining of Ha ras oncogene product in normal, benign, and malinant human pancrestic tissue[J].Hum Pathol, 1990,21(6):607-612.
    [40] Petersen W, Pufe T, Kurz B, et al. Angiogenesis in fetal tendon development: spatial and temporal expression of the angiogenic peptide vascular endothelial cell growth factor. Anat Embryol (Berl),2002, 205:263-270
    [41] Pufe T, Petersen W, Tillmann B, et al. The angiogenic peptidevascular endothelial growth factor is expressed in foetal and ruptured tendons [J]. Virchows Arch, 2001, 439(4):579-585.
    [42] Zhang F, Liu H, Stile F, et al. Effect of vascular endothelial growth factor on rat Achilles tendon healing. Plast Reconstr Surg, 2003, 112:1613-161
    [43] Sadler JE.Aortic stenosis,yon Willebrand factor,and bleeding. N Engl J Med.2003.349:323-325.
    [44] Chen YJ, Wurtz T, Wang CJ, et al. Recruitment of mesenchymal stem cells and expression of TGF - beta 1 and VEGF in the early stage of shock wave - promoted bone regeneration of segmental defect in rats. J Orthop Res, 2004, 22: 526-534.
    [45] Michael AC, Edward FR.The collagens: A review of their structure, organization, and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease [J].J Med, 1998, 76:275-288.
    [46] Yoshiki A,masaya l,Yoshifumi H,et al.Extracorpreal shock wave therapy acceleratesrat femorl fracture healing by acting on the various cellular reaction in the fracture callus.J Bone Miner Res,2001,4:671-680.
    [47] Wang L,Qin L,Lu H,et al.Extracorpreal shock wave therapy in treatment of delayed bone-tendon healing.Am J Sports Med,2008;36(2):340-347.
    [48] Claea L, Wolf S, Augat P.Mechanical modification of callus healing [J]. Chirurg, 2000; 71(9):989-994.
    [49]朱兵,胥少汀.冲击波在骨与软组织疾病中的应用[J].中华骨科杂志,2003,23(8):498-500.
    [50] Kaulesar Sukul DM,Johannes E J,Pierik EG,et a1. The effect of high energy shock wave focused on cortical bone, An invitro study [J].J Sutg Res,1993,54(1): 46-51.
    [51] Einhorn TA,Lane JM. Enhancement of fracture healing [J]. J bone Jiont surg (Am), 1995, 77(6): 940-956.
    [52]王蕾罗涛邓廉夫等。应力刺激在肩袖损伤修复中作用机制的实验研究[J].中华创伤骨科杂志2009,2(11).
    [1] Thiel M.Application of Shock Waves in Medicine[J].ClinOrthop,2001.387:18~21.
    [2] Haupt G.Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopaedic diseases[J].Urology,1997,158:4-11.
    [3]郭征,郭霞,邝适存,等.冲击波由碎石到治疗骨科疾病基础研究概述[J].中国矫形外科杂志,2002,9(7):711-713.
    [4]李敬娥,段永宏,郭飞.体外冲击波诱导成骨的研究进展[J].医疗卫生装备, 2009, 1(30): 40-43.
    [5] Ogden J A, Toth-Kischkat A, Schultheiss R. Principles of shock wave therapy [J ]. Clin Orthop Relate Res, 2001, 15 (387): 8-17.
    [6] Coleman A J , Saunders J E.A survey of acoustical output of commercial extmeorporeal shock wave lithotripters[J]. Ultrasound Med.Bio1,1980,15:213.
    [7]刘长剑,刘建国.体外冲击波原理与成骨.中国骨与关节损伤杂志,2007,22(9):788-789.
    [8]周水根,孙则禹,孙西钊等.冲击波生物学效应研究进展[J].临床泌尿外科杂志,2001,16(4): 185-187.
    [9] John P. Furia, High energy extracorporeal shock wave therapy as a treatment for chronic nonin sertional achillies tendinopathy. The American Journal of Sports Medicine, 2008, 3(36): 502-508.
    [10]毛玉镕,黄东锋,徐光青等.高能震波治疗肌肉骨关节慢性疼痛性疾病的临床研究.中华物理医学与康复杂志, 2003, 12( 25) :727 - 730.
    [11]朱兵,胥少汀.冲击波在骨与软组织疾病中的应用[J].中华骨科杂志,2003,23(8):498-500.
    [12] Kaspar D, Seidl W, Neidlinger-Wilke C, et al. Dynamic cell stretching increases human osteoblast prolife ration and CICP synthesis but decreases osteocalcin synthsis and alkaline phosphatase activity [J]. J Biomech, 2000, 33 (1): 45-51.
    [13] Rompe J D, Kirkkpatt rick C, Kullmer K, et al. Dose-related effects of shock wave on rabbit’s tendon illis [J]. J Bone Jiont Surg Br, 1998, 80 (5):546-552.
    [14]钟俊,刘世清,彭昊等,成纤维细胞在体外冲击波治疗骨不连愈合过程中的作用[J].中华物理医学与康复杂志2006,4(28):236 - 239.
    [15]胡军,黄钟炼,赵伟林等,冲击波对体外培养的鼠成骨细胞增殖分化的影响[J]。汕头大学医学院学报,2010, 2(23):96 - 99.
    [16]刘沐青,郭霞,邝适存,等.冲击波在骨折不愈合或延迟愈合中的应用[J].北京大学学报(医学版), 2004, 3: 327- 329.
    [17] Wang FS,Wang CJ,Chen SM,et a1.Superoxide Mediates Shock Wave Induction of ERK-dependent Osteogenic Transcription Factor(CBFA1)and Mesenchymal Cell Differentiation toward Osteoprogenitors[J].J Bio Chem,2002,277(13):1093l -10937.
    [18]马文辉,时述山,李亚非.骨修复中骨形态发生蛋白(BMP)成骨机理的研究及其应用现状[J].中国矫形外科杂志,2001,8(2):167-170.
    [19]李晓林.高能震波对骨痂中骨形成蛋白表达的影响[J].中华骨科杂志,1999,19(5):295-297.
    [20] Fukishima O, Gay CV. Ult rast ructural localisation of guanylate cyclase in bone cells. J Histocherra Cyt ochem, 1991, 39: 529
    [21] Klein-Nulend J, Burger EH, Semeins CM, et al. Pulsatile fluid flow stimulates prostaglandin G/ H synthase mRNA expression in primary mouse bone cells. J Bone M iner Res, 1997, 12: 45 [19]
    [22]翟磊,邢更彦.一氧化氮在冲击波促进成骨及抗感染过程中的作用.中国康复医学杂志, 2007,7(22): 664-666.
    [23] Wang CJ, Chen HS, Chen CE, et al. Treatment of nonunion fracture of the long bone with shock waves [J]. Clin Orthop, 2001,1(387): 95-101.
    [24] Chen YJ, W urtz T, Wang C J, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta1 and VEGF in the early stage of shock Wave promoted bone regeneration of segmental defect in rats. J Orthop Res, 2004, 22: 526-534.
    [25] Wang FS, Yang KD, Chen RF, et al. Extracorporeal shock wave promotes growth and differentiation of bone marrow stromal cells to wards osteoprogenitors associated with induction of TGF-beta1. J Bone Join t Surg Br, 2002, 84: 457-461.
    [26]胡军,张爱斌,刘晓岚等.冲击波诱导人骨髓基质细胞成骨分化及机制的研究.中华实验外科杂志, 2005, 22: 147 - 150.
    [27] Wang FS, Wang C J, Sheen Chen SM, et al. Super oxide mediates shock wave induction of ERK dependent osteogenic transcription factor(CBFa1) and mesenchymal cell differentiation to ward osteoprogenitors.J Bio Chem, 2002, 277:10931-10937.
    [28] Mayr Woh lfart U, Waltenberger J, H ausser H, et al Vascular endothelia growth factor stimulates chemoactic migration of primary human osteoblasts. Bone, 2002, 30: 472-477.
    [29] Wang F S,Wang C J,Chen Y J,et a1. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts [J]. J Biol Chem,2004,27(911):10331-10337.
    [30] Einhorn T A,Lane JM. Enhancement of fracture healing[J].J bone Jiont surg(Am),1995,77(6):940-956.
    [31] Mansukham iA, Bellosea P, Sahn iM, et a.l .Signaling by fibroblast growth factors( FGF) and fibroblast growth factor receptor -2 ( FGFR2) activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol 2000, 149: 1297-1308.
    [32]索伟,郭海燕,王兴林.短波紫外线照射对局部碱性成纤维细胞生长因子表达的影响.中华物理医学与康复杂志, 2003, 25: 651-654.
    [33] Wang W, Zhuang H, Levitz CL, et al.The increased level of PDGF A contributes to the increased proliferation in creased by mechanical stimulation in osteoblastic cell Bio chem Mol Biol Int, 1997, 43: 339-346.
    [34] Narasaki K,Shimizu H,Beppu M,et a1. Effect of extracorporeal shock waves on callus formation during bone lengthening[J]. J Orthop Sci,2003,8(4):474-481.
    [35] Wang C J,Yang K D,Wang F S,et a1.Shock wave treatment shows dose -dependent enhancement of bone mass and bone strength after fracture of the femur [J]. Bone,2004,34(1):225-230.
    [36] Cornell CN. Newest factors in fracture healing [J]. Clin Orthop, 1992, 277:297–311.
    [37] Schaden W, Fischer A, Sailer A. Extracorporeal shock wave therapy of non-union or delayed osseous union [J]. Clin Orthop, 2001, 15(387):90—94.
    [38]邢更彦,杨传铎,武化云等.体外冲击波治疗成人股骨头缺血性坏死的初步研究[J] .中国临床康复, 2002 , 20 ( 13) : 3009 - 3010.
    [39] Maier M, Stabler A, Lienmann A, et al. Shock waves application in calcifying tendonitis of the shoulder: prediction of outcome by imaging[J]. Arch orthop Trauma Surg, 2000,120 (1): 43-48.
    [40] Rompe J D ,Zoellnen J,Nafe B. Shock wave therapy versus conventional surgery in the sholder[J]. Clin Orthop ,2001, 1(387): 72-78.
    [41] Birnbaum K,Wirtz D C,Siebert C H,et al. Use of extracorporeal shock wave therapy (ESWT) in the treatment of non-unions.A review of the literature [J].Arch Orthop Trauma Surg, 2002, 122(3): 324-330.
    [42] Bulut O, Eroglu M, Ozturk H, et al. Extracorporeal shock wave treatment for defective nonunion of the radius: a rabbit model [J]. J Orthop Surg (Hong Kong) , 2006, 14: 133-137.
    [43] Angelo Cacchio, Marco Paoloni, and Antonio Barile et al. Effectiveness of radial shock wave therapy for calcific tendinitis of the shoulder: single blind randomized clinical study. Physical therapy, 2006, 5(86): 672-682.
    [44]安华,李小雯,于长隆.应用体外冲击波治疗末端病的疗效观察.中国运动医学杂志, 2004, 3(23):297-301.
    [45]黄国志,梁东辉,樊涛等.体外冲击波用于治疗腰脊神经后支损伤综合征的临床观察.中国康复医学杂志, 2007, 5(22): 433-434.
    [46] Wang C J, Huang H Y,Chen H H, et al. Effect of shock wave therapy on acute fractures of the tibia as tudy in a dog model [J]. Clin Orthop, 2001, 387:112-118.
    [47] Ogden J A, Alvarez R, et al. Shock wave therapy for chronic proximal plantarfascitis [J]. Clin Orthop, 2001, (387):47-59.
    [48] Chen H S, Chen L M, Huang T W,et al. Treatment of painfull heel syndrome with shock wave [J]. Clin Orthop Relat Res, 2001, 1(387):41-46.
    [49]邢更彦,井茹芳,杨传铎.体外冲击波治疗网球时、肩周炎及跟痛症的作用探讨[J].中国临床康复,2001 ,11 (1) :30 - 31.
    [50] Ludwing J, Lauber S, Lauer H J, et al. High energy extracorporeal shock wave therapy of femoral head necrosis in adults [J]. Clin Orthop, 2001, 2(387):119-126.
    [51]邢更彦,白晓东,杜明奎,等.体外冲击波治疗成人股骨头缺血性坏死的疗效观察[ J ].中华物理医学与康复杂志, 2003 , 25(4) :472-474.
    [52] Braun W,Claes A,RuterA,et a1.Effects of extracorporeal shock Wave on the stability of the interface between bone and polymethylmethacrylate:Aninvitro study On human femoral segments[J].Clin Biomech,1992,7:47- 54.
    [53] Coombs R, Schaden W, Zhou SSH, et a1.Musculoskeletal shock wave therapy [M].London: Green with Medical, 2000: 26-32.
    [54] Gollwitzer H, Horn C, VonEiff C,et al. Antibacterial effectiveness of high - energetic extracorporeal shock waves: an invitro study [J ]. Z Orthop Thre Grenzgeb, 2004, 142(4):462 - 466.
    [55] Hezaber JE, Brummer F, Hulser DF.Histopathologic and ultrastuctural correlates of tumor growth suppression by high energy shock waves.J Urol, 1988.139:562.
    [56] Zhou L,Guo Y.In vivo effect of high energy shock waves on growth and metastasis of the heterografted tumors of nude mice.Chin Med J(Engl),1996,109:157-161.
    [57] Oosterhof GO, Cornel EB, Smits GA, Debruyne FM, Schalken JA. The influence of high-energy shock wanes on the development of metastases. Ultrasound Med Biol, 1996, 22:339-344.
    [58] Ogden J A, Alvarez R, Levitt R, et al. Shock wave therapy syinmusculoskeleta disorders [J]. Clin Orthop, 2001, (387):22-40.
    [59] Masanori Taki, Osamu lwata, Masaki Shiono et al. Extracor poreal shock wave therapy for resistant stess fracture in athlet es. The American J ournal of Sports Medicine, 2007, 7 (35): 1188 - 1192.
    [60] Walsh A B, Bar-Sagi D. Differential activation of the Ras pathway by Ha-Ras and K-Ras [J].Biol Chem, 2001, 11(2):267-269.
    [61] Rompe J D, Buch M, Gerdesmeyer L,et al. Muscy [J]. Z Orthop Thre Grenzgeb, 2002, 140(2):267-274.
    [62] Reompe JD, Zoellner J, Nafe B. Shock wave therapy oversus conventional surgery in the treatment of calcifying tendinitis of the shoulder. Clin Orthop, 2001, (387): 72-82.
    [63]王琳,胡杨,秦岭等.骨腱结合部损伤及其体外冲击波治疗研究进展.中国运动医学杂志, 2006, 4(25): 459-462.
    [64] Perlick L, Lurin g C, Bathi s H, et al. Efficacy of extracorporal shock wave treatment for calcifict endinitis of the shoulder: experimental and clinical results. J orthop Sci, 2003, 8(6): 777.
    [65]江明,邢更彦.体外冲击波疗法在骨组织及肌肉系统疾病中的应用.中国临床康复, 2005, 2( 9): 191-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700