药用植物三七三萜合成途径功能酶特征与植物三萜合成通路分子进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三萜类物质是植物界一大类次生代谢产物,广泛分布于各种植物中。自然界中的菌类、蕨类、单子叶、双子叶植物和动物及海洋生物中皆有发现,尤以双子叶植物中分布最多,其中菊科、大戟科、楝科、卫矛科、茜草科、橄榄科、唇形科等植物中更为普遍,具有重要的生物学意义。药用植物中以五加科、豆科、桔梗科、远志科、伞形科、毛茛科三萜皂苷种类、含量十分丰富。三萜皂甙呈现结构多变性及生物活性的多样性,在植物中不仅可参与防御病原体和害虫的生理过程,而且具有广泛的药理作用。一些常用的中草药含丰富的三萜皂甙并作为这些中草药的主要有效成分。这些中草药植物中的皂甙有些具有抗肿瘤、抗病毒、降低胆固醇、提高机体免疫能力等多种生物活性,有些则对心血管系统以及神经系统有重要药理作用,均具有重要的药用商业价值。
     植物三萜皂苷主要通过MVA的合成,经异戊二烯途径生成鲨烯,2,3氧化鲨烯的环化,产生五环或四环三萜的骨架,再经历各种修饰如氧化、取代和糖苷化,受细胞色素P_(450)依赖的单加氧酶、糖苷转移酶及其他酶的催化。随着模式植物拟南芥基因组、水稻基因组研究项目的完成,对植物的功能基因的注释日益增多,涉及植物三萜皂苷生物合成通路的各种酶基因克隆研究逐渐增加。
     三七(Panax notoginseng)为五加科人参属多年生草本植物,曾为广西特产药用植物之一。目前已从三七分离出20多种达玛烷型三萜皂苷,其中主要成分与人参一致。国内外对三七皂苷已作了广泛的药理研究,证实三七皂苷是三七的主要有效成分,具有很大的开发利用前景。
     本研究主要目的是对广西特产药用植物三七的三萜生物合成通路做较系统研究,对这一通路所涉及关键酶进行克隆分析,认识其基本特征,从而有利于对一些药用植物有效成分三萜生物合成进行调控,促进三萜有效成分的合成与积累;另一方面通过对植物三萜生物合成通路酶分子聚类分析,从分子水平上为研究植物亲缘关系提供理论依据。
     本研究在已经获得的植物类异戊二烯及三萜生物合成功能酶基因信息的基础上,利用RT-PCR、3'-RACE及5'-RACE技术,从广西靖西县产的三七根中,克隆了FPS、SS、SE、CAS四个三萜生物合成途径中的关键酶基因cDNA,并得到完整的读码框架。上述基因cDNA序列均已登录NCBI的GenBank。本研究还构建了三七FPS、SE的原核表达载体pET32a(+)-FPS及pET32a(+)-SE,分别成功转化至大肠杆菌BL21(DE3)中。pET32a(+)-FPS能够在转化菌中,经IPTG进行有效的诱导表达,表达的重组蛋白分子量与预计的一致。
     比对分析表明,三七FPS、SS、SE、CAS读码框架推衍的氨基酸序列与人参相应基因推衍的氨基酸序列一致性分别为:FPS98.8%,SS 98.1%,SE 96.7%,CAS 90.1%。从中也可看出,同为五加科人参属植物的三七与人参在三萜生物合成途径中有关功能酶基因有高度同源性。而且随着30碳的鲨烯形成、氧化、环化,所需的酶分子逐渐增大,FPS有343个氨基酸,SS为415个氨基酸,SE为537个氨基酸,CAS为758个氨基酸。这可能是适应底物分子增大,结构变得更复杂的需要。三七三萜生物合成通路中的酶分子氨基酸序列与人参比对分析看出,越接近这一途径末端,差异也逐渐增加。
     以三七GAPDH为内参基因,通过克隆得到的三七GAPDH部分cDNA及三七SS基因全长cDNA片段序列构建的重组质粒为标准品,建立了三七SS基因转录表达的实时荧光定量PCR(Real-Time RT-PCR)技术,对一年生三七根、芦头、茎不同部位鲨烯合酶的转录表达进行了分析。同时,建立三七不同部位组织三萜总皂苷含量测定的方法,分别测定三七根、芦头、茎、叶的三萜总皂苷含量。总皂甙含量测定结果表明,一年生三七根、芦头、茎、叶4种组织的总皂甙分别为2.73%、11.86%、1.09%、5.96%。对各组结果进行方差分析,P值均为0.0000,表明各组总皂甙含量的差异均有统计学意义,即任意两组的含量均不同:芦头>叶>根>茎。Real-time RT-PCR研究及统计分析表明,一年生三七根、芦头、茎SS基因的表达有差异(P<0.05),根的表达量最高,但尚不能确定茎和芦头SS基因的表达量有否差别。研究结果说明SS基因在三七皂甙生物合成途径中具有一定重要作用,SS基因表达量的高低与皂甙含量存在一定的关系。但要充分说明SS基因的表达与皂甙含量之间的关系仍需做进一步的研究。
     本研究在较为系统地进行了三七三萜合成通路功能酶基因的克隆测序分析,获得其中四个关键酶FPS、SS、SE、CAS的cDNA克隆后,对已知植物三萜或甾醇生物合成途径关键酶的氨基酸序列进行聚类分析,从而探讨三萜生物合成酶基因的进化规律。聚类分析表明,不论是FPS、SS、SE或CAS,五加科的三七、人参与伞形科的积雪草、柴胡均有更密切的聚类关系,揭示五加科人参属与伞形科积雪草属、柴胡属在遗传上亲缘关系较近。这与植物分类学上五加科与伞形科的亲缘关系是一致的。这在分子水平上研究植物物种的进化过程及亲缘关系提供了新的依据。研究结果进一步证明,在同科属的药用植物中,或三萜成分结构类似的植物中,其三萜类皂苷的生物合成途径功能酶基因有高度同源性,与植物进化过程密切相关,同时也可用于指导发掘结构相似的三萜药用植物资源。
Triternpenoids are a structurally diverse class of secondary metabolites in abundance widely existing in plant kingdom with very important biological significance In nature,not only triterpenoids occur in monocotyledons,dicotyledons,but also in fungus,ferns,even in animals and marine life,particularly ubiquitous in dicotyledons, such as Asteraceae,Euphorbiaceae,Meliaceae,Celastraceae,Rubiaceae, Burseraceae,Lamiaceae et al.Medicinal plants from Araliaceae,Fabaceae, Campanulaceae,Polygalaceae,Umbelliferae,Ranunculaceae,are abundant in various different structures of triterpenoid saponins with diversal biological activity. Naturally,these triterpenoid saponins play numerous functional roles in defence pathogen and botanic pest in ecological interations.Triterpenoid saponins are major effective compounds in many medicinal plants,which are responsible for biological activities of anticancer,antivirus,lowering cholesterol,elevating immunity,or exert the important pharmacologic actions on cardiovascular system and nervous system, possessing the considerable pharmaceutical and commerce values.
     The process of biosynthesis of tritepene saponins in various plant species first involves in the formation of MVA,mevalonic acid,to yield squalene(30C)via the isoprene pathway,then 2,3 oxidosqualene cyclization result in the pentacyclic or tetracyclic triterpene backbone,undergoing several kinds of modification,for example oxidation,substitution and glycosylation catalyzed by monooxygenase, glycosyltransferases and other enzymes dependent on cytochrome P_(450).With the completion of mode plant arabidopsis genome and rice genome projects,the anatations to the functional genes in plant species quickly increase,to lead to gradually the acumulation of various enzyme gene cloning sequences involved in triterpenoid biosynthesis.
     Panax notoginseng,which belongs to Araliaceae,panax perennial herbs,had been one of special local medicinal plants in Guangxi.About 20 kinds of dammarane type of triterpenoid have been isolated from panax notoginseng that the major components are accordance with those in ginseng.Pharmacological actions on the notoginsenosides have been extentively researched no matter internal or external, confirming that notoginsenosides are the main effective components in panax notoginseng,and presenting a good perspective to be developed and utilized.
     It is the major aim for the project to research systematically the pathway of triterpenoid biosynthesis in Panax notoginseng from Guangxi special local medicinal plants,to analyze the basic characteristics of the key enzymes involved in this pathway in favor of the regulation for the triterpenoid biosynthesis which are effective components in some medicinal plants and to facilitate the synthesis and accumulation of triterpenoid in some medicinal plants.On the other hand,to supply some theory basis for the research of plant phylogenesis on the molecular level through the clustering analysis of enzyme molecules that have been registered in GenBank related to the triterpenoid biosynthesis in some plants.
     Base on the information about the functional enzyme genes involved in plant isoprenoid and triterpenoid biosynthesis,the cDNAs cloning of FPS,SS,SE,CAS from root of panax notoginseng grown in Jingxi county,Guangxi,were performed with the RT-PCR,3'-RACE and 5'-RACE technology,respectively and integrite open reading frames for these four gene expression have been obtained.All these cDNA squences have been registered in GenBank of NCBI and released publicly Prokaryote expression vectors of notoginseng FPS and SE have been constructed successfully as pET32a(+)-FPS and pET32a(+)-SE,and transferred into BL21(DE3), respectively,which can be induced expression by IPTG validly in the host cells and the recombinant protein's molecular weight expressed are coincidence with the predictation.
     The alignment results revealed that the identities of the induced amino acid sequences of panax notoginseng FPS,SS,SE,CAS compared with those of ginseng are 98.8%,98.1%,96.7%,90.1%,respectively,which has shownthatthefunctional enzyme genes involved in triterpenoid biosynthesis are high homologous between ginseng and notoginseng.With the formation of squalene(30C),oxidation,cyclization, modification,the molecular weight of enzymes needed for the pathway become gradually larger,for example FPS containing 343 amino acids,SS 415 amina acids, SE 537 amino acids,CAS 758 amino acids.It is presumed that it is needed because the substrate molecules turn to be larger and their structures become more complex with the process of the pathway in advance.Near to the end of the pathway,the differences of enzymes gradually increase accoding to the alignment analysis involved in triterpenoin biosynthesis in panax notoginseng compared with those in ginseng.
     Panax notoginseng SS transctrition expression analysis were performed with SYBR Green I Real-Time RT-PCR technology using notoginseng GAPDH as internal control and recombinant plasmid pMT18-GAPDH fragmant and pMT18-SS serve as standard.Transcription expression of SS in root,rootstock and stem of one year growth notoginseng were analyzed.Meanwhile the total amount of notoginsenoside in root,rootstack,stem and leaves tissues were messured,respectivley.The messurement for the total saponin in root,rootstock,stem and leaves tissues are 2.73%、11.86%、1.09%、5.96%in order.ANOVA analysis was performed through comparison of any two of several samples,P=0.000 for each comparison and showed that the differences are distinct statistically,the saponin contents are different for any two groups.Transcription analysis and statistic results reveals that the SS expression level in notoginseng root is higher than in stem and rootstock.The amount of total triterperoids in rootstock is higher than in leaf,root,stem in order but it is still difficult to determine whether SS expression are different between in rootstock and in stem.The results show that SS gene play an important role during the process of notoginseng saponin biosynthesis.Perhaps it involves in the expression differences of other key enzymes after SS on the triterpenoid synthesis pathway or/and the directional transportation and accumulation of triterpenoid in different tissues and organs of plants.It is needed to do further research to thoroughly reveal the relationship between SS expression and notoginsenoside contents.
     After the cDNA clones of notoginseng FPS,SS,SE and CAS involved in triterpenoid biosynthesis were obtained,phylogenetic tree were constructed with the enzymes registered in GenBank related to triterpenoid saponin or sterol biosynthesis in plant species to probe into the evolution rules of triterpenoid biosynthesis enzymes genes.The results reveal that no matter FPS,SS,SE or CAS,there are more close cluster relationship between ginseng,notoginseng in Araliaceae and Centalla asiatica, Bupleurum chinense in Umbelliferae,suggesting nearer genetic relationship evolutionally between Panax and Cenllata,Bupleurum.This is coincidence with the genetic relationship between Araliaceae,Panax and Umbelliferae,Cenllata, Bupleurum in phytotaxonomy,offerring a new evidence for the research on the evolution process of plant species and genetic relationship on molecular level.It is further certificated that the functional enzyme genes of triterpenoid biosynthesis pathway present quite high homologous in the same family and genus plants or in the plants which contain similar triterpenoid components,correlated to the plant evolution process.It could be used to offer some suggestions for digging out some medicinal plant resource containing triterpenoid structure similar.
引文
[1]Meesapyodsuk D,Balsevich J,Reed DW,et al.Saponin biosynthesis in Saponaria vaccaria,cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase.[J].Plant Physiol.,2007,143(2):959-969.
    [2]Haralampidis K,Trojanowska M,Osbourn A.Biosynthesis of triterpenoid saponins in plants.[J].Adv Biochem Eng BiotechnoL,2002,75(31-49).
    [3]刘朝霞,邹坤.鄂产人参属药用植物的研究概况[J].时珍国医国药,2003,14(9):571-572,573.
    [4]周家明,曾江,崔秀明,et al.三七根茎的化学成分研究I[J].中国中药杂志,2007,32(4):349-350.
    [5]曾祥丽,包海鹰.灵芝三萜类成分与药理学研究进展[J].菌物研究,2004,2(1):68-77。
    [6]赵明,段金廒.黄芪属植物三萜类化学成分[J].国外医药:植物药分册,2002,17(6):235-240。
    [7]李英和,陈迪华.甘草属植物化学和药理学研究进展[J].天然产物研究与开发,1995,7(1):61-69.
    [8]刘沁舡,谭利,等.柴胡属植物皂苷近10年研究概况[J].中国中药杂志,2002,27(1):7-11,45.
    [9]郑承剑,秦路平.积雪草化学成分和生物活性的研究[J].中西医结合学报,2007,5(3):348-351.
    [10]赵云生,严铸云,李占林,et al.远志属药用植物有效物质群结构特点及其生理活性[J]。中医药学刊,2005,23(8):1420-1423.
    [11]刘欣,萧文鸾,等.绞股蓝的化学成分研究[J].中国药科大学学报,2003,34(1):21-24。
    [12]曹东,苏亚伦.大狼毒三萜类化学成分的研究[J].药学学报,1992,27(6):445-451。
    [13]谭洪根,林生,张启伟,et al.高效液相色谱法测定续断药材中川续断皂苷Ⅵ的含量[J]。中国中药杂志,2006,31(9):726-727,739.
    [14]郑威,周长新,张水利,et al.毛莨化学成分的研究[J].中国中药杂志,2006,31(11):892-894.
    [15]潘瑞乐,陈迪华,等.升麻地上部分皂苷类成分研究[J].药学学报,2002,37(2):117-120。
    [16]殷志琦,叶文才,赵守训.贯叶连翘的化学成分研究[J].中草药,2001,32(6):487-488。
    [17]张兴辉,石力夫.中药女贞子化学成分的研究(I)[J].第二军医大学学报,2004,25(3):333-334.
    [18]桑圣民,劳爱娜.中药王不留行化学成分的研究Ⅲ[J].天然产物研究与开发,2000,12(3):12-15.
    [19]罗建光,张洁,孔令义.丝石竹三萜成分的研究[J].中国中药杂志,2006,31(19):1640-1641。
    [20]付文卫,窦德强,侯文彬,et al.桔梗中三萜皂苷的分离与结构鉴定[J].中国药物化学杂志,2005,15(5):297-301.
    [21]吴笑如,徐德生,冯怡,et al.沿阶草属主流商品麦冬块根与须根中大类成分含量的比较[J]。 时珍国医国药,2006,17(8):1467-1468.
    [22]王广树,丛登立,杨锦竹,et al.牛膝中三萜皂苷的研究[J].中国药物化学杂志,2005,15(4):224-226.
    [23]高慧敏,王智民.白木通化学成分研究(Ⅱ)[J].中国药学杂志,2006,41(6):418-420.
    [24]Bohlmann J,Meyer-Gauen G,Croteau R.Plant terpenoid synthases:molecular biology and phylogenetic analysis[J].Proc Natl Acad Sci U S A,1998,95(8):4126-4133.
    [25]刘长军,孟玉玲,侯嵩生,陈晓亚.棉花法呢基焦磷酸合酶cDNA克隆、序列分析及其在种子发育过程中的表达特征[J].植物学报,1998,40(8):703-710.
    [26]Devarenne TP GA,Chappell J.Regulation of squalene synthase,a key enzyme of sterol biosynthesis,in tobacco.[J].Plant Physiol.,2002,129(3):1095-1106.
    [27]陈晓亚,刘培.植物次生代谢的分子生物学及基因工程[J].生命科学,1996,8(2):8-11.
    [28]余叙文,汤章城.植物生理与分子生物学,2 edn.北京:科学出版社,1998.
    [29]Enjuto M BL,Campos N,Caelles C,Arro M,Boronat A.Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes,which encode microsomal forms of the enzyme.[J].Proc Natl Acad Sci U S A.,1994,91(3):927-931.
    [30]Cunillera N,Arro M,Delourme D,et al.Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes.[J].J Biol Chem,1996,271(13):7774-7780.
    [31]Aubourg S,Lecharny A,Bohlmann J.Genomic analysis of the terpenoid synthase(AtTPS)gene family of Arabidopsis thaliana.[J].Mol Genet Genomics.2002,267(6):730-745.
    [32]Husselstein-Muller T SH,Benveniste P.Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana.[J].Plant Mol Biol.2001,45(1):75-92.
    [33]Herrera JB BB,Wilson WK,Matsuda SP.Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene.[J].Phytochemistry.,1998,49(7):1905-1911.
    [34]Nakashima T IT,Oka A,Nishino T,et al.Cloning,expression,and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase.[J].Proc Natl Acad Sci U S A.,1995,92(6):2328-2332.
    [35]Kato-Emori S HK,Hosoya K,Kobayashi T,Ezura H.Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon(Cucumis melo L.reticulatus).[J].Mol Genet Genomics,2001,265(1):135-142.
    [36]Ayora-Talavera T CJ,Lozoya-Gloria E,Loyola-Vargas VM.Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3-hydroxy-3-methylglutaryl-CoA reductase gene.[J].Appl Biochem Biotechnol.,2002,97(2):135-145.
    [37]Bach TJ.Some new aspects of isoprenoid biosynthesis in plants[J].Lipids,1995,30(30):191-202.
    [38]McGarvey D,Croteau R.Terpenoid metabolism[J].Plant Cell,1995,7:1015-1026.
    [39]Rohmer M,Knani M,Simonin P.Isoprenoid biosynthesis in bacteria:A novel pathway for the early steps leading to isopentenyl diphosphate[J].Biochem J,1993,295:517-524.
    [40]Suzuki H,Achnine L,Xu R,et al.A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula.[J].Plant J,2002,32(6):1033-1048.
    [41]Hanley KM NO,Donaldson TB,Smith-Monroy C,Robinson GW,Hellmann GM.Molecular cloning,in vitro expression and characterization of a plant squalene synthetase cDNA.[J].Plant Mol Biol.,1996,30(6):1139-1151.
    [42]Akamine S NK,Chechetka SA,Banba M,Umehara Y,Kouchi H,Izui K,Hata S.cDNA cloning,mRNA expression,and mutational analysis of the squalene synthase gene of Lotus japonicus[J].Biochim Biophys Acta,2003,1626(1-3):97-101.
    [43]Lee MH,Jeong JH,Seo JW,et al.Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene.[J].Plant Cell Physiol.,2004,45(8):976-984.
    [44]Seo JW,Jeong JH,Shin CG,et al.Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation[J].Phytochemistry.,2005,66(8):869-877.
    [45]韩颖,姜彬慧,胡筱敏,et al.Fusarium sacchari转化三七茎叶皂苷的稀有抗肿瘤成分[J]。中草药,2007,38(6):830-832.
    [46]Haralampidis K,Bryan G,Qi X,et al.A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots[J].PNAS,2001,98(23):13431-13436.
    [47]Kim OT,Kim MY,Huh SM,et al.Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica(L.)Urban.[J].Plant Cell Rep.,2005,24(5):304-311.
    [48]Gu Y,Wang G.J,Sun JG,et al.Quantitative determination of ginsenoside Rh2 in rat biosamples by liquid chromatography electrospray ionization mass spectrometry[J].Anal Bioanal Chem,2006,386(7-8):2043-2053.
    [49]Choi D,Jung J,Ha Y,et al.Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites.[J].Plant Cell Rep.,2005,23(8):557-566.
    [50]匡海学.中药化学 第1版edn.北京:中国中医药出版社,2004.
    [51]吴立军.中药化学,第1版edn.北京:中国医药科技出版社,2001.
    [52]余叔文,汤章城.植物生理与分子生物学,第2版edn.北京:科学出版社,2003。
    [53]何峰,潘勤,闵知大.001枣属植物化学成分研究进展[J].国钱医药:植物药分册,2005,20(1):1-5.
    [54]Xie JT,Mehendale SR,Li X,et al.Anti-diabetic effect of ginsenoside Re in ob/ob mice[J].Biochim Biophys Acta,2005,1740(3):319-325.
    [55]Hirotani M,Zhou Y,Rui H,et al.Cycloartane triterpene glycosides from the hairy root cultures of Astragalus membranaceus[J].Phytochemistry,1994,37(5):1403-1407。
    [56]斯建勇,陈迪华.罗汉果中三萜甙的分离和结构测定[J].植物学报:英文版,1996,38(6):489-494.
    [57]邱蓉丽,李磷.中药女贞子化学与药理研究进展[J].中药材,2007,30(7):891-894.
    [58]谢彦,徐淑永,曾和平.甘草属植物中三萜类化合物研究概述[J].广州化工,2004,32(1):1-5.
    [59]梁之桃,秦民坚,等.柴胡属植物皂苷成分研究进展[J].天然产物研究与开发,2001,13(6):67-72.
    [60]李勇,林翠英.白头翁属植物化学成分及活性研究概述[J].天津中医药,2005,22(6):526-528.
    [61]戚志华,王四旺,王剑波,et al.不同生长期女贞子中齐墩果酸和熊果酸的含量变化[J].中国中药杂志,2007,32(15):1583-1585.
    [62]周剑宁,欧阳明安.药用女贞属植物化学成分的研究进展[J].天然产物研究与开发,2003,15(1):77-86.
    [63]王钢力,陈德昌.栀子属植物化学成分研究进展[J].中国中药杂志,1996,21(2):67-69,72.
    [64]廖晓峰,陈正行,姚惠源,et al.大孔树脂吸附分离栀子浸提液中的三萜酸及结构鉴定[J].食品科学,2006,27(8):114-119.
    [65]张启兴,沈德凤,等.车前草中熊果酸的含量测定[J].中国野生植物资源,2001,20(4):42-43.
    [66]袁珂,杨中汉.车前草中熊果酸的超声提取及高效液相色谱法测定[J].时珍国医国药,2006,17(12):2466-2467.
    [67]黄建林,张展霞.Gc-Ms同时测定番石榴叶中的齐墩果酸和熊果酸[J].分析测试技与仪器,2005,11(3):178-181.
    [68]张文举,陈宝田,朱全红,et al.番石榴叶中提取的槲皮素和2a-羟基熊果酸体外抗人轮状病毒作用[J].中草药,2005,36(1):76-79.
    [69]原春兰,李宗孝,等.地榆中熊果酸的提取[J].中国医药工业杂志,2002,33(10):478-479.
    [70]于泉林,高文远,陈海霞,et al.Hplc-Elsd测定积雪草提取物中积雪草苷的含量[J].中国中药杂志,2007,32(6):503-505.
    [71]章卓,万敬员,罗福玲,et al.羟基积雪草苷与积雪草苷对Lps诱导大鼠发热模型的影响[J].时珍国医国药,2007,18(8):1799-1801.
    [72]MatsudaH,张卫华.斯里兰卡积雪草中的熊果烷型和齐墩果烷型三萜寡糖苷[J]。国钱医学:中医中药分册.2002,24(5):307-307。
    [73]许福泉,刘海洋,滕菲,et al.酸叶胶藤的三萜成分研究[J].天然产物研究与开发,2007,19(3):365-368.
    [74]何峰,潘勤,闵知大.酸枣仁中的一种新羽扇豆烷型三萜[J].中草药,2006,37(2):168-171.
    [75]杨光忠,郭夫江.雷公藤多苷三萜类成分的研究[J].中国药学杂志,2000,35(1):50-51.
    [76]夏焱,段宏泉,张铁军,et al.雷公藤属药用植物的研究进展[J].中草药,2005,36(7):1093-1096.
    [77]张东明,于德泉.雷公藤酮的结构[J]。药学学报,1991,26(5):341-344.
    [78]赵越,苏适.人参皂苷Rh2抗肿瘤作用的研究[J].微生物学杂志,2003,23(2):61-63.
    [79]Kikuchi Y,Sasa H,Kita T ea.Inhibition of human ovarian cancer cell proliferation in vivo by ginsengside Rh-2 and adjuvant effects to cisplatin invitro[J].Anti-cancer Drugs,1991,2:63-68.
    [80]Bamba T,Fuse K.New horizons in the treatment of irritable bowel syndrome[J].Drugs Today(Barc),1999,35(1):5-12.
    [81]Cheng CC,Yang SM,Huang CY,et al.Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549cells[J].Cancer Chemother Pharmacol,2005,55(6):531-540.
    [82]Cheng Y,Shen Lh,Zhang Jt.Anti-amnestic and anti-aging effects of ginsenoside Rgl and Rbl and its mechanism of action[J].中国药理学报:英文版,2005,26(2):143-149.
    [83]Nakata H,Kikuchi Y,Tode T.Inhibitory effects of ginsenoside Rh-2 on tumor growth in nude mice bearing human ovarian cancer cells[J].Jpn J Cancer Res,1998,89(733-736).
    [84]于立坚,马润娣,等.土贝母苷甲和苷乙的抗肿瘤作用[J].中国新药杂志,2002,11(9):692-694.
    [85]王广树,周小平,杨晓虹,et al.牛膝中酸性三萜皂苷成分的分离与鉴定[J].中国药物化学杂志,2004,14(1):40-42.
    [86]王一飞,王庆端.怀牛膝总皂苷对肿瘤细胞的抑制作用[J].河南医科大学学报,1997,32(4):4-6.
    [87]张瑞玲,黄炜,黄济群.中药五环三萜类有效成分抗人肺癌细胞增殖和侵袭作用的研究[J]。中医药学刊,2004,22(11):2065-2067.
    [88]王婷,宋怀燕.熊果酸药理作用研究进展[J].中华医学研究杂志,2005,5(9):877-879.
    [89]王春雷,芦柏震,侯桂兰.熊果酸抗肿瘤作用研究进展[J].安徽医药,2005,9(10):723-725.
    [90]Subbaramaiah K,Michaluart P,MB Sporn ea.Ursolic acid inhibits cyclooxygenase-2transcription in human mammary epithelial cells[J].[J].Cancer Res,2000,60(9):2399-2404.
    [91]李杰,许良中,朱伟萍.熊果酸与齐墩果体外抗jurkat淋巴瘤的研究[J].中国癌症杂志1999,9(5-6):395-397.
    [92]Li J,Guo WJ,QY.Y.Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15[J].World J Gastroenterol,2002,8(3):493-495.
    [93]Lien CC,Win C,Mei YC,et al.Antileukemic activity of selected natural products in Taiwan[J].Am J Chin Med,2003,31:37-46.
    [94]樊明文,王茜,边专.熊果酸对人舌鳞癌细胞株TSCCa的抑制作用及其机制探讨[J][J].武汉大学学报(医学版),2004,25(1):1-3.
    [95]吴其年,黄炜,杨凤仪.熊果酸对人乳腺癌细胞增殖、凋亡和细胞内游离Ca~(2+)的影响[J].肿瘤学杂志,2004,10(3):1
    [96]黄炜,黄济群,张东方,et al.五环三萜类化合物抗人肺癌细胞侵袭和诱导细胞凋亡的研究[J].中国肺癌杂志,2003,6(4):254-257.
    [97]张秋萍,谢珞琨,邓涛.熊果酸促进K562细胞凋亡[J].基础医学与临床,2004,24(4):414-417.
    [98]叶文才,吉兆宁,汤云,et al.一些三萜类化合物抗小鼠肝损伤活性比较[J].中国药科大学学报,1996,27(7):425-428.
    [99]Saraswat B,Visen PKS,Dayal R,et al.Protective action of ursolic acid against chemical induced hepatotoxicity in rats.[J].Indian J Pharmacol,1996,28:232-239.
    [100]Martin-Aragon S,de las Heras B,Sanchez-Reus M I,et al.Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-indued liver damage in rats and primary cultures of rat hepatocytes.[J].Exp Toxicol Pathol,2001,53(2/3):199-206.
    [101]熊筱娟,陈武,肖小华,et al.乌索酸与齐墩果酸对小鼠实验性肝损伤保护作用的比较[J].江西师范大学学报(自然科学版),,2004,28(16):540-543.
    [102]Luo YM,Cheng XJ,Yuan WX.Effects of ginseng root saponins and ginsenoside Rb1 on immunity in cold water swim stress mice and rats[J].Zhongguo Yao Li Xue Bao,1993,14(5):401-404.
    [103]Cheng LQ,Na JR,Kim MK,et al.Microbial conversion of ginsenoside Rb1 to minor ginsenoside F2 and gypenoside ⅩⅦ by Intrasporangium sp.GS603 isolated from soil[J].J Microbiol Biotechnol,2007,17(12):1937-1943.
    [104]Chiu TH,Chen JC,Chen LD,et al.Gypenosides inhibited N-acetylation of 2-amino fluorene,N-acetyltransferase gene expression and DNA adduct formation in human cervix epithelioid carcinoma cells(HeLa)[J].Res Commun Mol Pathol Pharmacol,2004,115-116:157-174.
    [105]王春刚,贾晓晶,董丽华,et al.西洋参叶三醇组皂苷对乳腺癌放疗患者外周血免疫球蛋白、补体水平及淋巴细胞Cd4、Cd8和cd25表达的影响[J].吉林大学学报:医学版,2005,31(2):287-289.
    [106]Kapil A,Sharma S.Anti-complement activity of oleanolic acid:an inhibitor of C3-convertase of the classical complement pathway[J].J Pharm Pharmacol,1994,46(11):922-923.
    [107]You HJ,Choi CY,Kim JY,et al.Ursolic acid enhances nitric oxide and tumor necrosis factor-alpha production via nuclear factor-kappaB activation in the resting macrophages[J].FEBS Lett,2001,509(2):156-160.
    [108]Hsu HY,Yang JJ,Lin CC.Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recovery of hematopoietic system postirradiation in mice[J].Cancer Lett,1997,111(1-2):7-13.
    [109]林参,张允岭,陈志刚,et al.三七皂苷治疗基底节脑出血的脑血流动力学研究[J].中西医结合心脑血管病杂志,2007,5(11):1048-1050.
    [110]刘雅,李晓辉,张海港,et al.三七皂苷对持续炎症加速兔动脉粥样硬化形成中氧化应激影响的研究[J].中国药房,2007,18(33):2561-2563.
    [111]黄烨,白汝芬,王宗仁.人参对心血管系统作用的实验药理学研究新进展[J].第四军医大学学报,2006,27(16):1533-1535.
    [112]崔新明,李艳茹,吕文伟,et al.人参皂苷Rg2对急性心源性休克犬心肌的保护作用[J].吉林大学学报:医学版.2003.29(4):392-394.
    [113]Basyuni M,Oku H,Tsujimoto E,et al.Triterpene synthases from the Okinawan mangrove tribe,Rhizophoraceae.[J].FEBS J.,2007,274(19):5028-5042.
    [114]Pozo M,Castilla V,Gutierrez C,et al.Ursolic acid inhibits neointima formation in the rat carotid artery injury model[J].Atherosclerosis,2006,184(1):53-62.
    [115]李桂桂,卞广兴,任建平,et al.羟基积雪草苷对兔心肌缺血再灌注损伤的保护作用[J].药学学报,2007,42(5):475-480.
    [116]葛君,朱妤婕,吴军,et al.绞股蓝皂苷对家兔肠缺血再灌注致心肌损伤的保护作用[J].蚌埠医学院学报,2006,31(4):347-348.
    [117]黄宗锈,陈冠敏,等.人参皂苷延缓衰老的实验研究[J].实用预防医学,2001,8(5):385-385.
    [118]王红丽,吴铁,吴志华,et al.人参皂苷、丹参酮和川芎嗪抗小鼠皮肤衰老作用研究[J].第二军医大学学报,2006,27(5):525-527.
    [119]金建生,赵朝晖,陈晓春,et al.人参皂苷Rg1抗衰老作用可能与改变p16、cyclinD、CDK4的表达有关[J].中国临床药理学与治疗学,2004,9(1):29-34.
    [120]张均田.人参皂苷Rg1的促智作用机制--对神经可塑性和神经发生的影响[J].药学学报,2005,40(5):385-388。
    [121]屈泽强,谢智光,王乃平,et al.三七总皂苷抗衰老作用的实验研究[J].广州中医药大学学报,2005,22(2):130-133.
    [122]姚丹丹,黄善华.绞股蓝对亚急性衰老大鼠的抗衰老作用研究[J].理代中西医结合杂志,2007,16(28):4112-4113.
    [123]蔡太生,张善锋,王明臣.绞股蓝对衰老大鼠的抗氧化作用[J].中国临床康复,2005,9(35):106-107.
    [124]叶红,马永兴,等.绞股蓝总甙片有关抗衰老作用的探讨[J].上海医药,2001,22(11):499-501.
    [125]何薇,曾祖平.知母皂苷及其苷元抗衰老作用的研究进展[J].北京中医,2006,25(6):376-378.
    [126]裘名宜,冯龙飞.黄毛楤木皂苷的抗衰老作用研究[J].时珍国医国药,2006,17(12):2480-2481.
    [127]王丽君,苏小明,孙戈新.龙芽楤木皂苷抗衰老作用的实验研究[J].中国老年学杂志,2007,27(11):1043-1044.
    [128]张晟,陈祥贵.降血糖植物皂苷研究进展[J].中药材,2007,30(5):616-620.
    [129]王先远,金宏,等.苦瓜皂苷降血糖作用及其机制初探[J].氨基酸和生物资源,2001,23(3):42-45.
    [130]姜宏卫,李长贵.苦瓜属植物治疗糖尿病研究进展[J].辽宁实用糖尿病杂志,2002,10(1):51-53.
    [131]江海燕.匙羹藤降血糖成分研究进展[J].中药材,2003,26(4):305-307.
    [132]甄汉深,梁洁,周芳.广西匙羹藤茎95%乙醇提取物降血糖作用及其机制的初步研究[J].中国实验方剂学杂志,2007,13(1):32-34.
    [133]梁洁,甄汉深,周芳,et al.广西匙羹藤茎降血糖作用机制的研究[J].中药材,2007,30(1):74-77.
    [134]张俐勤,戚向阳,陈维军,et al.罗汉果皂苷提取物对糖尿病小鼠血糖、血脂及抗氧化作用的影响[J].中国药理学通报,2006,22(2):237-240.
    [135]戴岳,刘学英.地肤子总甙降糖作用的研究[J].中国野生植物资源,2002,21(5):36-38。
    [136]Attele AS,Zhou YP,Xie JT,et al.Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component[J].Diabetes,2002,51(6):1851-1858.
    [137]Norberg A,Hoa NK,Liepinsh E,et al.A novel insulin-releasing substance,phanoside,from the plant Gynostemma pentaphyllum[J].J Biol Chem,2004,279(40):41361-41367.
    [138]黄平,钱康.绞股蓝总皂苷对糖尿病肾病大鼠结缔组织生长因子表达的影响[J].中华中医药学刊,2007,25(11):2235-2238.
    [139]全吉淑,尹学哲,金明,et al.大豆皂苷对a-葡萄糖苷酶抑制作用的研究[J].中药材,2003,26(9):654-656.
    [140]林耕,杨峻山.黄毛楤木的化学成分研究Ⅱ[J].中国药学杂志,2004,39(8):575-578.
    [141]王柏欣,王淑湘,谭宏,et al.刺五加叶皂苷对糖尿病大鼠脂质过氧化物的作用[J].黑龙江医药科学,2004,27(2):1-2.
    [142]王芳,王臻,刘飞飞.雷公藤多苷片用于治疗糖尿病肾病临床观察[J].中国医药导报,2007,4(11S):50-50,88.
    [143]Qi G,Zhang L,Xie WL,et al.Protective effect of gypenosides on DNA and RNA of rat neurons in cerebral ischemia-reperfusion injury[J].Acta Pharmacol Sin,2000,21(12):1193-1196.
    [144]张莉,吴光亮,等.绞股蓝总皂苷对血管性痴呆大鼠大脑皮层及海马的影响[J].中草药,2002,33(4):330-331.
    [145]姚柏春,袁华,黄翔,et al.喂饲绞股蓝皂苷对Aβ1-40注射海马后大鼠脑内Cox活性和线粒体超微结构变化的影响[J].中国老年学杂志,2005,25(10):1193-1195.
    [146]陈新梅,朱家壁.人参皂苷Rg1脂质体对东莨菪碱诱导大鼠学习记忆障碍的改善及其作用机制[J].中国临床药理学与治疗学,2005,10(8):898-902.
    [147]陈瑶,秦路平,等.积雪草总苷对抑郁症大鼠神经内分泌功能的影响[J].第二军医大学学报,2002,23(11):1224-1226.
    [148]陈瑶,韩婷,芮耀诚,et al.积雪草总苷对实验性抑郁症大鼠血清皮质酮和单胺类神经递质的影响[J].中药材,2005,28(6):492-496.
    [149]樊东升.七叶皂苷钠的药理作用及其在神经科的临床应用[J].中华医学信息导报,2003,18(12):19-19.
    [150]刘明洁.七叶皂苷钠的临床应用、不良反应及药理学研究[J].时珍国医国药,2005,16(11):1158-1160.
    [151]Kimura T,Saunders PA,Kim HS,et al.Interactions of ginsenosides with ligand-bindings of GABA(A)and GABA(B)receptors[J].Gen Pharmacol,1994,25(1):193-199.
    [152]姜正林,陈益人,等.人参皂苷抗缺氧缺血性脑损伤的谷氨酸相关机制[J].中国应用生理学杂志,2001,17(2):105-108.
    [153]沈洪妹,姜正林,顾晓松.人参皂苷Rb3对大鼠海马神经细胞谷氨酸损伤作用及相关机制的研究[J].中国应用生理学杂志,2006,22(1):31-34.
    [154]王志洁,黄铁牛,等.黄芪总皂苷抗Hsv2的实验研究[J].浙江中医学院学报,2001,25(5):43-46.
    [155]张西春,李兴华,马静.土贝母皂苷乳剂的研制[J].中国药事,2005,19(5):318-319。
    [156]成兰英,唐琳,颜钫,et al.苦瓜茎叶总皂苷的提取及抗Hsv-Ⅱ型疱疹病毒作用研究[J]。四川大学学报:自然科学版,2004.41(3):641-643.
    [157]杜成林,贾献慧,孙敏耀,et al.大豆皂苷Ⅰ的制备新途径[J].中草药,2007,38(5):682-682.
    [158]李平亚,常雅萍,等.人参皂苷-Rg3、-Rb3抗病毒作用的研究[J].中国老年学杂志,2001,21(3):215-216.
    [159]梅少林,袁红艳,常雅萍,et al.人参皂苷Rg3体外抗HSV-1活性与免疫调节效应[J]。吉林大学学报:医学版,2006,32(6):1019-1022.
    [160]Hirabayashi K,Iwata S,Matsumoto H,et al.Antiviral activities of glycyrrhizin and its modified compounds against human immunodeficiency virus type 1(HIV-1)and herpes simplex virus type 1(HSV-1)in vitro[J].Chem Pharm Bull(Tokyo),1991,39(1):112-115。
    [161]Yang XW,Zhao J,Cui YX,et aL.Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis[J].J Nat Prod,1999,62(11):1510-1513.
    [162]杨秀伟,赵静,马超美,et al.七叶树皂苷和熊果酸类化合物对Hiv-1蛋白酶活性抑制作用的初步研究[J].中国新药杂志,2007,16(5):366-369.
    [163]华海婴,李艳瑛.毛冬青甲素药理作用的研究[J].中国现代医药杂志,2006,8(11):137-138.
    [164]刘凯,谢湘林,李晔,et al.西洋参叶三醇皂苷对正常大鼠学习记忆的影响[J].中草药,2007,38(11):1700-1702.
    [165]李娜,王利民.人参皂苷Rg1对阿尔茨海默病模型大鼠学习记忆的影响[J].滨州医学院学报,2007,30(5):325-326,329.
    [166]钟振国,屈泽强,鲍运平,et al.三七总皂苷对老年性痴呆大鼠空间探索学习记忆力的影响[J].北京中医药大学学报,2006,29(1):34-37.
    [167]乔萍,杨贵贞.三七皂苷单体Rgl对D-半乳糖模型鼠学习记忆和免疫功能的影响[J]。吉林大学学报:医学版.2003.29(3):267-269。
    [168]陈勤,曹炎贵,林义明,et al.知母皂苷元及其异构体对老年大鼠学习记忆和脑内M1受体密度的影响[J].中国药理学通报,2004,20(5):561-564.
    [169]孙隆儒,李铣,等.黄精改善小鼠学习记忆障碍等作用的研究[J].沈阳药科大学学报,2001,18(4):286-289.
    [170]张季,张丹参,严春临,et al.蒺藜皂苷对小鼠记忆障碍的影响[J].中药药理与临床,2007,23(3):47-49.
    [171]陈勤,曹炎贵,等.远志皂苷对β-淀粉样肽和鹅膏蕈氨酸引起胆碱能系统功能降低的影响[J].药学学报,2002,37(12):913-917.
    [172]李琳琳,毛新民,等.胡芦巴总皂苷对小鼠学习记忆的促进作用及抗脑缺血作用初探[J].新疆医科大学学报,2001,24(2):98-100.
    [173]Papadopoulou K,Melton RE,Leggett M,et al.Compromised disease resistance in saponin-deficient plants.[J].Proc Natl Acad Sci U S A.,1999,96(22):12923-12928.
    [174]Tava A,Odoardi M.Saponins from Medicago Spp.:chemical characterization and biological activity against insects[J].Adv Exp Med Biol,1996,405:97-109.
    [175]Oleszek W,Junkuszew M,Stochmal A.Determination and toxicity of saponins from Amaranthus cruentus seeds[J].J Agric Food Chem,1999,47(9):3685-3687.
    [176]genome.Tm-bsotr.The map-based sequence of the rice genome.[J].Nature,2005(11):436(7052).
    [177]Learned RM FG.3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes.[J].Proc Natl Acad Sci U S A.,1989,86(8):2779-2783.
    [178]Ohyama K,Suzuki M,Masuda K,et al.Chemical phenotypes of the hmg1 and hmg2mutants of Arabidopsis demonstrate the in-planta role of HMG-CoA reductase in triterpene biosynthesis[J].Chem Pharm Bull(Tokyo),2007,55(10):1518-1521.
    [179]Szkopinska A,Plochocka D.Farnesyl diphosphate synthase;regulation of product specificity.[J].Acta Biochim Pol,2005,52(1):45-55.
    [180]Ohnuma S HK,Ohto C,Nishino T.Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase.Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity.[J].J Biol Chem.,1997,272(8):5192-5198.
    [181]Kribii R AM,Del Arco A,Gonzalez V,Balcells L,Delourme D,Ferrer A,Karst F,Boronat A.Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase-involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway.[J].Eur J Biochem.,1997,249(1):61-69.
    [182]Jandrositz A,Turnowsky F,Hogenauer G.The gene encoding squalene epoxidase from Saccharomyces cerevisiae:cloning and characterization[J].Gene,1991,107(1):155-160.
    [183]Ryder NS.Terbinafine:mode of action and properties of the squalene epoxidase inhibition[J].Br J Dermatol,1992,126 Suppl 39:2-7.
    [184]Rasbery JM,Shan H,LeClair RJ,et al.Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development[J].J Biol Chem,2007,282(23):17002-17013.
    [185]Ruckenstuhl C,Lang S,Poschenel A,et al.Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants[J].Antimicrob Agents Chemother,2007,51(1):275-284.
    [186]Uchida H,Sugiyama R,Nakayachi O,et al.Expression of the gene for sterol-biosynthesis enzyme squalene epoxidase in parenchyma cells of the oil plant, Euphorbia tirucalli.[J]. Planta., 2007, 226(5):1109-1115.
    [187] Corey EJ, Matsuda SP, B. B. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen.[J]. Proc Natl Acad Sci U S A. 1993,90 (24) :11628-11632.
    [188] Morita M, Shibuya M, Lee MS, et al. Molecular cloning of pea cDNA encoding cycloartenol synthase and its functional expression in yeast.[J]. Biol Pharm Bull., 1997, 20(7):770-775.
    [189] Sawai S, Akashi T, Sakurai N, et al. Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes.[J]. Plant Cell Physiol. 2006, 47(5): 673-677.
    [190] Morita M, Shibuya M, Kushiro T, et al. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) new alpha-amyrin-producing enzyme is a multifunctional triterpene synthase.[J]. Eur J Biochem., 2000,267(12):3453-3460.
    [191] Kim JY, Choi CY, Jeong HG Involvement of cytokines in the hepatic metallothionein expression by alpha-hederin[J]. Planta Med, 2005, 71 (8):743-747.
    [192] Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng.[J]. FEBS Lett. 2006, 580(22): 5143-5149.
    [193] Basyuni M, Oku H, Inafuku M, et al. Molecular cloning and functional expression of a multifunctional triterpene synthase cDNA from a mangrove species Kandelia candel (L.) Druce.[J]. Phytochemistry. 2006, 67(23):2517-2524.
    [194] Narita JO GW. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening.[J]. Plant Cell, 1989,1(2):181-190.
    [195] Chandrasekaran K, Mehrabian Z, Spinnewyn B, et al. Bilobalide, a component of the Ginkgo biloba extract (EGb 761), protects against neuronal death in global brain ischemia and in glutamate-induced excitotoxicity[J]. Cell Mol Biol (Noisy-le-grand), 2002, 48(6): 663-669.
    [196] Mahadevan S, Park Y. Multifaceted therapeutic benefits of Ginkgo biloba L: chemistry, efficacy, safety, and uses[J]. J Food Sci, 2008,73(1):R14-19.
    [197] Kennedy MA, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae[J]. Biochim Biophys Acta, 1999, 1445(1):110-122.
    [198] Yue C, Zhong J. Impact of external calcium and calcium sensors on ginsenoside Rb1 biosynthesis by Panax notoginseng cells[J]. Biotechnol Bioeng, 2005, 89(4):444-452.
    [199] Mangas S, Bonfill M, Osuna L, et al. The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants[J]. Phytochemistry, 2006, 67(18):2041-2049.
    1.Haralampidis K,T.M.,Osbourn AE.and J.I.C.Sainsbury Laboratory,Norwich,UK.,Biosynthesis of triterpenoid saponins in plants.Adv Biochem Eng Biotechnol.2002.75:31-49.
    2.Vincken JP,et al.Saponins,classification and occurrence in the plant kingdom.Phytochemistry.2007.68(3):275-97.
    3.Suzuki H,A.L.,Xu R,Matsuda SP,Dixon RA.A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula.Plant J.2002.32(6):1033-48.
    4.Jiang J,K.G,Cao X,Chen F,He D,Liu Q.,Molecular cloning of a HMG-CoA reductase gene from Eucommia ulmoides Oliver.Biosci Rep,2006.26(2):171-81.
    5.Szkopinska A and Plochocka D,Famesyl diphosphate synthase;regulation of product specificity.Acta Biochim Pol,2005.52(1):45-55.
    6.Huang,Z.,et al.Molecular cloning and characterization of the yew gene encoding squalene synthase from Taxus cuspidata.J Biochern Mol Biol,2007.40(5):625-35.
    7.Basyuni,M.,et al.,Triterpene synthases from the Okinawan mangrove tribe,Rhizophoraceae.Febs J,2007.274(19):5028-42.
    8.Tansakul P,et al.Dammarenediol-Ⅱ synthase,the first dedicated enzyme for ginsenoside biosynthesis,in Panax ginseng.FEBS Lett.2006.580(22):5143-9.
    9.Lee MH,et al.Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene.Plant Cell Physiol.2004.45(8):976-84.
    10.Choi DW,Jung J,Ha YI,Park HW,In DS,Chung HJ,Liu JR.Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabofites.Plant Cell Rep,2005.23(8):557-66.
    [1]Jennings SM TY,Fisch TM,et al..Molecular cloning and characterization of the yeast gene for squalene synthetase[J].Proc Natl Acad Sci USA,1991,88(14):6038-6042.
    [2]Flores-Sanchez I J O-LJ,Montes-Horcasitas M del C,et al..Biosynthesis of Sterols and Triterpenes in Cell Suspension Cultures of Uncaria tomentosa[J].Plant Cell Physiol.,2002,43(12):1502-1509
    [3]Choi D,Jung J,Ha Y,et al.Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites.[J].Plant Cell Rep.,2005,23(8):557-566.
    [4]Lee MH,Jeong JH,Seo JW,et al.Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene.[J].Plant Cell Physiol.,2004,45(8):976-984.
    [5]Hu X NS,Fang J,et al..Mitogen-activated protein kinases mediate the oxidative burst and saponin synthesis induced by chitosan in cell cultures of Panax ginseng[J].Sci China C Life Sci.,2004,47(4):303-312.
    [6]张毅 刘,王红等..转青蒿反义鲨烯合酶基因对烟草鲨烯合酶基因表达的影响.[J]。农业生物技术学报,2005,13(4):416-422.
    [7]魏凤玲,朱春波.三七总皂苷提取工艺优选[J].中国中药杂志,2000,25(12):722-723。
    [8]魏璐雪.中药制剂分析.上海:上海科学技术出版社,1993.
    [9]陈高寿.三七主根支根茎基中三七总皂甙含量比较[J]。时珍国医国药,1999,10(4):249.
    [10]江林,顾琼珠,何廷能.树脂吸附分离-比色法测定三七中总甙含量[J].云南中医学院学报,1995,18(2):11-13.
    [11]Akamine S NK,Chechetka SA,Banba M,Umehara Y,Kouchi H,Izui K,Hata S.cDNA cloning,mRNA expression,and mutational analysis of the squalene synthase gene of Lotus japonicus[J].Biochim Biophys Acta,2003,1626(1-3):97-101.
    [12]Seo JW,Jeong JH,Shin CG,et al.Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation.[J]。Phytochemistry.2005,68(8):869-877.
    [1]Zhao MW,Liang WQ,Zhang DB,et al.Cloning and characterization of squalene synthase(SQS)gene from Ganoderma lucidum.[J].J Microbiol Biotechnol.2007,17(7):1106-1112.
    [2]Ohnuma S HK,Ohto C,Nishino T.Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase.Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity.[J].J Biol Chem.,1997,272(8):5192-5198.
    [3]Lee JH YY,Kim HY,Shin DH,Kim DU,Lee IJ,Kim KU.Cloning and expression of squalene synthase cDNA from hot pepper(Capsicum annuum L.).[J].Mol Cells.,2002,13(3):436-443.
    [4]WIJEWEERA P,ARNASON JT,KOSZYCKI D.Evaluation of anxiolytic properties of Gotukola(Centella asiatica)extracts and asiaticoside in rat behavioral models.[J].Phytomedicine.,2006,13:668-676.
    [5]Pandit J,Danley DE,Schulte GK,et al.Crystal structure of human squalene synthase.A key enzyme in cholesterol biosynthesis[J].J Biol Chem,2000,275(39):30610-30617.
    [6]Akamine S NK,Chechetka SA,Banba M,Umehara Y,Kouchi H,Izui K,Hata S.cDNA cloning,mRNA expression,and mutational analysis of the squalene synthase gene of Lotus japonicus[J].Biochim Biophys Acta,2003,1626(1-3):97-101.
    [7]Robinson GW,Tsay YH,Kienzle BK,et al.Conservation between human and fungal squalene synthetases:similarities in structure,function,and regulation[J].Mol Cell Biol,1993,13(5):2706-2717.
    [8]梁之桃,秦民坚,等.柴胡属植物皂苷成分研究进展[J].天然产物研究与开发,2001,13(6):67-72.
    [9]刘沁舡,谭利,白焱晶,et al.柴胡属植物皂苷近10年研究概况[J].中国中药杂志,2002.27(1):7-11.
    [10]张蕾磊,王海生,姚庆强,et al.积雪草化学成分研究[J].中草药,2005,36(12):1761-1763.
    [11]Kuroda M.积雪草中5个新的三萜苷[J].国外医学:中医中药分册,2002,24(4):237-238.
    [12]Yue PY,Wong DY,Ha WY,et al.Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg(1)in vivo and in vitro[J].Angiogenesis,2005,8(3):205-216.
    [13]Tachikawa E,Kudo K,Nunokawa M,et al.Characterization of ginseng saponin ginsenoside-Rg(3)inhibition of catecholamine secretion in bovine adrenal chromaffin cells[J].Biochem Pharmacol,2001,62(7):943-951.
    [14]宋建平,曾江,崔秀明,et al.三七根茎的化学成分研究(Ⅱ)[J].云南大学学报:自然科学版,2007,29(3):287-290,296.
    [15]杨崇仁,姜志东,伍明珠,et al.人参属植物姜状三七的拈花皂甙成分[J].药学学报,1984,19(3):232-236.
    [16]王答祺,樊娟,汪夕彬,et al.秦岭产珠子参根茎的皂甙成分[J].植物学报:英文版,1988, 30(4):403-408.
    [17]周家明,曾江,崔秀明,et al.三七根茎的化学成分研究I[J].中国中药杂志,2007,32(4):349-350.
    [18]邓向军,徐斌,董英.苦瓜化学成分研究进展[J].时珍国医国药,2006,17(12):2449-2451.
    [19]Shen LH,Zhang JT.Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells[J].Neurol Res,2004,26(4):422-428.
    [20]刘世彪,胡正海.绞股蓝生物学的研究进展[J].中草药,2005,36(1):144-146.
    [21]郭绪林,王铁军,边宝林.长梗绞股蓝化学成分的研究[J].药学学报,1997,32(7):524-529.
    [22]孙广利,边洪荣.长梗绞股蓝与绞股蓝最新研究进展[J].中华实用中西医杂志,2003,16(12):1823-1824.
    [23]赵亚,宋国强,郭跃伟.中国红树植物红海榄(Rhizophora stylosa)的化学成分研究[J].天然产物研究与开发,2004,16(1):23-25.
    [24]尚随胜,龙盛京.红树植物木榄的活性成分研究概况[J].中草药,2005,36(3):465-467.
    [25]王素娟,裴月湖.桦木属植物化学成分的研究进展[J].沈阳药科大学学报,2000,17(5):378-382.
    [26]李岩,金雄杰,谢湘母,et al.白桦三萜类物质抗黑色素瘤B16、$180肉瘤作用白桦三萜类物质抗黑色素瘤B16、$180肉瘤作用及其机制的实验研究[J].中国药理学通报,2000,16(3):279-281.
    [27]李萍,闫明,李平亚.远志属植物化学成分及生物活性研究进展[J].特产研究,2004,26(3):56-61.
    [28]吴志军,欧阳明安,杨崇仁.黄花远志的新齐墩果烷型三萜皂甙[J].云南植物研究,1999,21(3):357-363.
    [29]李忠琼,傅文,林瑞超,et al.闭鞘姜属植物化学成分及药理作用研究概况[J].中药材,2001,24(2):148-150.
    [30]Wada SI.库页冷杉树皮中的三萜成分[J].J Nat Prod.,2002,65(11):1657-1659.
    [31]Nakane TI.铁线蕨中的三萜类[英][J].Chem Pharm Bull.,2002,50(9):1273-11275.
    [32]Yin X,Zhang Y,Wu H,et al.Protective effects of Astragalus saponin I on early stage of diabetic nephropathy in rats[J].J Pharmacol Sci,2004,95(2):256-266.
    [33]WANG X,SAKUMA T,ASAFU-ADJAYE E,et al.Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L.by LC/MS/MS[J].Anal.Chem,1999,71:1579-1584.
    [34]Gu Y,Wang GJ,Sun JG,et al.Quantitative determination of ginsenoside Rh2 in rat biosamples by liquid chromatography electrospray ionization mass spectrometry[J].Anal Bioanal Chem,2006,386(7-8):2043-2053.
    [35]舒璞,佘孟兰.中国伞形科植物花粉图志.上海:上海科学技术出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700