Blazar天体统一与演化及其中心结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对活动星系核的基本特性、主要特征、观测结果和理论研究现状作了全面综述,特别是对活动星系核中性质最为特殊的blazar天体多波段能谱特征、统一与演化和理论模型进行了详细评述。同时,详细介绍了本人在攻读学位期间,对blazar天体的中心结构、中心黑洞质量、统一演化的研究工作和研究结果。
     主要研究工作和研究结果如下:(Ⅰ)、通过模型计算了高光度blazar天体宽线区产生的宽发射线和稀释黑体弥散辐射对高能伽马射线的吸收。首先计算了平谱射电类星体(FSRQs)中的伽马射线吸收,结果表明,如果伽马射线辐射区接近宽线区内半径,FSRQs中10-200 GeV的伽马射线不能逃逸出宽线区产生的这两种弥散辐射场。还计算了高频平谱射电类星体HFSRQ PKS 0405-123和经典类星体3C 279中的伽马射线吸收,计算结果表明,如果伽马射线辐射区接近宽线区内半径,PKS 0405-123中10-200 GeV的伽马射线不能逃逸出宽线区产生的这两种弥散辐射场,但3C 279中10 GeV附近的伽马射线有部分吸收,这与观测不符,其他部分的伽马射线则不能逃逸出宽线区的弥散辐射场。将模型计算结果与GLAST卫星将来的观测结果相比较,将能限制10-200 GeV伽马射线辐射区相对于BLR的位置和BLR的结构。(Ⅱ)、对一个样本进行了光学测光和分光观测,对比研究了Kerr黑洞最小光变时标法和反射成图法估算出的blazar天体中心黑洞的质量。这两种方法估算出的黑洞质量相差不超过一个数量级,反射成图法估算出的质量M_(BH)系统地高于光学最小光变时标估算出的质量M_H。M_(BH)可能是宽线区以内的质量,而M_H可能是光学连续谱辐射区以内的质量,所以黑洞质量M_(BH)应该扣除宽线区到光学连续谱辐射区之间所有物质的质量。(Ⅲ)、我注意到宽发射线H_β有双峰结构,并对双峰结构尝试给出了合理的解释,我还注意到巴耳末宽发射线可能存在引力红移,并尝试在双黑洞模型下来解释准周期性光学变暗和爆发、H_β双峰结构、引力红移和喷流摆动。我还计算了双黑洞的引力辐射。由发射线引力红移估算出的主黑洞质量与反射成图法和最小光变时标法得到的结果基本相符。(Ⅳ)、FSRQs和BL Lac天体应该是同类天体,处在blazar天体不同的阶段,FRⅡBL Lac天体可能是介于FSRQs和FRⅠBL Lac天体之间的一个中间态,FRⅡBL Lac天体中心黑洞的自转可能高于FRⅠBL Lac天体中心黑洞的自转,FRⅠ和FRⅡBL Lac天体的母体可能分别是FRⅠ和FRⅡ(G)射电星系。
     全文共分六章,前两章是背景综述,后四章是研究工作部分。第一章介绍了活动星系核和、blazar天体的基本性质、主要特征及分类;第二章介绍现有各种活动星系核中心黑洞质量的估算方法;第三章介绍了有关高光度blazar天体中高能伽马射线和宽线区的研究工作;第四章介绍了两种方法估算blazar天体中心黑洞质量的研究工作;第五章介绍了有关PKS 1510-089的研究工作;第六章介绍了blazar天体统一与演化及blazar天体与FR射电星系统一的研究工作。
In this thesis, I have summarized basic properties, major characteristics, the current results of observations, and theoretical studies on active galactic nuclei (AGNs). Especially, I reviewed the special subclass of AGNs, blazars, focusing on properties of multi-band spectra energy distribution, the unification and evolution of blazer, and the relevant theoretical models. The thesis summarized the works and results of researches of blazars during my PhD in central configurations, masses of central black holes, unification and evolution.
     The main works and results are: (I) Using a model to calculate the . absorption of high-energy gamma rays by the diffuse radiation of emission lines and diluted blackbody from broad line region (BLR). Firstly, I calculated the absorption of gamma rays for FSRQs. The gamma rays of 10-200 GeV cannot escape from the two radiation fields if the gamma rays are emitted close to inner radius of BLR. Secondly, I calculated the absorption for HFSRQ PKS 0405-0123 and classical FSRQ 3C 279. If gamma rays are emitted close to inner radius, the gamma rays of 10-200 GeV in PKS 0405-0123 cannot escape from the two radiation fields. For 3C 279, the gamma rays around 10 GeV are partly absorped by the two radiations, which is not consistent with observations. The rest of gamma rays cannot escape from the two radiations if gamma rays are emitted close to inner radius. Comparing the results predicted with GLAST observations in future can limit the emission region of 10-200 GeV gamma rays relative to BLR and structure of BLR. (II) (II)Spectrophotometry and photometry for a sample of blazars are performed. Comparing the black hole masses M_H from the minimum variability timescales with M_(BH) from the reverberation mapping show differences between M_(BH) and M_H are not larger than one order of magnitude, and M_(BH) are systemically larger than M_H. It is probable that M_(BH) represent the mass inside the BLR, while M_H represent the mass inside the continual emission region. It indicates that the mass contained in the region from the BLR to the continual emission region should besubtracted from M_(BH). (III) I found that broad emission line of H_βhas adouble peaked profile, and tried to explain the double peaked profile of PKS 1510-089. I also found that broad Balmer emission lines probably have gravtitational redshifts. I tried to explain in the context of binry black hole model the quasi-periodic optical darkening and brightening, the H_βdouble peaked profile, the gravitational redshift of H_βemission line,and the wiggling of jet. I calculated the gravitational wave radiation from the black hole binary. The primary black hole mass derived from the gravitational redshift is in agreement with results from the minimum variability timescales and the reverberation mapping. (IV) FSRQs and BL Lacs should be the single population and are at the different phases. FR II BL Lacs are probably the intermediate stage in the sequence from FSRQs to FR I BL Lacs, and it is probable that the central black holes of FR II BL Lacs spin faster than those of FR I BL Lacs. The parent populations of FR II and FR I BL Lacs are FR II (G) and FR I radio galaxies, respectively.
     There are six chapters in this thesis altogether. The first two chapters are the reviews of backgroud and the last four chapters are the part of my works. Chapter one is a review of the basic properties, major characteristics, and classifications of AGNs and blazars. Chapter two reviews various methods estimating the central black hole masses of AGNs. Chapter three focuses on study of high energy gamma-rays and structures of broad emission line regions in powerful blazars. Chapter four presents works on estimating the central black hole masses of blazars by two different methods. Chapter five presents my investigations on PKS 1510-089. Chapter six introduces study on unification and evolution of blazars, and relationship of blazars with FR radio galaxies.
引文
[1] Seyfert C. K., Nuclear Emission in Spiral Nebulae, ApJ, 1943 (97): 28-40
    
    [2] Matthews T. A. & Sandage A. R., Optical Identification of 3c 48, 3c 196, and 3c 286 with Stellar Objects, ApJ, 1963 (138): 30-56
    
    [3] Hazard C. et al., Investigation of the Radio Source 3C273 by the method of Lunar Occultations, Nature, 1963 (197): 1037
    
    [4] Schmidt M., 3C 273: a star-like object with large red-shift, Nature, 1963 (197): 1040
    
    [5] Fanaroff B. & Riley J. M., The morphology of extragalactic radio sources of high and low luminosity, MNRAS, 1974 (167): 31-36
    
    [6] Browne I. W. A., Is it possible to turn an elliptical radio galaxy into a BL Lac object?, MNRAS, 1983 (204): 23-27
    
    [7] Laing R. A. et al., Bright radio sources at 178 MHz - Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies, MNRAS, 1983 (204): 151-187
    
    [8] Urry C. M. & Padovani P., Unified Schemes for Radio-Loud Active Galactic Nuclei, PASP, 1995 (107): 803-845
    
    [9] Frank J. et al., Books-Received - Accretion Power in Astrophysics - ED. 2, JBAA, 1992 (102): 287-342
    
    [10] Gammie C. F., Efficiency of Magnetized Thin Accretion Disks in the Kerr Metric, ApJL, 1999 (522): 57-60
    
    [11] Bottcher M. & Dermer C. D., An Evolutionary Scenario for Blazar Unification, ApJ, 2002 (564): 86-91
    
    [12] Maraschi L. & Tavecchio F., The Jet-Disk Connection and Blazar Unification, ApJ, 2003 (593): 667-675
    
    [13] Ulrich M. H. et al., Variability of Active Galactic Nuclei, ARA&A, 1997 (35): 445-502
    
    [14] Rees M. J., Black Hole Models for Active Galactic Nuclei, ARA&A, 1984 (22): 471-506
    
    [15] Wagner S. J. & Witzel A., Intraday Variability In Quasars and BL Lac Objects, ARA&A, 1995 (33): 163-198
    
    [16] Eracleous M. & Halpern J. P., Doubled-peaked emission lines in active galactic nuclei, ApJS, 1994 (90): 1-30
    
    [17] Eracleous M. & Halpern J. P., Completion of a Survey and Detailed Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nuclei, ApJ, 2003 (599): 886-908
    
    [18] Chen K. Y. et al., Kinematic evidence for a relativistic Keplerian disk - ARP 102B, ApJ, 1989 (339): 742-751
    
    [19] Chen K. Y. & Halpern J. P., Structure of line-emitting accretion disks in active galactic nuclei - ARP 102B, ApJ, 1989 (344): 115-124
    
    [20] Halpern J. P., Line emission from another relativistic accretion disk - 3C 332, ApJ, 1990 (365): L51-54
    
    [21] Angel J. R. P. & Stockman H. S., Optical and infrared polarization of active extragalactic objects, ARA&A, 1980 (18): 321-361
    
    [22] Fugmann W. Are all flat-spectrum radio sources blazars?, A&A, 1988 (205): 86-92
    
    [23] Impey C. D. et al., Optical polarization of a complete sample of radio sources, ApJ, 1991 (375): 46-68
    
    [24] Valtaoja E. et al., Five Years Monitoring of Extragalactic Radio Sources - Part Four - Variability Statistics and the Unified Models for AGN / Active Galactic Nuclei, A&A, 1992 (254): 80-88
    
    [25] Wills B. J. et al., A survey for high optical polarization in quasars with core-dominant radio structure - Is there a beamed optical continuum?, ApJ, 1992 (398): 454-475
    
    [26] Punsly B., Spectral Diagnostics of Blazar Central Engines. I. Observational Implications, ApJ, 1996a(473): 152-177
    [27] Moore R. L. & Stockman H. S., A comparison of the properties of highly polarized QSOs versus low-polarization QSOs, ApJ, 1984(279): 465-484
    [28] Weiler K. W. & Johnston K. J., Bl-Lacertae Objects-the Missing Link, Nature, 1980(284): 306
    [29] Quinn J. et al., The Flux Variability of Markarian 501 in Very High Energy Gamma Rays, ApJ, 1999(518): 693-698
    [30] Xie G. Z. et al., Search for Short Variability Timescale of the GEV Gamma-Ray-Loud Blazars, ApJ, 2001b(548): 200-212
    [31] Xie G. Z. et al., The massive black hole in the center of the active galaxy MRK 421, A&A, 1998(334): L29-31
    [32] Marscher A. P. & Gear W. K., Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273, ApJ, 1985(298): 114-127
    [33] Maraschi L. et al., A jet model for the gamma-ray emitting blazar 3C 279, ApJ, 1992(397): L5-9
    [34] Bloom S. D. & Marscher A. P., An Analysis of the Synchrotron Self-Compton Model for the Multi--Wave Band Spectra of Blazars, ApJ, 1996 (461): 657-663
    [35] Dermer C. D. etal., High-energy gamma radiation from extragalactic radio sources, A&A, 1992(256): L27-30
    [36] Dermer C. D. & Schlickeiser R., Model for the High-Energy Emission from Blazars, ApJ, 1993(416): 458-484
    [37] Sikora M. et al., Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?, ApJ, 1994 (421): 153-162
    [38] Blandford R. D. & Levinson A., Pair cascades in extragalactic jets. 1: Gamma rays, ApJ, 1995(441): 79-95
    [39] Ghisellini G. & Madau P., On the origin of the gamma-ray emission in blazars, MNRAS, 1996 (280): 67-76
    
    [40] Dermer C. D. et al., Nonthermal Compton and Synchrotron Processes in the Jets of Active Galactic Nuclei, ApJS, 1997 (109): 103-137
    
    [41] Sambruna R. M. et al., On the Spectral Energy Distributions of Blazars, ApJ, 1996 (463): 444-465
    
    [42] Fossati G. et al., A unifying view of the spectral energy distributions of blazars, MNRAS, 1998 (299): 433-448
    
    [43] Padovani P. et al., What Types of Jets Does Nature Make? A New Population of Radio Quasars, ApJ, 2003 (588): 128-142
    
    [44] Anton S. & Browne I. W. A., The recognition of blazars and the blazar spectral sequence, MNRAS, 2005 (356): 225-231
    
    [45] Tagliaferri G. et al., The concave X-ray spectrum of the blazar ON 231: the signature of intermediate BL Lacertae objects, A&A, 2000 (354): 431-438
    
    [46] Donato D. et al., Hard X-ray properties of blazars, A&A, 2001 (375) : 739-751
    
    [47] Qin Y. P. et al., Distinguishing RBL-like Objects and XBL-Like Objects With the Peak Emission Frequency of the Overall Energy Spectrum, Ap&SS, 1999 (266): 549-555
    
    [48] Xie G. Z. et al., The Spectral Energy Distributions of Blazars and the Connections among XBLs, RBLs, and 0VV Quasars, PASJ, 2001a (53): 469-473
    
    [49] Xie G. Z. et al., The Optical-X-Ray-Gamma-Ray Spectral Energy Distributions of GeV Gamma-Ray Loud Blazars and Connection Among LBs, HBLs and FSRQs, IJMPD, 2003a (12): 781-789
    
    [50] Rybicki G. B. &Lightman A. P., Radiative processes in astrophysics, 1979, rpa. Book. R, 1-393
    
    [51] Urry C. M. & Shafer R. A., Luminosity enhancement in relativistic jets and altered luminosity functions for beamed objects, ApJ, 1984 (280) : 569-573
    
    [52] Kollgaard R. I. et al., Radio Constraints on Relativistic Beaming Models of BL Lacertae Objects, ApJ, 1996b (465): 115-126
    
    [53] Giommi P. et al., Synchrotron and inverse Compton variability in the BL Lacertae object S5 0716+714, A&A, 1999 (351): 59-64
    
    [54] Maraschi L. et al., Simultaneous X-Ray and TEV Observations of a Rapid Flare from Markarian 421, ApJ, 1999 (526): L81-84
    
    [55] Sambruna R. M. et al., Correlated Intense X-Ray and TEV Activity of Markarian 501 in 1998 June, ApJ, 2000 (538): 127-133
    
    [56] Sikora M. & Madejski G., Blazars, AIPC, 2001 (558): 275
    
    [57] Ghisellini G. et al., Diagnostics of Inverse-Compton models for the gamma-ray emission of 3C 279 and MKN 421, A&AS, 1996 (120) : 503-506
    
    [58] Bednarek W., Inverse Compton scattering model for gamma-ray production in MeV blazars, MNRAS, 1998 (294): 439-442
    
    [59] Mastichiadis A. & Kirk J. G., Variability in the synchrotron self-Compton model of blazar emission, A&A, 1997 (320) : 19-25
    
    [60] Chiaberge M. & Ghisellini G., Rapid variability in the synchrotron self-Compton model for blazars, MNRAS, 1999 (306): 551-560
    
    [61] Ghisellini G. et al., Inhomogeneous synchrotron-self-Compton models and the problem of relativistic beaming of BL Lac objects, A&A, 1985 (146): 204-212
    
    [62] Celotti A. et al., A model for the spectral variability of BL Lacertae objects at high frequencies, ApJ, 1991 (377): 403-416
    
    [63] Marscher A. P. & Travis J. P., Synchrotron self-Compton interpretation of multiwaveband observations of gamma-ray bright blazars, A&AS, 1996 (120): 537-540
    
    [64] Inoue S. & Takahara F. Electron Acceleration and Gamma-Ray Emission from Blazars ApJ, 1996 (463): 555-564
    [65] Mutel R. L. et al., Superluminal motion of the radio core of BL Lacertae - 1980. 4-1988. 3, ApJ, 1990 (352): 81-95
    
    [66] Vermeulen R. C. & Cohen M. H., Superluminal motion statistics and cosmology, ApJ, 1994 (430): 467-494
    
    [67] Zensus J. A., Parsec-Scale Jets in Extragalactic Radio Sources, ARA&A, 1997 (35): 607-636
    
    [68] Antonucci R. R. J. & Ulvestad J. S., Extended radio emission and the nature of blazars, ApJ, 1985 (294): 158-182
    
    [69] Stickel M. et al., The complete sample of 1 Jansky BL Lacertae objects. I - Summary properties, ApJ, 1991 (374): 431-439
    
    [70] Smith A. G. et al., The longer optical time scales of a large sample of quasars, AJ, 1993 (105): 437-455
    
    [71] Veron P., Redshift and Nature of Two Bl-Lacertae Objects-PKS:0306+102 and S:3:0503-04, A&A, 1994 (283): 802-804
    
    [72] Vermeulen R. C. et al., When Is BL Lac Not a BL Lac?, ApJ, 1995 (452):L5-8
    
    [73] Maraschi L. & Rovetti F., A unified relativistic beaming model for BL Lacertae objects and flat spectrum radio quasars, ApJ, 1994 (436): 79-88
    
    [74] Ghisellini G. et al., A theoretical unifying scheme for gamma-ray bright blazars, MNRAS, 1998 (301): 451-468
    
    [75] Georganopoulos M., Kirk J. G., & Mastichiadis A., The Beaming Pattern and Spectrum of Radiation from Inverse Compton Scattering in Blazars, ApJ, 2001a (561): 111-117
    
    [76] Sambruna R. M. et al., The High-Energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134, ApJ, 1997 (474): 639-649
    
    [77] Mukherjee R. et al., Broadband Spectral Analysis of PKS 0528+134: A Report on Six Years of EGRET Observations, ApJ, 1999 (527): 132-142
    
    [78] Hartman R. C. et al., Multiepoch Multiwavelength Spectra and Models for Blazar 3C 279, ApJ, 2001 (553): 683-694
    
    [79] Pian E. et al., BeppoSAX Observations of Unprecedented Synchrotron Activity in the BL Lacertae Object Markarian 501, ApJ, 1998 (492) : L17-20
    
    [80] Petry D. et al., Multiwavelength Observations of Markarian 501 during the 1997 High State, ApJ, 2000 (536): 742-755
    
    [81] Madejski G. et al., X-Ray Observations of BL Lacertae during the 1997 Outburst and Association with Quasar-like Characteristics, ApJ, 1999 (521): 145-154
    
    [82] Bottcher M. & Bloom S. D., Analyzing the Multiwavelength Spectrum of BL Lacertae during the 1997 July Outburst, AJ, 2000 (119): 469-477
    [83] Georganopoulos M., Blue Quasars and Blazar Unification Schemes, ApJ, 2000 (543): L15-L18
    
    [84] Cavaliere A. &D' Elia V., The Blazar Main Sequence, ApJ, 2002 (571): 226-233
    
    [85] Blandford R. D. & Znajek R., Electromagnetic extraction of energy from Kerr black holes, MNRAS, 1977 (179): 433-456
    
    [86] Spada M. et al., Internal shocks in the jets of radio-loud quasars, MNRAS, 2001 (325): 1559-1570
    
    [87] Blandford R. D. & Payne D. G., Hydromagnetic flows from accretion discs and the production of radio jets, MNRAS, 1982 (199): 883-903
    
    [88] Livio M. et al., Extracting Energy from Black Holes: The Relative Importance of the Blandford-Znajek Mechanism, ApJ, 1999 (512): 100-104
    
    [89] Ghosh P. & Abramowicz M. A., Electromagnetic extraction of rotational energy from disc-fed black holes-The strength of the Blandford-Znajek process, MNRAS, 1997 (292): 887-895
    
    [90] Meier D. L., The Association of Jet Production with Geometrically Thick Accretion Flows and Black Hole Rotation, ApJ, 2001 (548): L9-12
    
    [91] Jackson C. A. & Wall J. V., Extragalactic radio-source evolution under the dual-population unification scheme, MNRAS, 1999 (304): 160-174
    [92] Meier D. L., Grand unification of AGN and the accretion and spin paradigms, New Astronomy Reviews, 2002(46): 247-255
    [93] Wang J. M., Ho L. C. & Staubert R., The central engines of radio-loud quasars, A&A, 2003(409): 887-898
    [94] Rees M., Relativistic jets and beams in radio galaxies, Nature, 1978 (275): 516-517
    [95] Bardeen J. M. & Petterson J. A., The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes, ApJ, 1975(195): L65-67
    [96] Natarajan P. & Pringle J. E., The Alignment of Disk and Black Hole Spins in Active Galactic Nuclei, ApJ, 1998(506): L97-100
    [97] Fabian A. C. et al., X-ray fluorescence from the inner disc in Cygnus X-I, MNRAS, 1989(238): 729-736
    [98] Laor A., Line profiles from a disk around a rotating black hole, ApJ, 1991(376): 90-94
    [99] Tanaka Y. et al., Gravitationally Redshifted Emission Implying an Accretion Disk and Massive Black-Hole in the Active Galaxy MCG: -6-30-15, Nature, 1995(375): 659
    [100] Iwasawa K. et al., Variation of the broad X-ray iron line inMCG-6-30-15 during a flare, MNRAS, 1999(306): L19-24
    [101] Wilms J. et aI., XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole?, MNRAS, 2001(328) : L27-31
    [102] Fabian A. C. et al., A long hard look at MCG-6-30-15 with XMM-Newton, MNRAS, 2002(335): L1-5
    [103] Liu S. & Melia F., Spin-induced Disk Precession in the Supermassive Black Hole at the Galactic Center, ApJ, 2002(573): L23-26
    [104] Kollatschny W., Spin orientation of supermassive black holes in active galaxies, A&A, 2003(412): L61-64
    [105] Miller J. M. et al., Evidence of Spin and Energy Extraction in a Galactic Black Hole Candidate: The XMM-Newton/EPIC-pn Spectrum of XTE J1650-500, ApJ, 2002 (570): L69-73
    
    [106] Miller J. M. et al., Evidence of Black Hole Spin in GX 339-4: XMM-Newton/EPIC-pn and RXTE Spectroscopy of the Very High State, ApJ, 2004 (606): L131-134
    
    [107] Shapiro S. L. & Shibata M., Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Analytic Determination of the Black Hole Mass and Spin, ApJ, 2002 (577): 904-908
    
    [108] Hughes S. A. & Blandford R. D., Black Hole Mass and Spin Coevolution by Mergers, ApJ, 2003 (585): L101-104
    
    [109] Gammie C. F. et al., Black Hole Spin Evolution, ApJ, 2004 (602) : 312-319
    
    [110] Wardle J. F. C. et al., The radio morphology of blazars and relationships to optical polarization and to normal radio galaxies, ApJ, 1984 (279): 93-98
    
    [111] Antonucci R. R. J. & Ulvestad J. S., Blazars can have double radio sources, Nature, 1984 (308): 617-619
    
    [112] Ulvestad J. S. & Antonucci R. R. J., Blazars with arcminute-scale radio halos, AJ, 1986 (92): 6-11
    
    [113] Peacock J. A., 1987, in Astrophysical Jets and Their Engines, ed. W. Kundt (Dordrecht, Reidel), 185
    
    [114] Browne I. W. A., Bl-Lacertae Objects Optically Violent Variables Hpqs and Unified Models, LNP, 1989 (334): 401
    
    [115] Kollgaard R. I., Relativistic jets and the nature of BL Lacertae objects, VA, 1994 (38): 29-75
    
    [116] Kollgaard R. I., Wardle J. F. C., Roberts D. H. & Gabudza D. C., Radio constraints on the nature of BL Lacertae objects and their parent population, AJ, 1992 (104): 1687-1705
    
    [117] Kollgaard R. I., The Parsec-Scale Radio Structure of X-ray Selected BL Lacs, A&AS, 1995 (186): 2409
    
    [118] Kollgaard R. I. et al., Parsec-Scale Radio Structure of Four X-Ray-selected BL Lacertae Objects, ApJ, 1996a (460) : 174-184
    
    [119] Padovani P. & Urry C. M., Fanaroff-Riley I galaxies as the parent population of BL Lacertae objects. I - X-ray constraints, ApJ, 1990 (356) : 75-82
    
    [120] Padovani P. & Urry C. M., Fanaroff-Riley I galaxies as the parent population of BL Lacertae objects. II - Optical constraints, ApJ, 1991 (368): 373-379
    
    [121] Urry C. M. et al., Fanaroff-Riley I galaxies as the parent populations of BL Lacertae objects. III - Radio constraints, ApJ, 1991 (382): 501-507
    
    [122] Stocke J. T. et al., Optical and radio properties of X-ray selected BL Lacertae objects, ApJ, 1985 (298): 619-629
    
    [123] Xie G. Z. et al., The relation between BL Lacertae objects and OVV quasars, and the unified model of BL Lacertae objects, FR-I and FR-II (G) radio galaxies, A&A, 1993 (278): 6-10
    
    [124] Owen P. N. et al., Optical Spectroscopy of Radio Galaxies in Abell Clusters II. BL Lacs and FR I Unification, AJ, 1996 (111): 53-63
    
    [125] Scheuer P. A. G. 1987, in Superluminal Radio Sources, ed. J. A. Zensus & T. J. Pearson (Cambridge: Cambridge University Press), 104
    
    [126] Barthel P. D., Is every quasar beamed?, ApJ, 1989 (336): 606-611
    
    [127] Chiaberge M., Capetti A. & Celotti A., The HST view of the FR I / FR II dichotomy, A&A, 2000 (355): 873-879
    
    [128] Chiaberge M., Capetti A. & Celotti A., Understanding the nature of FR II optical nuclei: A new diagnostic plane for radio galaxies, A&A, 2002 (394): 791-800
    
    [129] Capetti A., Trussoni E., Celotti A. et al., Spectral energy distributions of FR I nuclei and the FR I/BL Lac unifying model, MNRAS, 2000 (318): 493-500
    
    [130] Bai J. M. & Lee M. G., Analysis of Energy Spectra with Low Photon Counts via Bayesian Posterior Simulation, ApJ, 2001 (548): 244-243
    
    [131] Chiaberge M., Celotti A., Capetti A. & Ghisellini G., Does the unification of BL Lac and FR I radio galaxies require jet velocity structures?, A&A, 2000 (358): 104-112
    
    [132] Chiaberge M. et al., The BL Lac heart of Centaurus A, MNRAS, 2001 (324): L33-37
    
    [133] Laing R. A., Relativistic flow in low luminosity radio jets, sara. Conf. 1993, 346
    
    [134] Swain M. R. et al., Internal Structure of the Jets in 3C 353, ApJ, 1998 (507): L29-33
    
    [135] Laing R. A. et al., Asymmetries in the jets of weak radio galaxies, MNRAS, 1999 (306): 513-530
    
    [136] Capetti A., Celotti A., Chiaberge M. et al., The HST survey of the B2 sample of radio-galaxies: Optical nuclei and the FR I/BL Lac unified scheme, A&A, 2002 (383): 104-111
    
    [137] Trussoni E., Capetti A., Celotti A. et al., A multi-wavelength test of the FR I-BL Lac unifying model, A&A, 2003 (403): 889-899
    
    [138] Urry C. M., Scarpa R. et al., The Hubble Space Telescope Survey of BL Lacertae Objects. II. Host Galaxies, ApJ, 2000 (532): 816-829
    
    [139] Woo J. H. et al., The Fundamental Plane Evolution of Active Galactic Nucleus Host Galaxies, ApJ, 2004 (617): 903-914
    
    [140] Punsly B., Spectral Diagnostics of Blazar Central Engines. II. Hydromagnetic Theory, ApJ, 1996b (473): 178-203
    
    [141] Miller H. R. et al., Detection of microvariability for BL Lacertae objects, Nature, 1989 (337): 627-629
    
    [142] Xie G. Z. et al., THE OPTICAL VARIABILITY OF SEVEN BL LACERTAE OBJECTS, A&AS, 1987 (67): 17-24
    [143] Xie G. Z. et al., Supermassive Black Holes in BL Lacertae Objects: Estimated Masses and Their Relation to Nuclear Luminosity, AJ, 2002b (123): 2352-2357
    
    [144] Xie G. Z. et al., Determination of several parameters of BL Lacertae objects and relativistic beaming, A&A, 1989 (220): 89-91
    
    [145] Fabian A. C. & Rees M. J., 1979, in X-ray astronomy, Proc. Of the Symposium held at Innsbruck, Austria, May 29-June 10, 1978, (Oxford: Oxford, Pergamon Press, Ltd.) p. 381-398
    
    [146] Dondi L. & Ghisellini G., Gamma-ray-loud blazars and beaming, MNRAS, 1995 (273): 583-595
    
    [147] Xie G. Z. et al., Observational distinction between two types of active galactic nuclei, AJ, 1991b (101): 71-77
    
    [148] Zdziarski A. A. &Lightman A. P., Nonthermal electron-positron pair production and the ' universal' X-ray spectrum of active galactic nuclei, ApJ, 1985 (294): L79-83
    
    [149] Wagner S., Correlated Optical and Gamma-Ray Variability in Blazars, NYASA, 1995 (759): 526
    
    [150] Bassani L. et al., Super-Eddington luminosity characteristics of active galactic nuclei, A&A, 1983 (125): 52-58
    
    [151] Xie G. Z. et al., Optical behaviour of 8 BL Lac objects and the properties of their central nucleus, A&AS, 1988a (72): 163-169
    
    [152] Abramowicz M. A. & Nobili L., Are there black holes in quasars, Nature, 1982 (300): 506-507
    
    [153] Xie G. Z. et al., CCD photometry of 14 BL Lacertae objects and theoretical model, ApJS, 1992 (80): 683-699
    
    [154] Xie G. Z. et al., Simultaneous multirange observations and detection of rapid variability of BL Lacertae objects, A&AS, 1994 (106) : 361-372
    
    [155] Villata M. et al., Optical photometric monitoring of gamma-ray loud blazars, A&AS, 1997 (121): 119-138
    
    [156] Raiteri C. M. et al., Optical and radio variability of the BL Lacertae object AO 0235+16: A possible 5-6 year periodicity, A&A, 2001 (377): 396-412
    
    [157] Gaidos J. A. et al., Very Rapid and Energetic Bursts of TeV Photons from the Active Galaxy Markarian 421, Nature, 1996 (383): 319-320
    
    [158] Xie G. Z. et al., Optical Monitoring Sample of the GEV Gamma-Ray-loud Blazars, ApJ, 1999 (522): 846-862
    
    [159] Xie G. Z. et al., Photometric monitoring of 12 BL Lacertae objects, MNRAS, 2002a (329): 689-699.
    
    [160] Xie G. Z. et al., Photometry of three gamma-ray-loud quasars and implications for supermassive black holes, MNRAS, 2002c (334): 459-470
    
    [161] Dermer C. D. & Gehrels N., Two Classes of Gamma-Ray-emitting Active Galactic Nuclei, ApJ, 1995 (447): 103-120
    
    [162] Elvis M. et al., Most Supermassive Black Holes Must Be Rapidly Rotating, ApJ, 2002 (565): L75-77
    
    [163] Woo J. H. & Urry C. M., Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities, ApJ, 2002 (579): 530-544
    
    [164] Krolik J. H. et al., Ultraviolet variability of NGC 5548 - Dynamics of the continuum production region and geometry of the broad-line region, ApJ, 1991 (371): 541-562
    
    [165] Wandel A., Peterson B. M. & Malkan M. A., Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques, ApJ, 1999 (526): 579-591
    
    [166] Krolik J. H., Systematic Errors in the Estimation of Black Hole Masses by Reverberation Mapping, ApJ, 2001 (551) : 72-79
    
    [167] Blandford R. D. &McKee C. F., Reverberation mapping of the emission line regions of Seyfert galaxies and quasars, ApJ, 1982 (255) : 419-439
    
    [168] Peterson B. M., Reverberation mapping of active galactic nuclei, PASP, 1993 (105): 247-268
    
    [169] Ho L., 1999, in Observational Evidence for Black holes in the Universe, ed. S. Chakrabarti (Dordrecht: Reidel), p. 157
    
    [170] Kaspi S. et al., Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei, ApJ, 2000 (533): 631-649
    
    [171] Onken C. A. & Peterson B. M., The Mass of the Central Black Hole in the Seyfert Galaxy NGC 3783, ApJ, 2002 (572): 746-752
    
    [172] Peterson B. M., Emission-line variability in Seyfert galaxies, PASP, 1988 (100): 18-36
    
    [173] Netzer H., 1990, in Active Galactic Nuclei, ed. T. J. L. Courvoisier & M. Mayor (Berlin: Springer), 137
    
    [174] McLure R. J. & Dunlop J. S., The black hole masses of Seyfert galaxies and quasars, MNRAS, 2001 (327): 199-207
    
    [175] Cao X. W., Evidence for Anisotropic Motion of the Clouds in Broad-Line Regions of BL Lacertae Objects, ApJ, 2004 (609): 80-84
    
    [176] Clavel J. et al., Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I - an 8 month campaign of monitoring NGC 5548 with IUE, ApJ, 1991 (366): 64-81
    
    [177] Peterson B. M. et al., Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. II - an intensive study of NGC 5548 at optical wavelengths, ApJ, 1991 (368): 119-137
    
    [178] Dietrich M. et al., Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. IV - Intensity variations of the optical emission lines of NGC 5548, ApJ, 1993 (408): 416-427
    
    [179] Maoz D. et al., Variations of the ultraviolet Fe II and Balmer continuum emission in the Seyfert galaxy NGC 5548, ApJ, 1993 (404): 576-583
    
    [180] Osterbrock D. E. & Shuder J. M., Emission-line profiles in Seyfert 1 galaxies, ApJS, 1982 (49): 149-174
    
    [181] Peterson B. M. & Wandel A., Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei, ApJL, 1999 (521): L95-98
    
    [182] Peterson B. M. & Wandel A., Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation, ApJL, 2000 (540): L13-16
    
    [183] Peterson B. M. et al., Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database, ApJ, 2004 (613): 682-699
    
    [184] Gebhardt K. et al., Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics, ApJ, 2000b (543) : L5-8
    
    [185] Ferrarese L. et al., Supermassive Black Holes in Active Galactic Nuclei. I. The Consistency of Black Hole Masses in Quiescent and Active Galaxies, ApJ, 2001 (555): L79-82
    
    [186] Ferrarese L. & Merritt D. M. A., Fundamental Relation between Supermassive Black Holes and Their Host Galaxies, ApJ, 2000 (539): L9-12
    
    [187] Gebhardt K. et al., A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, ApJ, 2000a (539): L13-16
    
    [188] Wandel A., Black Holes of Active and Quiescent Galaxies. I. The Black Hole-Bulge Relation Revisited, ApJ, 2002 (565): 762-772
    
    [189] McLure R. J. & Dunlop J. S., On the black hole-bulge mass relation in active and inactive galaxies, MNRAS, 2002 (331): 795-804
    
    [190] Onken C. A. et al., Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei, ApJ, 2004 (615): 645-651
    
    [191] Vestergaard M., Determining Central Black Hole Masses in Distant Active Galaxies, ApJ, 2002 (571): 733-752
    
    [192] McLure R. J. & Javis M. J., Measuring the black hole masses of high-redshift quasars, MNRAS, 2002 (337): 109-116
    [193] Willott C. J. et al., A 3×10~9 Msolar Black Hole in the Quasar SDSS J1148+5251 at z=6.41, ApJ, 2003 (587): L15-18
    
    [194] Vestergaard M., Early Growth and Efficient Accretion of Massive Black Holes at High Redshift, ApJ, 2004 (601): 676-691
    [195] McLure R. J. & Dunlop J. S., The cosmological evolution of quasar black hole masses, MNRAS, 2004 (352): 1390-1404
    
    [196] Schneider D. P. et al., The Sloan Digital Sky Survey Quasar Catalog. II. First Data Release, AJ, 2003 (126): 2579-2593
    [197] Onken C. A. et al., Black Hole Masses in Three Seyfert Galaxies, ApJ, 2003 (585): 121-127
    
    [198] Tremaine S. et al., The Slope of the Black Hole Mass versus Velocity Dispersion Correlation, ApJ, 2002 (574): 740-753
    
    [199] Burbidge E. M. et al., The Masses of Elliptical Galaxies I. a 'Redetermination of the Mass of M32, ApJ, 1961 (133): 393-404
    [200] Barth A. J. et al., Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501, ApJ, 2002a (566): L13-16
    [201] Barth A. J. et al., A Study of the Direct Fitting Method for Measurement of Galaxy Velocity Dispersions, AJ, 2002b (124): 2607-2614
    [202] Barth A. J. et al., The Black Hole Masses and Host Galaxies of BL Lacertae Objects, ApJ, 2003 (583): 134-144
    
    [203] Jorgensen I. et al., The Fundamental Plane for cluster E and SO galaxies, MNRAS, 1996 (280): 167-185
    
    [204] O' Dowd M. et al., The Host Galaxies of Radio-loud Active Galactic Nuclei: The Black Hole-Galaxy Connection, ApJ, 2002 (580): 96-103
    [205] Bettoni D. et al., The fundamental plane of radio galaxies, A&A, 2001 (380): 471-477
    [206] Nelson C. H. & Whittle M., Stellar and Gaseous Kinematics of Seyfert Galaxies. I. Spectroscopic Data, ApJS, 1995 (99): 67-106
    
    [207] Nelson C. H. & Whittle M., Stellar and Gaseous Kinematics of Seyfert Galaxies. II. The Role of the Bulge, ApJ, 1996 (465): 96-114
    
    [208] Nelson C. H., Black Hole Mass, Velocity Dispersion, and the Radio Source in Active Galactic Nuclei, ApJ, 2000 (544): L91-94
    
    [209] Marchesini D. et al., A transition in the accretion properties of radio-loud active nuclei, MNRAS, 2004 (351): 733-744
    
    [210] Kormendy J. & Richstone D., Inward Bound---The Search For Supermassive Black Holes In Galactic Nuclei, ARA&A, 1995 (33): 581-624
    
    [211] Xie G. Z. et al., The Mass-Luminosity Relation, Accretion Rate-Luminosity Relation, and Evolutionary Sequence of Blazars, AJ, 2004a (127): 53-57
    
    [212] Netzer H., The Largest Black Holes and the Most Luminous Galaxies, ApJ, 2003 (583): L5-8
    
    [213] Penston M. V., Is the emission line redshift the redshift?, MNRAS, 1977 (180): 27-30
    
    [214] Zheng W. & Sulentic J. W., Internal redshift difference and central mass in QSOs, ApJ, 1990 (350): 512-517
    
    [215] Kollatschny W. & Dietrich M., Balmer emission-line profile variations in NGC 4593, A&A, 1997 (323): 5-13
    
    [216] Fabian A. C. et al., Broad Iron Lines in Active Galactic Nuclei, PASP, 2000 (112): 1145-1161
    
    [217] Vercellone S. et al., On the duty-cycle of gamma-ray blazars, MNRAS, 2004 (353): 890-902
    
    [218] Catanese M. et al., Multiwavelength Observations of a Flare from Markarian 501, ApJ, 1997 (487): L143-L146
    
    [219] Fichtel C. E. et al., The first energetic gamma-ray experiment telescope (EGRET) source catalog, ApJS, 1994 (94): 551-581
    [220] Hartman R. C. et al., The Third EGRET Catalog of High-Energy Gamma-Ray Sources, ApJS, 1999 (123): 79-202
    
    [221] Lin Y. C. et al., Comparison of X-Ray- and Radio-selected BL Lacertae Objects in High-Energy Gamma-Ray Observations, ApJ, 1997 (476): L11-L14
    
    [222] Mukherjee R. et al., EGRET Observations of High-energy Gamma-Ray Emission from Blazars: an Update, ApJ, 1997 (490): 116-135
    
    [223] Thompson D. J. et al., The Second EGRET Catalog of High-Energy Gamma-Ray Sources, ApJS, 1995 (101): 259-286
    
    [224] Thompson D. J. et al., Supplement to the Second EGRET Catalog of High-Energy Gamma-Ray Sources, ApJS, 1996 (107): 227-237
    
    [225] Punch M. et al., Detection of TeV photons from the active galaxy Markarian 421, Nature, 1992 (358): 477-478
    
    [226] Quinn J. et al., Detection of Gamma Rays with E > 300 GeV from Markarian 501, ApJ, 1996 (456): L83-L86
    
    [227] Chen A., Reyes L. C., & Ritz S., Detecting the Attenuation of Blazar Gamma-Ray Emission by Extragalactic Background Light with the Gamma-Ray Large Area Space Telescope, ApJ, 2004 (608): 686-691
    
    [228] Funk S. et al., The trigger system of the H. E. S. S. telescope array, Astroparticle Physics, 2004 (22): 285-296
    
    [229] Hinton J. A., The status of the HESS project, New Astronomy Reviews, 2004 (48): 331-337
    
    [230] Hofmann W., Status of the H. E. S. S. Project, 2003, Proc. 28th ICRC (Tsukuba), 2811
    
    [231] Aharonian F. et al., Observations of Mkn 421 in 2004 with HESS at large zenith angles, A&A, 2005 (437): 95-99
    
    [232] Baixeras C. et al., Commissioning and first tests of the MAGIC telescope, NIMPA, 2004 (518): 188-192
    
    [233] Albert J. et al., MAGIC Observations of Very High Energy gamma-Rays from HESS J1813-178, ApJ, 2006 (637): L41-L44
    
    [234] Gehrels N. & Michelson P., GLAST: the next-generation high energy gamma-ray astronomy mission, Astropart. Phys., 1999 (11): 277-282
    
    [235] Gould R. J. & Schroder G. P., Pair Production in Photon-Photon Collisions, Phys. Rev., 1967 (155): 1404-1407
    
    [236] Jauch J. M. &Rohrlich F., 1976, The theory of photons and electrons, The relativistic quantum field theory of charged particles with spin one-half (Texts and Monographs in Physics, New York: Springer, 1976, 2nd ed.)
    
    [237] Coppi P. S. & Blandford R. D., Reaction rates and energy distributions for elementary processes in relativistic pair plasmas, MNRAS, 1990 (245): 453-507
    
    [238] Svensson R., Non-thermal pair production in compact X-ray sources - First-order Compton cascades is soft radiation fields, MNRAS, 1987 (227) : 403-451
    
    [239] Kaspi S. & Netzer H., Modeling Variable Emission Lines in Active Galactic Nuclei: Method and Application to NGC 5548, ApJ, 1999 (524): 71-81
    
    [240] Liu H. T. & Bai J. M., Absorption of 10-200 GeV Gamma Rays by Radiation from Broad-Line Region in Blazars, ApJ, 2006 (653) : 1089-1097
    
    [241] D' Elia V., Padovani P. & Landt H., The disc-jet relation in strong-lined blazars, MNRAS, 2003 (339): 1081-1094
    
    [242] Celotti A., Padovani P. & Ghisellini G., Jets and accretion processes in active galactic nuclei: further clues, MNRAS, 1997 (286): 415-424
    
    [243] Francis P. J. et al., A high signal-to-noise ratio composite quasar spectrum, ApJ, 1991 (373): 465-470
    
    [244] Gaskell C. M., Shields G. A. & Wampler E. J., Abundances of refractory elements in quasars, ApJ, 1981 (249): 443-448
    [245] Kaspi S., Reverberation Measurements of Quasars and the Size-Mass-Luminosity Relationships in Active Galactic Nuclei, ASPC, 2001 (224): 347-363
    
    [246] Sulentic J. W., Marziani P. & Dultzin-Hacyan D., Phenomenology of Broad Emission Lines in Active Galactic Nuclei, ARA&A, 2000 (38): 521-571
    
    [247] Wu X. B., Wang R., Kong M. Z., Liu F. K. & Han J. L., Black hole mass estimation using a relation between the BLR size and emission line luminosity of AGN, A&A, 2004 (424): 793-798
    
    [248] Cao X. W. & Jiang D. R., Correlation between radio and broad-line emission in radio-loud quasars, MNRAS, 1999 (307): 802-808
    
    [249] Georganopoulos M., Kirk J. G. & Mastichiadis A., Size-Luminosity scaling and Inverse Compton Seed Photons in Blazars, ASPC, 2001b (227): 116-121
    
    [250] Lindfors E. J., Valtaoja E., & Turler M., SSC mechanism in the gamma-ray blazar 3C 279, A&A, 2005 (440): 845-853
    
    [251] Sokolov A. & Marscher A. P., External Compton Radiation from Rapid Nonthermal Flares in Blazars, ApJ, 2005 (629): 52-60
    
    [252] Perlman E. S., Padovani P., Giommi P., Sambruna R., Jones L. R., Tzioumis A. & Reynolds J., The Deep X-Ray Radio Blazar Survey. I. Methods and First Results, AJ, 1998 (115): 1253-1294
    
    [253] Padovani P., Costamante L., Ghisellini G., Giommi P. & Perlman E., BeppoSAX Observations of Synchrotron X-Ray Emission from Radio Quasars, ApJ, 2002 (581): 895-911
    
    [254] von Montigny C. et al., High-Energy Gamma-Ray Emission from Active Galaxies: EGRET Observations and Their Implications, ApJ, 1995 (440): 525-553
    
    [255] Wehrle A. E. et al., Multiwavelength Observations of a Dramatic High-Energy Flare in the Blazar 3C 279, ApJ, 1998 (497): 178-187
    
    [256] Maiolino R., Salvati M., Marconi A. & Antonucci R. R. J., The Ly-edge paradox and the need for obscured QSOs, A&A, 2001 (375): 25-29
    
    [257] Donea A. C. & Protheroe R. J., Radiation fields of disk, BLR and torus in quasars and blazars: implications for /gamma-ray absorption, Astropart. Phys., 2003 (18): 377-393
    
    [258] Protheroe R. J. & Stanev T., Electron-Photon Cascading of Very High-Energy Gamma-Rays in the Infrared Background, MNRAS, 1993 (264): 191-200
    
    [259] Sauge L. & Henri G., TeV Blazar Gamma-Ray Emission Produced by a Cooling Pileup Particle Energy Distribution Function, ApJ, 2004 (616): 136-146
    
    [260] Zdziarski A. A. & Coppi P. S., Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades, ApJ, 1991 (376): 480-489
    
    [261] Xie G. Z. et al., Variability and Beaming of GeV Gamma-Ray-Loud Blazars, PASJ, 2003b (55): 933-937
    
    [262] Xie G. Z., Liu H. T. et al., Spectrophotometry and Photometry For Five Blazars and Their Central Black Hole Masses, AJ, 2005a (130): 2506-2512
    
    [263] Xie G. Z. et al., The Accretion Rates-Luminosity Relations and Evolutionary Sequence of FSRQs, BL Lac Objects and Radio Galaxies, IJMPD, 2004b (13): 347-357
    
    [264] Stockton A. & Farnham T., OX 169 - Evidence for a recent merger, ApJ, 1991 (371): 525-534
    
    [265] Hewitt A. & Burbidge G., A new optical catalog of quasi-stellar objects, ApJS, 1987 (63): 1-246
    
    [266] Steidel C. C. & Sargent W. L. W., Emission-line and continuum properties of 92 bright QSOs-Luminosity dependence and differences between radio-selected and optically selected samples, ApJ, 1991 (382): 433-465
    [267] Veron-Cetty M. P. & Veron P. 1987, A Catalogue of Quasars and Active Nuclei (3rd ed., Garching: ESO)
    
    [268] Kaspi S., Maoz D., Netzer H., Peterson B. M., Vestergaard M., & Jannuzi B. T., The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei, ApJ, 2005 (629): 61-71
    
    [269] Xie G. Z. et al., CCD photometry of 10 BL Lacertae objects, A&AS, 1991c (87): 461-469
    
    [270] Xie G. Z. et al., A Signature of Relativistic Electron-Positron Beams in BL Lacertae Objects, ApJ, 1995 (454): 50-54
    
    [271] Xie G. Z. et al., CCD photometric studies of rapid variability in eight blazars, MNRAS, 2004c (348): 831-845
    
    [273] Bolton J. G. & Ekers J., Identification of strong extragalactic radio sources in the declination zone 0° to -20° , Australian J. Phys., 1966 (19): 559-574
    
    [274] Burbidge E. M. & Kinman T. D., Redshifts of Fourteen Quasi-Stellar Radio Sources, ApJ, 1966 (145): 654-657
    
    [275] Appenzeller I. & Hiltner W. A., Polarimetric Observations of 14 Quasi-Stellar Objects, ApJ, 1967 (149): L17-18
    
    [276] Lu P. K., Optical Monitoring of Quasistellar Objects I., AJ, 1972 (77): 829-844
    
    [277] Liller M. H. & Liller W., Photometric histories of QSOs - Two QSOs with large light amplitude, ApJ, 1975 (199): L133-135
    
    [278] Aller H .D., Aller M. F., & Hodge P .E., The polarization of outbursts in extragalactic variable sources at centimeter wavelengths, AJ, 1981 (86): 325-339
    
    [279] Aller M. F., Aller H. D. & Hughes P. A., Centimeter-wavelength Flux and Polarization Variability as a Probe of the Physical Conditions in AGN (I), ASPC, 1996 (110): 193-207
    
    [280] Dai B. Z. et al., Rapid Optical Variability of Gamma-Ray-loud Blazars, AJ, 2001 (122): 2901-2912
    
    [281] Smith A. G. et al. 1990, in Variability of active galactic nuclei, Ed. H. R. Miller & P. J. Wiita (Cambridge: Cambridge Univ. Press), 52
    
    [282] Xie G. Z., Liu H. T. et al., Several Observed Features and Their Implications for Gamma-Ray-Loud Blazar PKS 1510-089, IJMPD, 2005b (14): 1173-1184
    
    [283] Wu J. et al., Optical monitoring of PKS 1510-089: a binary black hole system ?, MNRAS, 2005 (361): 155-159
    
    [284] Begelman M. C. et al., Massive black hole binaries in active galactic nuclei, Nature, 1980 (287): 307-309
    
    [285] Roos N., Merging of galaxies in an expanding universe, A&A, 1981 (95): 349-361
    
    [286] Gaskell C. M., Galactic mergers, starburst galaxies, quasar activity and massive binary black holes, Nature, 1985 (315): 386-388
    
    [287] Komossa S. et al., Discovery of a binary AGN in the ultraluminous infrared galaxy NGC 6240 using Chandra, ApJL, 2003 (582) : L15-L20
    
    [288] Sillanpaa A. et al.,OJ 287 - Binary pair of supermassive black holes, ApJ, 1988 (325): 628-634
    
    [289] Abraham Z., Precession, beaming and the periodic light curve of OJ287, A&A, 2000 (355): 915-921
    
    [290] Katajainen S. et al., Tuorla quasar monitoring: I. Observations of 1995-1997, A&AS, 2000 (143): 357-368
    
    [291] Valtaoja E. et al., Radio Monitoring of OJ 287 and Binary Black Hole Models for Periodic Outbursts, ApJ, 2000 (531): 744-755
    
    [292] Chen Y. J. et al., Bi-periodic variation in the BL Lac AO 0235+164, Ap&SS, 1999 (266): 495-505
    
    [293] Romero G. E. et al., Beaming and precession in the inner jet of 3C 273 -- II. The central engine, A&A, 2000 (360): 57-64
    
    [294] Forbes D. A. & Hau G. K. T., Imaging of the merging galaxy NGC 3597 and its population of protoglobular clusters, MNRAS, 2000 (312): 703-711
    
    [295] Xie G. Z. et al., The optical variability of two X-ray-selected and nine radio-selected BL Lac objects AJ, 1988b (96): 24-29
    
    [296] Kidger M. R., A possible method of determining the mass function of BL Lac, Ap&SS, 1989 (157): 187-193
    
    [297] Peters P. C. & Mathews J., Gravitational Radiation from Point Masses in a Keplerian Orbit, Phys. Rev., 1963 (131): 435-440
    
    [298] Peters P. C., Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev., 1964 (136): 1224-1232
    
    [299] Shapiro S. L. &Teukolsky S. A., 1983, In: Black holes, White Dwarfs, and Neutron stars, John Wiley & Sons, N Y, p. 476
    
    [300] Douglas D. H. & Branginsky V. B., in General Relativity (an Einstein Centenary Survey), Cambridge: Cambridge Univ. Press, 1979, 90
    
    [301] Anninos P. et al., Head-on collision of two black holes: Comparison of different approaches, Phys. Rev. D, 1995 (52): 4462-4480
    
    [302] Baker J. et al., The Lazarus project: A pragmatic approach to binary black hole evolutions, Phys. Rev. D, 2002 (65): 044001
    
    [303] Davis M. et al., Gravitational Radiation from a Particle Falling Radially into a Schwarzschild Black Hole, Phys. Rev. Lett., 1971 (27): 1466-1469
    
    [304] Thorne K. S. & Braginsky V. B., Gravitational-wave bursts from the nuclei of distant galaxies and quasars-Proposal for detection using Doppler tracking of interplanetary spacecraft, ApJ, 1976 (204): L1-L6
    
    [305] Nakamura T. et al., 1987, Prog. Theor. Phys. Suppl., 90, 135
    
    [306] Alcubierre M. et al., 3D Grazing Collision of Two Black Holes, Phys. Rev. Lett., 2001 (87): 1103-1106
    
    [307] Haehnelt M. G., Low-Frequency Gravitational Waves from Supermassive Black-Holes, MNRAS, 1994 (269): 199-208
    
    [308] Wyithe J. S. B. & Loeb A., Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays, ApJ, 2003 (590): 691-706
    
    [309] Landau R. et al., Active extragalactic sources - Nearly simultaneous observations from 20 centimeters to 1400 A, ApJ, 1986 (308) : 78-92
    
    [310] Steppe H. et al., Millimeter continuum measurements of extragalactic radio sources, A&AS, 1988 (75): 317-351
    
    [311] Malkan M. A. & Moore R. L., The ultraviolet excess of quasars. III - The highly polarized quasars PKS 0736 + 017 and PKS 1510 - 089, ApJ, 1986 (300): 216-223
    
    [312] Thompson D. J. et al., EGRET observations of active galactic nuclei - 0836 + 710, 0454 - 234, 0804 + 499, 0906 + 430, 1510-089, and 2356 + 196, ApJ, 1993 (415): L13-16
    
    [313] Sreekumar P. et al., EGRET Observations of the North Galactic Pole Region, ApJ, 1996 (464): 628-640
    
    [314] Thompson D. J. et al., The Second EGRET Catalog of High-Energy Gamma-Ray Sources, ApJS, 1995 (101): 259-286
    
    [315] Singh K. P. et al., EXOSAT observations of the blazar PKS 1510-089, ApJ, 1990 (365): 455-459
    
    [316] Sambruna R. M. et al., The X-ray spectra of blazars observed with EXOSAT, ApJ, 1994 (434) : 468-478
    
    [317] Singh K. P. et al., X-Ray Spectrum of the High-Polarization Quasar PKS 1510-089, ApJ, 1997 (491): 515-521
    
    [318] Reeves J. N. & Turner M. J. L., X-ray spectra of a large sample of quasars with ASCA, MNRAS, 2000 (316): 234-248
    
    [319] Van Groningen E., ACCRETION DISKS IN SEYFERT NUCLEI : BROAD LINE PROFILES AND ASYMMETRIES, A&A, 1983 (126): 363-371
    
    [320] Homan D. C. et al., PKS 1510-089: A Head-on View of a Relativistic Jet, ApJ, 2002 (580): 742-748
    [321] Strateva I., Double-peaked Low-Ionization Emission Lines in Active Galactic Nuclei, AJ, 2003 (126): 1720
    
    [322] Zheng W. et al., A double-stream model for line profiles, ApJ, 1990 (365): 115-118
    
    [323] Yu Q. J., Evolution of massive binary black holes, MNRAS, 2002 (331): 935-958
    
    [324] Netzer H., On the profiles of the broad lines in the spectra of QSOs and Seyfert galaxies, MNRAS, 1977 (181): 89-92
    
    [325] Papaloizou J. C. B. & Terquem C., On the dynamics of tilted discs around young stars, MNRAS, 1995 (274): 987-1001
    
    [326] Larwood J. D., The tidal disruption of protoplanetary accretion discs, MNRAS, 1997 (290): 490-504
    
    [327] Donea A. C. & Biermann P. L., The symbiotic system in quasars: black hole, accretion disk and jet, A&A, 1996 (316): 43-52
    
    [328] Donea A. C. & Biermann P. L., The Structure of Accretion Flow at the Base of Jets in AGN, PASA, 2002 (19) : 125-128
    
    [329] Hutchings J. B. et al., Optical imaging of 78 quasars and host galaxies, ApJ, 1984 (280): 41-50
    
    [330] O' DeaC. P., Barvainis R. &Challis P. M., Subarcsecond-resolution radio observations of sixteen core-dominated quasars and active galactic nuclei, AJ, 1988 (96): 435-454
    
    [331] Kotilainen J. K. et al., Near-infrared imaging of the host galaxies of flat spectrum radio quasars, A&A, 1998 (332): 503-513
    
    [332] Bondi M. et al., Three epoch VLBI observations at 18cm of low frequency variable sources, A&A, 1996 (308): 415-427
    
    [333] Sambruna R. M. et al., A Survey of Extended Radio Jets with Chandra and the Hubble Space Telescope, ApJ, 2004 (608): 698-720
    
    [334] Megorrian J. & Tremaine S., Rates of tidal disruption of stars by massive central black holes, MNRAS, 1999 (309): 447-460
    [335] Zier C. & Biermann P. L., Binary black holes and tori in AGN. II. Can stellar winds constitute a dusty torus ?, A&A, 2002 (396): 91-108
    
    [336] Isobe T., Feigelson E. D., Akritas M. G. & Babu G. J., Linear regression in astronomy, ApJ, 1990 (364): 104-113
    
    [337] Elvis M. et al., Seyfert galaxies as X-ray sources, MNRAS, 1978 (183): 129-157
    
    [338] Stockton A. & MacKenty J. W., Extended emission-line regions around QSOs, ApJ, 1987 (316): 584-596
    
    [339] Baum S. A. & Heckman T. M., Extended optical line emitting gas in powerful radio galaxies - Statistical properties and physical conditions, ApJ, 1989 (336): 681-701
    
    [340] Rawlings S. & Saunders R., Evidence for a common central-engine mechanism in all extragalactic radio sources, Nature, 1991 (349): 138-140
    
    [341] Serjeant S. et al., The radio-optical correlation in steep-spectrum quasars, MNRAS, 1998 (294): 494-504
    
    [342] Xu C., Livio M. & Baum S. A., Radio-loud and Radio-quiet Active Galactic Nuclei, AJ, 1999 (118): 1169-1176
    
    [343] Cao X. W. & Jiang D. R., The relation between extended radio and line emission for radio-loud quasars, MNRAS, 2001 (320): 347-354
    
    [344] Malkan M. A., The ultraviolet excess of luminous quasars. II-Evidence for massive accretion disks, ApJ, 1983 (268): 582-590
    
    [345] Meier D. L., A Magnetically Switched, Rotating Black Hole Model for the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division, ApJ, 1999 (522): 753-766
    
    [346] Ghisellini G. & Celotti A., The dividing line between FR I and FR II radio-galaxies, A&A, 2001 (379): L1-L4
    
    [347] Ghisellini G. & Celotti A., Sub-Parsec to Mega-Parsec Jet Emission and Power, ASPC, 2002 (258): 273-284
    
    [348] Ghisellini G., Celotti A. & Costamante L., Low power BL Lacertae objects and the blazar sequence. Clues on the particle acceleration process, A&A, 2002 (386): 833-842
    
    [349] Baum S. A. et al., Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power, ApJ, 1995 (451) : 88-99
    
    [350] Chiaberge M., Capetti A. & Celotti A., The HST view of FR I radio galaxies: evidence for non-thermal nuclear sources, A&A, 1999 (349) : 77-87
    
    [351] Lamer G., McHardy I. M. & Newsam A. M., The Host Galaxies of BL Lac Objects and FR I Radio Galaxies, ASPC, 1999 (159): 381-384
    
    [352] Xu Chun et al., VLBA Observations of a Sample of Nearby FR I Radio Galaxies, AJ, 2000 (120): 2950-2964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700