EMS诱变越橘(Vaccinium L.)茎尖抗旱突变体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越橘为杜鹃花科(Ericaceae)越橘属(Vaccinium. SPP)多年生落叶或常绿灌木,在欧洲、俄罗斯、北美、阿尔卑斯山以及中国的部分地区有分布。全世界有400多个栽培品种。我国越橘属植物分布在华东、华中、华南至西南及东北地区,多见于丘陵及海拔400-1400米的地区。越橘果实蓝紫色,果肉细腻,种子极小,甜酸适度,具宜人的香气。可鲜食,也可加工成果汁饮料、果酒饮品。果实内所特有的蓝浆果花青素等物质具有提高视力、抗衰老和防癌等功效,被誉为“21世纪功能性保健浆果”和“水果中的皇后”,并被国际粮农组织列为人类五大健康食品之一,近年来风靡欧美及日本。然而,由于重庆夏季多伏旱,并且越橘的根系浅以及抗旱性差,导致越橘在重庆的种植区域狭窄。要改变这种现状的有效途径之一,就是应用诱变育种等常规育种手段和现代分子生物学技术相结合的方法,即人工诱导产生遗传变异,经多代筛选和鉴定,培育高产优质和抗性强的越橘新品种。
     目前,对越橘体细胞无性系变异方面的研究多集中在组织培养条件和药品配方的筛选上,在组织培养过程中筛选变异植株。但是生物体在诱变剂的作用下,细胞内的遗传物质在结构和功能上也常常会发生改变,并能够改变植物的遗传性状,使DNA分子受到损伤,从而使其在复制过程中发生改变,引起基因的突变。采用化学诱变剂,能诱导无性系的高频率变异,通过一定的选择压力,可以筛选到一些有益的突变性状和性状优良的突变体。
     本试验采用化学诱变和体细胞无性系变异相结合的方法,诱导和筛选越橘抗旱突变体,并对处理后的植株进行了初步研究,总体上可分为三部分:
     1.在已建立的越橘再生体系上,对越橘进行化学诱变剂处理,并对再生植株的株高、叶长、叶宽、变异率、生根率等进行统计。结果表明:越橘茎尖在经0.1%---0.6%EMS后试管苗的死亡率为零;当EMS浓度为0.3%时为最佳浓度,材料V3和3#得到的试管苗的平均株高达到了4.74cm和4.52cm,平均叶长与平均叶宽的乘积为1.173cm2和1.073cm2,当EMS浓度为0.6%时,其生长势弱,中上部狭小并为黄绿色,部分叶片脱落。
     2.对处理后获得的再生植株进行初步研究,通过测定干旱处理前后与耐旱性相关的一些生理指标,并筛选出可能出现有抗旱突变体的EMS浓度。结果表明:
     (1)在干旱胁迫下,随胁迫时间的延长CK中MDA的含量增加的幅度最大;相形之下,0.1%处理和0.5%处理中MDA的含量比处理前只有少量的增加,差异不显著。
     (2)经EMS处理后的再生植株其可溶性糖含量均高于对照,材料V3和3#经0.3%EMS处理后其可溶性糖含量分别比对照增加了107.3%和83.7%,差异显著。
     (3)材料V3和3#经0.3%EMS处理后的M0代植株SOD、POD活性依然明显高于对照,分别增加了2.09%和35.97%;188.73%和142.8%,差异显著。
     (4)对于其CAT活性,材料V3经0.6%EMS处理后其活性比对照增加了84.6%,经0.2%和0.5%EMS处理后其活性低于对照;材料3#经0.1%和0.6%EMS处理后其活性分别比对照增加了48.72%和62.15%。
     M0代植株经干旱胁迫后进行初步筛选后,过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、过氧化物酶(POD)活性增强,丙二醛(MDA)含量减少,对干旱环境表现出一定的抗性。这两组材料经浓度为0.3%EMS诱变处理后可能存在抗旱性较强的突变植株。
     3.越橘表型变异植株的筛选。在诱变剂处理得到的460株M0代植株中,共筛选出了9株具有明显表型变异的单株,主要表现为整株叶片形态和叶片颜色的变异。诱变产生的表型变异频率非常低,仅有1.96%。
     变异植株通过对叶片厚度、主脉直径、栅栏组织厚度和叶片组织结构紧密度等9项与抗旱相关的叶片解剖结构指标的单因素多重比较,选定了4项灵敏度最高的指标进行隶属函数分析,分别为:气孔密度、叶片厚度、上表皮厚度、栅栏组织厚度。
     应用隶属函数法以高灵敏度的抗性指标对所筛选出的变异植株进行抗旱能力的综合评价。结果表明:9株变异越橘植株与对照材料的抗旱能力依次为:V-5>V-9>V-4>V-7>V-3>V-6>CK>V-1>V-2>V-8。
Vaccinium L., Ericaceae, the genus vaccinium spp, is a perennial defoliate or green-like shrub. It abrading, are found in north American, distribute the Northern Hemisphere, Antartic beach of American city and Southeast of Canada are discovered., and have more than 400 planting breeds. Vaccinium is distribute in the eastern, middle, southern, southwest and Northeast areas in China, appearing much on Knap and the areas of elevation 400-1400 meter. The fruit isblue-purple, sarcocarp is slender-greasy, grem is very small, the sapor is moderation and possess amenity fragrance. There peculiarly have blueberry anthocyanin which in their's fruit possess efficacy of improve eyesight, resist decrepitude and prevent cancer. It in praised "functionality and health protection berry in 21th century" and "queen of fruitage", also ranked the one of five healthy eatable about human being by International Food and Agricultural Organization(FAO). While blueberry is seen as a very promising emerge plant, the main problems of its development are of shallow roots without the larger main ones. These roots are either thin or underdeveloped with few hairs and small seeds and the limited growing regions caused by poor drought resistance. One of the efficient ways to change the situation is to combine the classical method of mutagenic breeding with marker-assisted selection (MAS), i.e., to induce and screen variations artificially so as to obtain the new blueberry germplasm resources with high yield, good quality and strong resistance.
     Currently most of the research on somaclonal variation of blueberry is still focused on direct regeneration system. The chemistry mutation changes the hereditary properties of the vegetative, because of it makes the DNA molecular construction suffered the harm, resulting duplicate mistake, consequently cause the gene mutation. So in order to increase the variety of somaclonal variatinon, the chemical mutagen is introduced; the useful variation and mutant with excellent characteristic are selected by using chemical mutagen under certain stress.
     In this study, we employed the means of combining the use of chemical mutagen and somaclonal variation, induced and selected the group of drought-resistant mutant in blueberry and pilot study was conducted on the group of mutant.
     Firstly, it focused establishment direct regeneration system of blueberry under the treatment of chemical mutagen. And the percentage of germination, the number of adventitious shoot, leaf length, leaf width and normal seedling of blueberry is counted. The results showed that the shoots of blueberry in 0.1%-0.6% EMS mortality rate of zero; concentration for inducing chilling resistant mutant in blueberry is 0.3%, with increased the average height of blueberry to 4.74cm (V3)or 4.52cm(3#); with increased the average area of blueberry to 1.173 cm2 (V3)or 1.073 cm2 (3#);significant difference. When the EMS concentration of 0.6%, its growth potential is weak, and for the upper part of small yellow-green, some leaves fall off.
     Secondly the paper is focused on the physiological mechanism of obtained chilling resistant mutant in blueberry. With the drought tolerance of some physiological indicators, and have selected may appear drought-resistant mutants EMS concentration.
     (1) Under drought stress, with stress time in the content of MDA was CK increase was most dramatic; contrast, the content of MDA was 0.1% and 0.5% increased slightly. The difference was not significant.
     (2) After EMS treatment, the soluble sugar content of regenerated plants were higher than control. The content of Soluble sugar was increased by 107.3% and 83.7%, when the treatment of 0.3% EMS for V3 and 3#. Difference was significant also.
     (3) After EMS treatment, the activity of SOD, POD of regenerated plants were higher than control. They were increased by 107.3% and 83.7%,188.73% and 142.8%, when the treatment of 0.3% EMS for V3 and 3#. Difference was significant also.
     (4) For V3, the activities of CAT of regenerated plants were higher than control, it was increased by 84.6%, when the treatment of 0.3% EMS. The activities of CAT of regenerated plants were less than control, when the treatment of 0.2% and 0.5% EMS. For 3#, the activities of CAT of regenerated plants were higher than control, they were increased by 48.72% and 62.15%, when the treatment of 0.13% and 0.6% EMS.
     Drought tolerant variants were selected from the MO generation plants, then the activity of SOD, CAT, POD enhanced and the content of MDA decreased which means that the regenerated plants' ability of drought resistant was improved. The strongest drought resistant mutant plants were obtained at the treatment of 0.3% EMS.
     Thirldly, the screening of phenotypic variant plants.From the 460 MO generations mutagenic plants, there were a total of 9 phenotypic variant plants to be screened out. The 9 variant plants were mainly varied in the morphological characteristics of whole leaves. The rate of phenotypic variation was very low, only 1.96%.
     In addition, we measured and analyzed 9 leaf anatomical structure indexes related to drought resistance of the 10 seedings, including stoma density, leaf thickness, top epidermis thickness, thickness of palisade tissue and so on. According to the result of multiple comparisons, we screened out 4 indexes with a high sense.
     According to the 4 indexes, an order of drought resistance of the 10 plants was given by using memberhip function values analysis:V-5>V-9>V-4>V-7>V-3>V-6>CK>V-1>V-2>V-4.
引文
[1]李亚东主编.越橘栽培与加工利用[M].吉林科学技术出版社.2001年4月第一版,101-102
    [2]中国科学院北京植物研究所主编.中国高等植物图鉴[M].北京:科学出版杜1974.(3):195-212
    [3]张欣.黑龙江省野生越橘资源及开发利用[J].黑龙江农业科学.1998(3):36-37
    [4]李书心主编.辽宁植物志[M].辽宁科技出版社.1998(下):15-16
    [5]曲路平,赵椒春,李亚东等.红豆越橘的调查研究[J].吉林农业大学学报.1990.12(3):26-30
    [6]Durham D G.Liu Z X.Richards R E,UnsaturatedE-ringtriterpenes form Rubus pinfaensis[J].Phytochemistry,1996,2:505-508.
    [7]Jin-Ming,Kong,Lian_sai,Chia.Analysis and biological activities of anthocyanins.Phytochemistry, 2003,64:923-933.
    [8]Becker,Hank.Anticancer activity found in berry extract [J]Agricultural Research,2001,49(5):22.
    [9]RichardsR E.,Durham D G.Liu Z X,Antibacterial activity of compound from Rubus pirfaensis[J].Planta.Med.,1994,60:471-473.
    [10]何国光.无机化学[M].成都:四川科技出版社,1997.402.
    [11]小伟.返老还童吃越橘[J].企业文化,2000,(9):62.
    [12]王云采,顾洪涛.保护视力刻不容缓[J].生活与健康,2006,(7):14.
    [13]周淡宜,王茵,徐水祥.越橘提取物复合维生素A对改善视疲劳的实验研究[J].中国卫生检验杂志.2007,7(17);1296-1298
    [14]李咏梅.越橘的开发价值[J].特种经济动植物.2006,6.23
    [15]胡淼.兔眼越橘食叶害虫的发生调查[J].中国果树.2009(1)63-66
    [16]张玉萍.越橘的保健作用及其在我国的开发利用前景[J].山西农业科学.2006,34(4):22-25
    [17]郝瑞.长白山笃斯越桔的调查研究[J].园艺学报,1979,6(2):87~93.
    [18]陆林.大兴安岭的野生笃斯越桔[J].北方果树,2004,5:42.
    [19]王璇琳,范玉玲,王喜军.越桔的资源、品质及药用研究概况[J].中国林副特产,1999,3:42~44.
    [20]韦昌雷,吴金美,刘昕哲.大兴安岭的越桔资源及开发利用[J].特种经济动植物,2004,5:35.
    [21]朱智明.我国野生越桔果资源及其速冻开发研究[J].中国野生植物资源,2005,3:26~28.
    [22]李亚东,刘海广,吴林.高丛和半高丛越桔品种区域试验初报[J].中国果树,2005,3:17~20.
    [23]李亚东,吴林,张志东.长白山区不同生态条件下引种越桔生长结果研究[J].北方园艺,1996,4,6~8.
    [24]刘海广,李亚东,张志东.抗寒蓝莓品种“圣云”引种试栽研究[J].北方园艺,2006,3:23~24.
    [25]其其格,林宝山,吴榜华.美国蓝莓--奇伯瓦优良品种的选育[J].北华大学学报,2001,4:349~ 351.
    [26]吴林,张志东,李亚东.抗寒、大果、鲜食越桔品种“北陆”栽培表现[J].北方果树,2002,1:38.
    [27]杜凤国,王葛荣,张少斌.6种越桔种子表皮雕纹的电镜观察[J].吉林林学院学报,1998,4:190~195.
    [28]杜凤国,张少斌,王葛荣.北土越桔的光合蒸腾的生理生态[J].吉林林学院学报,1999,1:7~10.
    [29]杨劲松,哈永年,刘艳华.大兴安岭地区不同生长期和海拔高度越桔叶中熊果酸的含量测定[J].中国兽药杂志,1995,4:36~38.
    [30]张友民,王立军,贾伟平.笃斯越桔营养器官初生结构的解剖学研究[J].吉林农业大学学报,1993,3:37~40.
    [31]张治安,李亚东,徐辰.4种不同类型越桔叶片光合作用温度特性的比较研究[J].吉林农业大学学报,1999,4:16~19.
    [32]黄文江,刘庆忠,阚显照.高灌蓝莓离体繁殖的研究.安徽师范大学学报[J],2004,3:314~317.
    [33]李亚东,孟凡丽,郑毅男,苏晓田.不同基因型越橘果实中4种花色苷含量的研究[J].园艺学报,2004,3 1(3):367~368
    [34]刘斌,谢德圣,朱桂芝.对越桔汁的营养价值及加工工艺中几个问题的研究.吉林农业大学学报,1987,3:30~33.
    [35]史吉平,董永华.水分胁迫对小麦光合作用的影响.国外农学-麦类作物,1995,5:49~51.
    [36]M EHDYM C.Active oxygen species in plant defense against pathogens [J].Plant Physiol.,1997,105:467-
    [37]Farquhar G D and T D Sharkey. Stomatal conductance and Photosynthesis[J]. Plant Physiol.1982,33:317-345.
    [38]Turner N C,Farmer P J.A daptation of plants to water and high temperature stress Wiley_Interscience New York,1980:482.
    [39]Takahashi S,etal.Plant and Cell.Physiology,2000,41(7):898-903.
    [40]Nobel P.S.,陈炳嵩等译.生物物理学导论[M].北京,科学出版社,1984:90~98.
    [41]Smart R E and coom be B G. Water relations of grapevines In:Water deficit and plant growth.Ⅶ(KOZLOW Ski T.T.ed),acadom ic press,1983:137-196.
    [42]Moran JF, Becana M, Iturbeormaetxe I, Frechilla S, Klucas RV, Apariciotejo P. Drought induces oxidative stress in pea-plants. Planta 1994,194(3):346-352.
    [43]Singh T N. Aspinall D, Palag LG. Proline accumulation and varietal adaptability to drought in barley:A potential irrigation and drought crop sci,1982,22:1121-1125.
    [44]Handique A.C etal. Shoot water Potential in tea Ⅱ:Screening Tocklai cultivars for drought tolerance[J]. Two and a bud,1986,(1/2):39-42.
    [45]Hanson A D, et al. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars[J].Crop Sci.,1977.17:720-726.
    [46]Bawa A K, Sen D N. Ecophysiological studies of some arid zone grasses:water relations[J].Current Agriculture,1992,16(12):51-57.
    [47]Ingram J. Bartels D.The molecular basis of dehydration tolerance in Plants [J]. Annu Replant Physiplant MolBiol.1996,47:377-403.
    [48]Koster KL.Glass formation and desideration to clearance in seeds[J].PlantPhysiol.1996,96:302-304.
    [49]Kameli A, Losel DM. Growth and sugar accumulation in durum wheat plants under water stress[J].New Physiologist,1996.132(1):57-62.57-162.
    [50]Gillies SL. A physiological study of fall dormancy and spring reactivation of photosynthesis in seedlings of white spruce[Piceaglauca (Moench) Voss] and Douglas fir[Pseudotsuga menziesii(Mirb.)].Ph.D.Thesis. Department of Biological Science, Simon Fraser University, Burnaby, B.C.Canada.1993.
    [51]FridovicI. Super oxide dissimulates[J].Ann.Rev.Bioehem,1975.44:147-159
    [52]Bartoli C.G.Drought and watering-dependent oxidative stress, effect on antioxidant content in Triticum aestivum L.leave.J.Exp.bot.1999.50:375-383
    [53]王振锐,郭蔼光,罗淑萍.水分胁迫对玉米SOD、POD活力及同工酶的影响.西北农业大学学报,1989,17(1):45—9
    [54]Pavanasam R.J., Subramaniam N. M., Raman S.K et al., Water deficit induced oxidative damage in tea(Camellias sinensis) Plants[J]. Journal of Plant Physiology.2005,162(4):413-419
    [55]徐冠仁主编.植物诱变育种学[C].北京:中国农业出版社,1996:69-100
    [56]Mandal A K A, Chakrabarty D, Datta S K. In vitro isolation of solid novel flower colour mutants from induced chimericray florets of chrysanthemum[J].Euphytica,2000,114(1):9-12
    [57]A.F.Blakeslee.A.Avery.Methods of inducing doubling of chromosome piants[M].Jour Hered,1937.
    [58]SANADA T, KOTOBUKI K.NISHIDA T.et al. A new japanese pear cultivar Gold Nijisseiki,resistant mutant to black spot disease of Japanese pear [J].Japanese Journal of Breeding,1993,43(3):455-461.
    [59]赵永波,乐文全,郭春长,等.诱变苹果新品种—短枝向阳红[J].园艺学报,2000,27(4):308.
    [60]陈茂鑫,李庄,韦文楼.沙田柚激光诱变研究[J].激光杂志.2001.22(1):49-51.
    [61]韩继成,乐文全,王广鹏.等.60 Co γ辐射处理红安久梨诱变效应的RAPD分析[J].河北农业科学,2005,9(3):22-24.
    [62]蒋际谋,陈秀萍,许家辉,等.60Coγ射线辐照处理对枇杷次生枝果实品质性状的影响[J].激光生物学报,2006,15(5):483-487.
    [63]李雪梅,宋德禄.黑穗醋栗辐射诱变育种诱发剂量的研究初报[J].中国林副特产,2007,87(2):26-27.
    [64]王旭军,吴际友,程勇,廖德志.辐射育种及其在林木育种中的应用前景[J].湖南林业科技.2007,2(34):13~17.
    [65]李光友,徐建民,白嘉雨,陆钊华,朱鹏,王伟.离子注入对桉树萌发及苗期生长的影响[J].中南林业科技大学学报,2007,10,5(27):44~48.
    [66]蔡旭.植物遗传育种学[M].北京:科学出版社,1988.
    [67]Bird RMck, Neuffer MG. Induced mutat ions in maize[A]. In:Janick J. P lant Breeding Reviews (5)[C]. New York:Van Nost rand Reinhold,1987:139-180
    [68]林朴夫,黄恩宏,李国全,等.苯甲酰胺与EMS复合处理对大麦损伤效应的研究[J].核农学通报,1994,15(1):25-28.
    [69]林朴夫.叠氮化钠与苯甲酰胺复合处理对大麦损伤效应的研究[J].核农学通报,1995,16(1):13-15.
    [70]和江明,王敬乔,陈薇等.EMS对甘蓝型油菜离体小孢子胚胎发生能力的影响[J].西南农业学报,2004,17(6):690-693.
    [71]和江明,王敬乔,陈薇等.用EMS诱变和小孢子培养快速获得甘蓝型油菜高油酸种质材料的研究[J].西南农业学报,2003,16(2):34-36.
    [72]董颖苹,连勇,何庆才.马铃薯四倍体栽培种茎段组织的EMS诱变研究[J].中国马铃薯,2006,20(3):145-149.
    [73]刘艳萌,张学英,葛会波,等.EMS处理对草莓离体叶片再生植株耐盐性的影响[J].河北农业大学学报,2006,29(6):26-28.
    [74]王艳芳,王世恒,祝水金.航天诱变育种研究进展[J].西北农林科技大学学报:自然科学版,2006,34(1):9-12,19.
    [75]蒲志刚,张志勇,郑家奎等.水稻空间诱变的遗传变异及突变体的AFLP分子标记[J].核农学报,2006,20(6):486~489.
    [76]洪彦彬,杨祁云,林佩珍,等.水稻空间诱变稻瘟病抗性变异研究及抗性变异基因的分子标记[J].西北农林科技大学学报(自然科学版),2006,34(4):96~100.
    [77]曾小平,赵平,彭少麟等.三种松树的生理生态学特性研究[J].应用生态学报,1999,10(3):275-278.
    [78]安学丽,蔡一林,王久光,等.甲基磺酸乙酯(EMS)对玉米自交系诱变效应的研究[J].玉米科学2003,11(3):74-75.
    [79]刘进平.植物细胞工程简明教程[M].北京:中国农业出版社,2005:65-93.
    [80]Bird R M, Neuffer M G.Indueed mutations in maize [J].Plant Breeding Reviews(5)[C]. NewYork:Vac Nostrand Reinhold,1987,139-180.
    [8]]朱保葛等.烷化剂EMS诱发花生性状变异的效果及高产突变系的选育[J].中国农业科学,1997,30(6):87~89.
    [82]彭波,徐庆国,李海,刘红梅.农作物化学诱变育种研究进展[J].作物研究,2007,5(21):517~520.
    [83]刘治先.玉米育种新技术[J].玉米科学,1995,3(4):12
    [84]邓占鳌,章文才.化学诱变剂EMs对金柑花粉母细胞染色体的诱变效应[J].中国南方果树,1988(03)
    [85]Omar M S, Novak F J, Brunner H. In vitro action of ethylmethanesul phonate on banana shoot tips[J].Horticulturae,1989,40(4):283-295
    [86]杜连恩,于秀普,魏玉昌.EMS处理小麦合子诱变筛选高蛋白突变体[J].河北农业大学学报,1990,13(4):94—96
    [87]Bhagwat B. Duncan E J. Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f.sp. cubense using chemical mutagens[J]. Scientia Horticulturae 1998,73(1):11-22
    [88]赵永亮,宋同明.利用花粉化学诱变快速创造特用玉米新种质[J].作物学报,1999,25(2):157~161
    [89]张兰.苹果砧木组培苗耐盐诱变及筛选技术研究[D].河北农业大学硕士论文,2002
    [90]陈绍江,宋同明.EMS花粉诱变获得高油玉米突变体[J].中国农业大学学报,2002,7(3):12
    [91]刘进平,郑成木.化学诱变结合离体选择选育胡椒抗瘟病无性系[J].热带作物学报,2006,27(1):22—27.
    [92]杨镇,刘晓丽,李刚.EMS诱变剂对玉米自交系改造效果的研究[J]辽宁农业科学,2006,(05).
    [93]闫炯,付晶,刘桂茹,杨学举.EMS诱变小麦河农822的SSR及SDS-PAGE鉴定[J]河北农业大学学报,2008,(01).
    [94]史跃伟,任学良,王轶,孙艳霞,邬晓勇.γ射线与EMS单一及复合处理对烤烟种子活力的诱变效应[J].贵州农业科学.2009,(12):62-65
    [95]殷冬梅,杨秋云,杨海棠,台国琴,崔党群.花生突变体的EMS诱变及分子检测[J]中国农学通 报,2009,(05)
    [96]许耀奎,王萍.化学诱变剂(EMS)不同浓度处理大麦的细胞学效应以及对幼苗的影响[J]吉林农业大学学报,1986,(03).
    [97]张小玲,林恭松,王元辉.烷化剂EMS处理水稻愈伤组织诱导突变的方法初探[J]安徽农业科学.1999,(06).
    [98]许云峰,蒋方山,郭营,李瑞军,李斯深.EMS诱导小麦品种烟农15突变体的鉴定和EST-SSR分析[J]核农学报,2008,(04).
    [99]闫炯.EMS诱导小麦突变及突变的鉴定和筛选[D]河北农业大学,2007.
    [100]王长里,付晶,杨学举.EMS诱导小麦突变体的研究及展望[J]安徽农业科学,2008,(19)
    [101]祝丽英,池书敏,刘志增,孟义江,陈景堂,宋占权,王静华.EMS对玉米花粉诱变效应的研究[J]河北农业大学学报,2002,(01).
    [102]庄晓英,卢钢,汪志平,江鸿飞.中国水仙离体诱变研究[J]核农学报,2006,(01)
    [103]曾宪宝,叶银根,陈星球.水仙鳞茎在不含外源激素的MS培养基上的组培效果[J]华中师范大学学报(自然科学版),1986,(01).
    [104]陈超,王桂兰,乔永旭,张莉敏.蝴蝶兰类圆球茎的化学诱变试验[J]核农学报,2006,(02)
    [105]徐美隆,张怀渝,唐宗祥,任正隆.EMS对丽格海棠离体诱变的生物学效应[J]核农学报,2007,(06)
    [106]孙榕,马晓梅,王关林.EMS处理甘薯茎段的耐盐性研究[J].安徽农学通报(上半月刊),2010,(01):63-64
    [107]黄俊生,孔德春,黄峰.EMS诱变菠萝愈伤组织选择抗性突变体的研究[J]热带作物学报,1995,(S1)
    [108]秦红玫.EMS对枇杷花药胚状体细胞有丝分裂的影响[J]西华师范大学学报(自然科学版),2009,(03).
    [109]张爱加.百喜草高效再生体系建立及EMS诱变技术初探[D]福建农林大学,2007.
    [110]史桂荣.化学诱变剂在玉米育种上的应用[J].黑龙江农业科学,1994,(6):44-46.
    [111]张铭堂.诱变[J].科学农业,1996,44(1,2):37-52.
    [112]Bird,R.Mck.and M.G.Neuffer.Induced mutations in maize.In:J.Janick(ed.).Plant Breeding Reviews (5) [J].New York:VanNostrand Reinhold,1987,139-180.
    [113]王三根主编.植物生理研究技术[M].重庆:西南农业大学,2000
    [114]朱利泉主编,基础生物化学实验原理与方法[M].成都:成都科技大学出版社,1993
    [115]李克烈.木薯离体诱变及耐盐突变体的筛选的技术研究[D].海南大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700