邻苯基苯酚合成的催化剂及工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯基苯酚(OPP)是一种重要的有机化工产品,目前多采取环己酮缩合-脱氢法合成。本论文针对该工艺的两个步骤即环己酮自缩合反应以及环己酮二聚物脱氢反应中所使用的催化剂进行了研究,开发出了具有较高转化率和理想选择性的适用于环己酮缩合反应的固体催化剂,以及具有较高二聚物转化率和OPP选择性且稳定性优良的脱氢催化剂。
     对于环己酮缩合反应的研究结果表明,使用传统浓H2SO4催化剂虽然转化率较高但是选择性较低且无法再生,而使用γ-Al2O3类固体酸催化剂则具有理想的催化活性和极佳的可再生性能。对γ-Al2O3催化环己酮缩合反应的机理研究表明,不同固体催化剂材料的孔结构性质等物理性质对其催化活性具有一定影响,但对于γ-Al2O3系列催化剂而言其催化活性与其孔道以及晶相之间没有必然联系,而与其表面的L酸量之间存在密切联系。本文首次以原位IR手段研究了环己酮在γ-Al2O3表面的缩合反应,结果表明环己酮的确可以在γ-Al2O3催化下发生反应。而且通过不同物种在γ-Al2O3表面吸附的IR研究证实,其催化环己酮缩合极有可能是通过其L酸中心进行。
     通过对二聚物脱氢催化剂的研究表明,单Pt催化剂性能最好,而双金属复配催化剂如Pt-Pd、Pt-Sn、Pt-Re等效果均不理想,未改性载体中以γ-Al2O3载体的效果最好、稳定性最佳。对脱氢催化剂的助剂改性结果表明,碱金属K盐具有优秀的改性效果,其中以K2CO3的效果最佳。而助剂改性机理研究表明,K助剂的改性作用体现在两方面:一是K物种对Pt组分的电性促进作用,二是其对Al2O3载体的酸性调变作用。而且研究结果表明K对Pt组分促进作用的贡献高于其对载体的酸性调变作用。但研究同时发现K改性的Pt/Al2O3催化剂容易失活,进一步的研究结果表明积炭并不是其失活的主要原因,而很可能是由于K物种在催化剂表面发生迁移而对Pt中心的过度覆盖造成的。本文重点对脱氢催化剂的载体改性进行了研究,发现Li2O、SrO和BaO的改性效果较好,而使用CeO2则有利于提高脱氢催化剂的稳定性,此外以由原位晶化法制备的MgAl水滑石焙烧得到的Mg(Al)O复合氧化物作为脱氢催化剂载体也具有很好的OPP选择性和理想的活性稳定性。本文以CeO2改性为基础,使用K助剂-Ce复合改性工艺和碱性金属氧化物-Ce载体复合改性工艺制得的脱氢催化剂均具有理想的活性稳定性,其中以Sr-Ce复合载体改性催化剂的稳定性最好。寿命测试结果表明0.5%Pt/5%SrO-5%CeO2-Al2O3催化剂在300h运转时间内其转化率和选择性可以分别稳定在95%和91%以上,具有理想的工业应用价值。
O-phenylphenol (OPP) was an important organic chemical which was widely used in many fields. Nowadays OPP was mostly catalytically synthesized through a two-step process, that was, cyclohexanon’s self-condensation and dimers’dehydrogenation. In this thesis, catalysts applied to the two-step reactions had been studied. A seiries of solid catalysts with high conversion and excellent selectivity for the self-condensation reaction of cyclohexanone, and dehydrogenation catalysts with high dimer conversion rate and OPP selectivity as well as the ideal stability had also been developed.
     Results indicated that as to the self-condensation reaction of cyclohexanone, conventional H2SO4 catalyst had relatively higher conversion rate but it showed lower selectivity and could not be recovered and regenerated, whileγ-Al2O3 catalyst had ideal catalytic activity and much higher selectivity than the former and could be regenerated for over eight times. Mechanism study ofγ-Al2O3-catalyzed condensation reaction indicated that its catalytic performance was not so necessarily connected with its pore properties and crystalling phase but had close relations to its surface Lewis acidity. In-situ IR analysis was firstly adopted in this paper to study the condensation reaction of cyclohexanone on the surface ofγ-Al2O3 catalyst and results confirmed that cyclohexanone indeed could be condensated under catalysis effect ofγ-Al2O3 and IR results from different species’adsorption behaviors on Al2O3 surface also reflected that cyclohexanone’s self-condensationi reaction most likely underwent under catalysis effect with the Lewis acid sites on the surface ofγ-Al2O3 material.
     Results from the research of the dehyogenation catalysts showed that Pt/Al2O3 was the best mono-component catalyst and bi-component catalysts such as Pt-Pd, Pt-Sn and Pt-Re showed poor dehydrogenation activities.γ-Al2O3 was the ideal support which showed relatively the best performance as well as the stability. Additve-modification research works indicated that K additives had better modification effect than other modifiers and K2CO3 was the best among them. Results reflected that K additives had modification effect at two aspects, that were, firstly the electrical promotion effect as to the Pt component and secondly the suppressing of the surface acidity onγ-Al2O3 support, and the former was relatively the more important that the latter. However, stability tests indicated that K-modified catalysts were relatively easier gotten deactivated and mechanism study reflected that carbon deposition was not the main reason for the deactivation and the most probable reason was the migration of K species on the surface of catalyst which led to the excessive loss of Pt active surface by their covering effect. Support-modification studies were focused on in this paper and Li2O, SrO and BaO were found to be prospective modifiers and CeO2 was surprisingly found to have positive effect on the stability of the modified dehydrogenation catalysts. Catalysts with calcined in-situly generated MgAl hydrotalcites as supports also showed good OPP selectivity as well as prospective stability. On the basis of CeO2-modification, combined modification processes such as K-Ce and basic metal oxides-Ce modification methods were adopted to promote catalysts’hydrogenation activity, and more importantly, their stabilities. Several optimistic results had been earned and SrO-CeO2 combined modification catalyst showed the best stability. Life test indicated that 0.5%Pt/5%SrO-5%CeO2-Al2O3 catalyst had excellent performance during a 300h run, whose conversion rate and selectivity could be maintained over 95% and 91% respectively thus made it very promising for industrial use.
引文
[1] 卫延安,蔡春,吕春绪. 邻苯基苯酚的合成工艺进展[J]. 精细与专用化学品,2003, 11(21): 13-15.
    [2] 李玉华. 邻苯基苯酚[J]. 精细与专用化学品,2002, 10(16): 8-9.
    [3] 赵美法. 邻苯基苯酚的生产与应用[J]. 精细化工原料及中间体,2003(8): 17-19.
    [4] 张鸣九. 烷基酚的性质及应用[J]. 精细化工信息,1990(1): 12-17.
    [5] 章思规. 精细有机化学品技术手册[M]. 北京:科学出版社,1991: 562-563.
    [6] 蔡春,吕春绪. 催化脱氢合成邻苯基苯酚工艺研究[J]. 染料工业,2001, 38(4): 27-28.
    [7] 凌关庭. 食品添加剂手册[M]. 北京:化学工业出版社,1997: 735.
    [8] 马家骧,高鹤娟,戴茵译. 食品中添加剂的分析方法[M]. 北京:中国标准出版社,1988: 202-208.
    [9] 王大全. 精细化工辞典[M]. 北京: 化学工业出版社,1998.
    [10] C.D. Gartner. Suspension formulations of ortho-phenylphenol[P]. US Patent 5629350, 1997- 5-13.
    [11] J.A. 迪安主编. 兰氏化学手册[M]. 北京:科学出版社,1991: 7-244-245.
    [12] 冯月兰,张亮玫,孙晓金等. 从环己酮一步合成邻苯基苯酚[J]. 精细化工,1994, 11(5): 42-45.
    [13] 冯望烟,陈诩,缪雪茹. 环己酮二聚物脱氢制邻苯基苯酚反应及催化剂研究[J]. 石油化工,1990, 19(4): 238-245.
    [14] A. Kaim, J. Kaminski, W. Kolodziejski. Thermal self-condensation of cyclohexanone[J]. Acta. Chim. Hung., 1988, 125(1): 141-145.
    [15] N.A. Fishel, D.E. Gross. Process for production of orthophenylphenol[P]. US Patent, 4035428, 1977-7-12
    [16] 胡晓,王玉成,薛冬等. 由环己酮缩合脱氢制备邻苯基苯酚[P]. CN 1490293A, 2004-4-21.
    [17] 蔡春,吕春绪. 用环己酮合成邻苯基苯酚的方法[P]. CN 1371897A, 2002-10-2.
    [18] H. Goto, N. Shibamoto, S. Tanaka. Process for preparing o-phenylphenol[P]. US Patent, 4060559, 1977-11-29.
    [19] I.R. King, A.M. Hildon. Process for the production of o-phenylphenol[P]. US Patent, 4002693, 1977-1-11.
    [20] P.G. Copeland, M. Fielding. Improvements in or relating to the production of o-phenylphenol[P]. UK Patent, 1327581, 1973-8-22.
    [21] G. Heith. Preparation of unsaturated cyclic ketones[P]. UK Patent, 1480326, 1977.
    [22] C.S. Elliot. Production of ortho-phenylphenol from cyclohexanone[P]. US Patent, 3980716, 1976-9-14.
    [23] J. Imamura. Process for the production of o-phenylphenol[P]. US Patent 4080390, 1978-3-21.
    [24] H. Goto, N. Shibamoto, S. Tanaka. Process for preparing o-phenylphenol[P]. US Patent, 4088702, 1978-5-9.
    [25] 今村寿一. 脱水素触媒の制造方法[P]. 特开昭: 56-33035, 1981-04-03.
    [26] 李瑞硕,王心葵,钱利敏等. 不同制法镁铝尖晶石在环己酮双聚中的应用[J]. 燃料化学学报,1995, 23(2): 144-148.
    [27] T. Takahahashi, K. Hara,J. Osugi, et al. The self-condensation of cyclohexanone and methyl cyclohexanones under very high pressure[J]. Rev. Phys. Chem.. Japan, 1974, 44(2): 93-97.
    [28] K. Imafuku, J. Oda, K. Itoh, et al. Dehydrogenation of 2-(1-cyclohexenyl) cyclohexanone with palladium catalyst [J]. Bull. Chem. Soc. Japan, 1974, 47(5): 1201-1202.
    [29] 陈红艳,尹笃林,胡伟武. 环己酮酸催化合成环己烯环己酮的研究[J]. 襄樊学院学报,2001, 22(5): 45-48.
    [30] 李叶芝,黄化民,金辉等. 硫酸铁催化环己酮的缩合反应和缩醛(酮)反应[J]. 吉林大学自然科学学报,1989, 27(2): 113-115.
    [31] 王存德 钱文元. 分子筛催化合成缩醛(酮)的研究[J]. 化学世界,1993, 34(1): 20-22.
    [32] 陈红艳,胡伟武,尹笃林. 脱铝超稳 Y 催化环己酮缩合反应的研究[J]. 武汉化工学院学报,2002, 24(4): 6-8.
    [33] 金东元,陶建伟,姜荫等. 离子交换树脂催化合成 2-(1-环己烯基)环己酮[J]. 离子交换与吸附,2003, 19(6): 76-81.
    [34] 金东元,沙钝,王爱民. 双套管连续催化缩合反应及分离装置[P].CN ZL01254840.5, 2002-10-02.
    [35] 沙钝,金东元,王爱民. 反应装置对 2-(1-环己烯基)环己酮收率的影响[J]. 上海应用技术学院学报,2002, 2(3): 163-165.
    [36] 今村寿一. 2-(1’-シクロヘキサノール) シクロヘキサノこの合成用触媒[P]. 公开特许公报. 昭 62-221451, 1987-9-29.
    [37] 赵玉英,郑丽红. 邻苯基苯酚的合成研究[J]. 科技进展,2003, 17(5): 32-35.
    [38] 邢其毅等. 基础有机化学(第二版)[M]. 北京:高等教育出版社,1983: 480-482.
    [39] 王积涛,胡青,张保申. 有机化学[M],天津:南开大学出版社,1993: 355.
    [40] Шроков К Г, et al. Study of equilibrium of the hydrolytic splitting of 2-(1-cyclohexenyl) cyclohexanone[J]. Zh. Prikl. Khim., 1982, 55 (8): 1896-1897 (Russian).
    [41] 李瑞硕,王心葵. 环己酮双聚合成环己烯环己酮新型催化剂的研究[J]. 石油化工,1995, 24(2): 95-99.
    [42] 李瑞硕,王心葵. 环己酮双聚催化剂失活的研究[J]. 燃料化学学报,1994, 22(1): 58-62.
    [43] 李瑞硕,王心葵,钱利敏等. 不同制法镁铝尖晶石在环己酮双聚中的应用[J]. 燃料化学学报,1995, 23(2): 144-148.
    [44] B. Saha, M. Streat. Cation exchange resin-catalyzed esterification of acetic acid with 2-(1-cyclohexenyl) cyclohexanone[J]. Catal. Lett., 1998, 51(1-2): 121-127.
    [45] Г.А. ЕФцмова. Cyclohexanone autocondensation[J]. Zh. Org. Khim., 1989, 25(6): 1201-1204 (Russian).
    [46] 董群,王鉴,武显春等. Pt-Sn-K/Al2O3 丙烷脱氢催化剂中各组分的作用[J]. 大庆石油学院学报,1995, 19(3): 61-63.
    [47] 陈光文,阳永荣,戎顺熙. 在 Pt-Sn/Al2O3 催化剂上丙烷脱氢反应动力学[J]. 化学反应工程与工艺,1998, 14(2): 130-137.
    [48] 董文生,王心葵,王浩静. Pt-Sn/MgAl2O4 催化剂的 TPR 和 H2-TPD 研究[J]. 催化学报,1999,20(5): 577-580.
    [49] 董文生,王浩静,王心葵. 不同载体的 PtSn 催化剂上丙烷脱氢性能的研究[J]. 天然气化工,1999, 24(3): 9-12.
    [50] 何文胜,刘大壮,张雷. Pt/Al2O3 催化剂 GPLE 烧结动力学的研究[J]. 化学反应工程与工艺,1998, 14(2): 212-215.
    [51] 葛善海,刘长厚,张守臣. V-Mg-O 催化剂用于丁烷氧化脱氢制丁二烯和丁烯[J]. 大连理工大学学报,2000, 40(2): 165-168.
    [52] 方智敏,翁维正,万惠霖. 丙烷氧化脱氢 VMgO 催化剂双相协同催化作用[J]. 分子催化,1995, 9(6): 401-410.
    [53] 夏明,何淡云,祝以湘. 乙苯脱氢 Fe2O3-K2O 系催化剂中晶格氧和钾的助催化作用[J]. 分子催化,1995, 9(3): 201-206.
    [54] 宋蔚. 乙苯脱氢催化剂的研究[J]. 天津化工,1996, 10(3): 23-25.
    [55] 魏狄,许峥,张继炎. 乙苯脱氢制苯乙烯催化剂及工艺进展[J]. 石油化工,1995,24(3): 215-220.
    [56] 徐华龙,沈韦,甄胜艳等. 甲醇脱氢催化剂的研究[J]. 石油化工,1995, 24(9): 610-613.
    [57] 陈淑英. 环己醇脱氢催化剂[J]. 辽宁化工,2000, 29(4): 201-203.
    [58] K. Shimzu(清水一男), M. Ando, I. Juichi. シクロヘキサノンからの o-フエニルフエノールの合成[J]. J. Japan Petrol. Inst. 1984, 27(1): 45-52.
    [59] 今福公明等,有机合成化学,1977, 35(1): 57.
    [60] 蔡春,吕春绪. 催化脱氢合成邻苯基苯酚工艺研究[J]. 染料工业,2001, 38(4): 27-28.
    [61] 蔡春,吕春绪. 载钯 ZSM-5 分子筛催化脱氢合成邻苯基苯酚[J]. 应用化学,2001, 18(2): 167-168.
    [62] 索尔·W·韦勒. 催化剂测试方法的标准化[M]. 北京:化学工业出版社,1981.
    [63] H. Matsumura(松村久), K. Imafuku(今福公明), I. Takano, et al. Rearrangements in the palladium catalyzed dehydrogenation of cyclohexylphenols to phenylphenols[J]. Bull. Chem. Soc. Japan, 1971, 44: 567.
    [64] 陈红艳,田志高,尹笃林. 环己烯环己酮催化合成邻苯基苯酚的研究[J]. 化学试剂,2004, 26(3): 187-189.
    [65] 卫延安,蔡春,吕春绪. 邻苯基苯酚催化剂的制备及性能研究[J]. 化学世界,2004, 10: 519-521.
    [66] 蔡春,吕春绪. 邻苯基苯酚的合成[J]. 南京理工大学学报,2001, 25(4): 436-439.
    [67] 梁文杰主编. 石油化学[M]. 东营:石油大学出版社,1995: 331-357.
    [68] 叶志良. 碱金属离子对PtSn/Al2O3催化剂丙烷脱氢活性的影响[J],精细石油化工进展,2002, 3(9): 7-10.
    [69] 陈进富,俞英,蔡卫权. Li2O对Pt-Sn/γ-Al2O3催化剂表面酸性与MCH脱氢性能的影响[J]. 太阳能学报,2002, 23(6): 782-785.
    [70] 邱安定,范以宁,马永福等. 添加碱金属助剂对负载型铂锡催化剂长链烷烃脱氢反应性能的影响[J]. 催化学报,2001, 22(4): 343-347.
    [71] 陈进富,陆绍信. Pt-Sn/CCA 催化剂性能及结构表征[J]. 石油大学学报(自然科学版),1999, 23(1): 89-92.
    [72] 杨继涛,郝雪松,苏君雅等. 覆炭载体 Pt-Sn 催化剂脱氢活性及抗结焦性能的研究[J]. 石油化工,2002, 31(12): 955-958.
    [73] 林励吾,杨惟慎,贾继飞等. 负载型高分散双组分催化剂的表面结构及催化性能研究[J]. 中国科学(B 辑),1999, 29(2): 109-117.
    [74] Weissel, Oskar, Schwarz, et al. Process for preparing hydroxydiphenyl[P]. US Patent 3932536, 1976-1-13.
    [75] Weissel, Oskar, Koller, et al. Process for preparing hydroxydiphenyl[P]. US Patent 3933924, 1976-1-20.
    [76] 张建祥,关乃什,李伟等. Zn/ZSM-5 分子筛晶粒大小和预处理条件对丙烷芳构化性能的影响[J]. 石油化工,2000, 29(1): 11-14.
    [78] Immel, Otto, Weissel, et al. Supported catalyst, process for its preparation and its use for the preparation of hydroxydiphenyl[P]. US Patent 4729977, 1988-3-8.
    [79] Immel, Otto, Darsow, et al. Process for the preparation of hydroxydiphenyls[P]. US Patent 5248840, 1993-9-28.
    [80] H.J. Buysch, C. Mendoza-Frohn, J. Scharschmidt, et al. Process for preparing hydroxydiphenyl[P]. US Patent, 5763717, 1998-6-9.
    [81] 岳丽丽,蒋文伟,牟丽娟. 邻苯基苯酚的合成[J]. 化学通报(网络版),2003, 66: 1-5.
    [82] 岳丽丽,蒋文伟,牟丽娟. 邻苯基苯酚的合成[J]. 四川化工与腐蚀控制,2003, 6(1): 1-3.
    [83] 卫延安,蔡春,吕春绪. 邻苯基苯酚的合成工艺研究[J]. 化工进展,2004, 23(1): 59-61.
    [84] 卫延安,蔡春,吕春绪. 催化剂预中毒在合成邻苯基苯酚中的应用[J]. 精细化工,2003, 20(8): 466-468.
    [85] 潘履让. 固体催化剂的设计与制备[M]. 天津:南开大学出版社,1993: 89-91.
    [86] 杨锡尧,胡瑞生. 盐酸处理 γ-Al2O3 的表面性质及其对负载的 Pt 的表面性质和反应性能的影响[J]. 燃料化学学报,1995, 23(1): 1-5.
    [87] 杨锡尧,任韶玲,庞礼. Ti 对 Pt-Ti-A12O3 催化剂表面吸附中心性质的影响[J]. 催化学报,1981, 2(3): 170-178.
    [88] 徐竹生,臧景龄. 高分散的铂和铂锡催化剂的氢吸附和程序升温脱附[J]. 催化学报,1980, 1(4): 261-267.
    [89] 沈志虹,潘惠芳,徐春生. 镁对 γ-Al2O3 表面酸性及积炭性能的影响[J]. 石油大学学报(自然科学版),1995, 19(3): 79-82.
    [90] P.P. Yang, Z.L. Wang, J.F. Yu, et al. Synthesis of o-phenylphenol from cyclohexanone over platinum supported on calcined Mg/Al hydrotalcite[J]. React. Kinet. Catal. Lett., 2004, 83(1): 129-136.
    [91] 杨锡尧,任韶玲,何晖等. 新型催化剂载体材料—镁铝复合氧化物的制备及其物理化学性质[J]. 分子催化,1996, 10(2): 88-94.
    [92] 唐爱军,潘慧芳,沈志虹. 磷改性对 γ-Al2O3 物化性能的影响[J]. 石油大学学报(自然科学版),1995, 19(6): 84-87.
    [93] A. Stanislaus, M. Absi-Halabi, K. Al-Dolama. Effect of phosphorus on the acidity of γ-alumina and on the thermal stability of γ-alumina supported nickel-molybdenum hydrotreating catalysts[J]. Appl. Catal., 1988, 39: 239-253.
    [94] 卢伟光,龙军,田辉平. 镧和铈改性对氧化铝性质的影晌[J]. 催化学报,2003, 24(8): 574-578.
    [95] 朱警,戴伟,穆玮等. 选择加氢催化剂载体氧化铝的改性及其工业应用(I)[J]. 化工进展,2004, 23(2): 192-194.
    [96] G. Cacciola, N. Glordano. Cyclohexane as a liquid phase carrier in hydrogen storage and transport[J]. Int. J. Hydrogen Energy, 1984, 9(5): 411-419.
    [97] 梁育德,黄凤兴. 碱金属氢氧化物对 Al2O3 表面性质的调变效应[J]. 石油化工,1989, 18(10): 665-669.
    [98] 张涛,徐竹生,王林胜等. 添加助剂对高分散负载催化剂 Pt/Al2O3、Pt-Sn/Al2O3 抗积炭性能的影响[J]. 石油化工,1990, 19(2): 77-81.
    [99] 陈进富,俞英,蔡卫权. Li2O对Pt-Sn/γ-Al2O3催化剂表面酸性与MCH脱氢性能的影响[J]. 太阳能学报,2002, 23(6): 782-785.
    [100] 陈进富,陆绍信,朱亚杰. K2O 对 Pt-Sn/γ-Al2O3 催化剂表面酸性与 MCH 脱氢性能的影响[J]. 燃料化学学报,1998, 26(6): 543-547.
    [101] 李欣,纵秋云,张新堂等. 氧化镁对耐硫变换催化剂载体的改性研究[J]. 齐鲁石油化工,2000, 28(l): 14-16.
    [102] 朱波,罗孟飞,袁贤鑫等. 载体预处理对 Pt-Pd/γ-Al2O3 催化剂氧化性能的影响[J]. 工业催化,1994, 2(4): 36-39.
    [103] 彭峰,黄仲涛. 活性炭催化载体的表征[J]. 华南理工大学学报(自然科学版),1997, 25(5): 111-115.
    [104] 王桂香,董国君,张密林. 负载型 Pd 催化剂[J]. 化学工程师,2001, 15(6): 6-8.
    [105] 陈仰光,杨学仁. 炭载型催化剂研究的新进展[J]. 石油化工,1993, 22(11): 770-777.
    [106] 金东元,蔡宝国,姜荫. 邻苯基苯酚的合成研究[J]. 化学世界,2004, 45(4): 204-206.
    [107] 卫延安,蔡春,吕春绪. 用于合成邻苯基苯酚的新型覆炭脱氢催化剂[J]. 石油化工,2004, 33(2): 109-112.
    [108] 卫延安,蔡春,吕春绪. 覆炭 γ-Al2O3 载 Pt 催化脱氢制备邻苯基苯酚[J]. 应用化学,2004, 21(8): 859-861.
    [109] 岳丽丽. 邻苯基苯酚的化学合成. 硕士学位论文,四川大学,成都,2003.
    [110] 陈劲松,王海南,王虹. 2-(1-环己烯基)环己酮的合成[J]. 化工时刊,2006, 20(4): 45-46.
    [111] Moggi, P. Antonio, Iori, et al. Process for the synthesis of dibenzofuran[P]. US Patent, 4065469, 1977-12-27.
    [112] Z. Vir,L. Nondek,J. Malek. Liquid-phase aldol condensation of cyclohexanone on aluminium and iron oxides. Colle. Czech. Chem. Commu., 1982, 47: 2235-2245.
    [113] 何节玉,廖德仲,毛立新,陈献桃. 镧掺杂硫酸钛的酸性及催化缩酮活性[J]. 分子催化,2005, 19(2): 109-114.
    [114] 廖德仲,何节玉,杨迎春. 掺杂 La2O3 的硫酸钛在缩醛(酮)反应中的催化活性[J]. 合成化学,2003, 13(1): 83-85.
    [115] 赵琰. 氧化铝、改型氧化铝及硅酸铝的酸性特征[J]. 工业催化,2002, 10(2): 54-58.
    [116] 朱洪法. 催化剂载体制备及应用技术[M]. 北京:石油工业出版社,2002.
    [117] 朱建华,王英,山口力. KNO3/Al2O3 上强碱位的产生和表征[J]. 催化学报,1996, 17(4): 286-290.
    [118] 朱建华,王英,淳远. 新型固体强碱 KNO3-Al2O3 的碱性[J]. 催化学报,1997, 18(6): 498-502.
    [119] 项东升,孙开进. KNO3-Al2O3 型固体超强碱催化合成香豆素的研究[J]. 应用化工,2005, 34(5): 288-289.
    [120] A. Corma, V. Fornes, E. Ortege. The nature of acid sites on fluorinated γ-Al2O3[J]. J. Catal., 1985, 92(2): 284-290.
    [121] 建谋,石亚华. 氟在 γ-Al2O3 及 NiW/γ-Al2O3 催化剂中的作用[J]. 分子催化,1990, 4(2): 104-111.
    [122] Sadler research laboratories, Inc. Sadler Standard Grating Spectra. United States of America, 1975.
    [123] 杨涛,张淑华. 用 IR-电子天平重量吸附法快速测定催化剂表面酸度[J]. 分析实验室,2004, 23(6): 57-59.
    [124] 商连弟. 八种晶型氧化铝的研制与鉴别[J]. 化学世界,1994, 35(7): 346-350.
    [125] L.D. Hart. Alumina chemicals science and technology handbook[M]. Westerville, Ohio: The American Ceramics Society Inc., 1990.
    [126] 刘勇,陈晓银. 氧化铝热稳定性的研究进展[J]. 化学通报,2001, 64(2): 65-70.
    [127] 林海霞,何必策,吴华悦. 不同催化剂催化合成缩醛(缩酮)[J]. 温州师范学院学报(自然科学版),1999, 20(6): 25-27.
    [128] 陈望忠,张绍文,胡远东等. 氧化铝催化双分子丙酮缩合反应的机理[J]. 物理化学学报,1999, 15(1): 40-43.
    [129] 马晨,刘少杰,王文. 碱性氧化铝催化丙二酸与芳香醛的 Knoevenagel 缩合反应[J]. 山东大学学报(自然科学版),1997, 32(3): 313-316.
    [130] 杨座国,熊国华. 氧化铝催化合成增塑剂二苯甲酸二甘醇酯的研究[J]. 塑料工业,1996, 24(1): 90-91.
    [131] 由万胜,谷源鹏,刘晓蕙等. 氧化铝催化合成邻苯二甲酸二辛酯[J]. 辽宁化工,1994, 23(4): 38-39.
    [132] E.P. Parry, An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J. Catal., 1963, 2(5): 371-379.
    [133] H. Knozinger, P. Ratnasamy. Catalytic aluminas: surface models and characterization of suface sites[J]. Catal. Rev. –Sci. Eng. 1978, 17(1): 31-70.
    [134] 张涛,臧璟龄,胡爱华等. 锂对于 γ-Al2O3 表面酸中心的调变作用及其积炭性能的影响[J].催化学报,1990, 11(5): 341-347.
    [135] X.S. Liu, R.E. Truitt. DRIFT-IR studies of the suface of γ-alumina[J]. J. Am. Chem. Soc., 1997, 119(41): 9856-9860.
    [136] J.Y. Shen, R.D. Cortright, Y. Chen, et al. Microcalorimetric and infrared spectroscopic studies of γ-Al2O3 modified by basic metal oxides[J]. J. Phys. Chem., 1994, 98(33): 8067-8073.
    [137] J.C. Xia, D.S. Mao, B. Zhang, et al. Catalytic properties of fluorinated alumina for the production of dimethyl ether[J]. Catal. Comm., 2006, 7(6): 362-366.
    [138] T. Horiuchi, H. Hidaka, T. Fukui, et al. Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures[J]. Appl. Catal. A: General, 1998, 167(2): 195-202.
    [139] 孔学,刘东,王宗贤等. Mo/γ-Al2O3 表面 H2 的吸附性能[J]. 石油学报(石油加工),2005, 21(6): 80-85.
    [140] 雷志祥,饶国瑛,张志祥. β 沸石催化剂上丙烯水合醚化反应的原位红外光谱研究[J]. 催化学报,2002, 23(2): 105-108.
    [141] 张新堂,李欣,孙海燕等. Co-Mo/Al2O3 耐硫变换催化剂的表征研究[J]. 燃料化学学报,2003, 31(1): 65-69.
    [142] 李振花,宋瑛,王保伟等. CO 在负载型钯金属催化剂上吸附的原位红外光谱研究[J]. 天然气化工,2002, 27(6): 25-28.
    [143] 王军,马刚,胡玉海等. NiO 在 γ-Al2O3 及 TiO2/γ-Al2O3 载体上的表面存在状态[J]. 无机化学学报,2001, 17(1): 43-79.
    [144] 中西香尔,P.H. 索罗曼. 红外光谱分析 100 例[M]. 北京:科学出版社,1984: 48.
    [145] H. Karhu, A. Kalantar, I.J. Vayrynen, et al. XPS analysis of chlorine residues in supported Pt and Pd catalysts with low metal loading[J]. Appl. Catal. A: General, 2003, 247(2): 283-294.
    [146] 王君钰. 高铼/铂比重整催化剂与传统铂铼催化剂性能对比[J]. 石油炼制,1989, 20(12): 45-50.
    [147] 孙逢铎,徐远国. 高铼低铂催化重整催化剂开发研究[J]. 抚顺石油化工研究院院报,1989, 4(1): 20-31.
    [148] 索尔·W·韦勒. 催化剂测试方法的标准化[M]. 北京:化学工业出版社,1981.
    [149] 黄仲涛,林维明,庞先桑等. 工业催化剂设计与开发[M]. 广州:华南理工大学出版社,1991.
    [150] J.A. Cusumano, G.W. Dembinski, J.H. Sinfelt. Chemisorption and catalytic properties of supported platinum[J]. J. Catal., 1966, 5(3): 471-475.
    [151] 孙桂大,闫福山. 石油化工催化作用导论[M]. 北京:中国石化出版社,2000.
    [152] T. Miura, T. Nagata, H. Mizuta. Process for the preparation of 4'-hydroxybiphenyl -4-carboxyl acid[P]. US 4755617, 1988-7-5.
    [153] H. Medem, U. Birkenstock,H. Schmidt, et al. Supported hydrogenation catalysts[P]. US 4774221, 1988-9-27.
    [154] S.R. de Miguel, J.I. Vilella, E.L. Jablonski, et al.Preparation of Pt catalysts supported on activated carbon felts (ACF)[J]. Appl. Catal. A: General, 2002, 232(1-2): 237-246.
    [155] 王莲鸳,程振兴,薛勇等. 硝基苯加氢合成对氨基酚用负载铂催化剂的制备[J]. 催化学报,2002, 23(1): 19-23.
    [156] 陈筱金. Pd/C 催化剂失活原因分析与改进措施[J]. 化学反应工程与工艺,2002, 18(3):275-278.
    [157] 郭增山. 钯-炭催化剂损坏的原因[J]. 聚酯工业,2001, 14(4): 1-3.
    [158] 杨锡尧,裴站芬,白瑞琴等. 脉冲氢氧滴定法测定 Pt/Al2O3 催化剂的分散度[J]. 石油化工,1978, 7(4): 352-355.
    [159] N.C. Filkin, M.S. Tikhov, A. Palermo, et al. A kinetic and spectroscopic study of the in situ electrochemical promotion by sodium of the platinum-catalyzed combustion of propene[J]. J. Phys. Chem. A., 1999, 103(15): 2680-2687.
    [160] I.V. Yentekakis, V. Tellou, G. Botzolaki. A comparative study of the C3H6+NO+O2, C3H6+O2 and NO+O2 reactions in excess oxygen over Na-modified Pt/γ-Al2O3 catalysts[J]. Appl. Catal. B: Environmental, 2005, 56(3): 229-239.
    [161] 杨飘萍. 环己酮合成邻苯基苯酚反应的研究. 硕士论文,吉林大学,2002.
    [162] T. Fukunaga, C. Ponec. On the role of additives to platinum catalysts for reforming reactions[J]. Appl. Catal. A: General, 1997, 154(1-2): 207-219.
    [163] S.C. Gebhard, B.E. Koel. Influence of potassium on the adsorption of hydrogen on platinum(III)[J]. J. Phys. Chem, 1992, 96(17): 7056-7063.
    [164] I.V. Yentekakis, A. Palermo, N.C. Filkin, et al. In situ electrochemical promotion by sodium of the platinum-catalyzed reduction of NO by propene[J]. J. Phys. Chem. B, 1997, 101(19): 3759-3768.
    [165] F.J. Williams, C.M. Aldao, A. Palermo. A Monte Carlo simulation of the NO+CO reaction on Na-promoted platinum[J]. Surf. Sci., 1998, 412-413: 174-183.
    [166] C.G.. Vayenas, S. Bebelis. Electrochemical promotion of heterogeneous catalysis[J]. Catal. Today, 1999, 51(3-4): 581-594. [e167] F.J. Williams, A. Palermo, S. Tracey, et al. Electrochemical promotion by potassium of the selective hydrogenation of acetylene on platinum: reaction studies and XP spectroscopy[J]. J. Phys. Chem. B, 2002, 106(22):5668-5672.
    [168] C.H. Lee, Y.W. Chen. Effect of K2O on a Pd-containing catalytic converter for removing CO and HC emissions from a two-stroke motorcycle[J]. Ind. Eng. Chem. Res, 1998, 37(4): 1260-1266.
    [169] A.Y. Stakheev, L.M. Kustov. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s[J]. Appl. Catal. A: General, 1999, 188(1-2): 3-35.
    [170] T. Ishihara, K. Harada, K. Eguchi, et al. Electronic interaction between supports and ruthenium catalysts for the hydrogenation of carbon monoxide[J]. J. Catal., 1992, 136(1): 161-169.
    [171] Y. Yazawa, H. Yoshida, S. Komai, et al. The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives[J]. Appli. Catal. A: General, 2002, 188(1): 113-124.
    [172] M.L. Casella, G.J. Siri, G.F. Santori, et al. Surface Characterization of Li-Modified Platinum/Tin Catalysts for Isobutane Dehydrogenation[J]. Langmuir, 2000, 16(13): 5639-5643.
    [173] B.E. Spiewak, P. Levin, R.D. Cortright, et al. Microcalorimetric and reaction kinetic studies of alkali metals on Pt powder and Pt/SiO2 and Pt/Sn/SiO2 catalysts[J]. J. Phys. Chem., 1996, 100(43): 17260-17265.
    [174] Y.K. Park, F.H. Ribeiro, G.A. Somorjai. The effect of potassium and tin on the hydrogenation of ethylene and dehydrogenation of cyclohexane over Pt(111)[J]. J. Catal., 1998, 178(1): 66-75.
    [175] M. Konsolakis, N. Macleod, J. Isaac, et al. Strong promotion by Na of Pt/γ-Al2O3 catalysts operated under simulated exhaust conditions[J].J. Catal., 2000, 193(2): 330-337.
    [176] M. Konsolakis, I. V. Yentekakis. Strong promotional effects of Li, K, Rb and Cs on the Pt-catalysed reduction of NO by propene[J]. Appl. Catal. B: Environmental, 2001, 29(2): 103-113.
    [177] F.M. Dautzenberg, H.B. Wolters. M.State of dispersion of platinum in alumina-supported catalysts[J]. J. Catal., 1978, 51(1): 29-30.
    [178] N. Mahata, K.V. Raghavan, V. Vishwanathan.Influence of alkali promotion on phenol hydrogenation activity of palladium/alumina catalysts[J]. Appl. Catal. A: General, 1999, 182(1): 183-187.
    [179] D. Rodriguez, J. Sanchez, G. Arteaga. Effect of tin and potassium addition on the nature of platinum supported on silica[J]. J. Mol. Catal. A: Chemical, 2005, 228(1-2):309-317.
    [180] G. Avgouropoulos, E. Oikonomopoulos, D. Kanistras, et al. Complete oxidation of ethanol over alkali-promoted Pt/Al2O3 catalysts[J]. Appl. Catal. B: Environmental, 2006, 65(1-2): 62-69.
    [181] 王静,傅立新,李俊华. 预处理条件对 Pt/Al2O3 催化还原 NO 的活性影响[J]. 高等学校化学学报,2004, 25(6): 1090-1095
    [182] L. Olsson, E. Fridell. The influence of Pt oxide formation and Pt dispersion on the reactions NO2?NO+1/2 O2 over Pt/Al2O3 and Pt/BaO/Al2O3 [J]. J Catal, 2002, 210(2): 340-353.
    [183] A.S. Arico, A.K. Shukla, H. Kim, et al. An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen[J]. Appl. Surf. Sci, 2001, 172(1-2): 33-40.
    [184] J. Iranmahboob, H. Toghiani, D.O. Hill. Dispersion of alkali on the surface of Co-MoS2/clay catalyst: a comparison of K and Cs as a promoter for synthesis of alcohol[J]. Appl. Catal. A:General, 2003, 247(2): 207-218.
    [185] C.D. Wagner, W.M. Riggs, L.E. Davos, et al. Handbook of X-ray photoelectron spectroscopy[M]. USA, Minnesota: Perkin-Elmer Corp., 1979.
    [186] 杨锡尧. 固体催化剂的研究方法 第十三章 程序升温分析技术[J]. 石油化工,2001, 30(12): 952-959.
    [187] X.D. Huang, Y.N. Yang, J.Y. Zhang. Influence of soluble aluminium on the state and surfaceproperties of platinum in a series of reduced platinum/alumina catalysts[J]. Appl. Catal., 1988, 40: 291-313.
    [188] 白赢,卢春山,马磊等. Ce 和 Mg 改性的 γ-Al2O3 负载 Pt 催化剂催化乙二醇水相重整制氢[J]. 催化学报,2006, 27(3): 275-280.
    [189] 刘良坦,龙刚. 改性 ZSM-5 载铂催化剂的活性和酸性[J]. 南昌大学学报(理科版),1994, 18(2): 155-160.
    [190] 汪芳,蒋文伟. 环己酮二聚体脱氢催化剂失活原因分析与改进措施[J]. 四川化工,2005, 8(4): 42-44.
    [191] T.J. Toops, D.B. Smith, W.P. Patridge. Quantification of the in situ DRIFT spectra of Pt/K/γ-Al2O3 NOx adsorber catalysts[J]. Appl. Catal. B: Environmental, 2005, 58(3-4): 245-254.
    [192] W.H. Stork, G.T. Pott. Studies of compound formation on alkali/γ-Al2O3 oxide catalyst systems using chromium, iron, and manganese luminescence[J]. J. Phys. Chem.,1974, 78(24): 2496-2506.
    [193] R.C. Weast. Handbook of chemistry and physics, 59th ed. USA, Florida: CRC West Palm Beach, 1978.
    [194] G. Connell, J. A. Dumesic. Migration of potassium on iron and alumina surfaces as studied by Auger electron spectroscopy[J]. J. Catal., 1985, 92(1): 17-24.
    [195] 刘东艳,樊彦贞,张园力等. 碱土金属修饰 Al2O3 的表面热稳定性[J],物理化学学报,2001, 17(11): 1036-1039.
    [196] 刘东艳,张园力,樊彦贞等. 钙改性对 γ-Al2O3 的高温热稳定性的影响[J],燃料化学学报,2001, 29 卷增刊: 160-162.
    [197] 刘勇,陈晓银,杨竹仙等.制备方法对锶改性氧化铝的高温热稳定性的影响[J],催化学报,2000, 21(3): 273-275.
    [198] 刘勇,陈晓银,牛国兴等. 锶改性对 γ-Al2O3 的高温热稳定作用[J],催化学报,2000, 21(2): 121-124.
    [199] 刘勇,陈晓银,杨竹仙等. BaO 改性 Al2O3 的高温热稳定性[J],复旦学报(自然科学版),2000, 39(4): 374-383.
    [200] A.F. Gusovius, T.C. Watling, R. Prins. Ca promoted Pd/SiO2 catalysts for the synthesis of methanol from CO: the location of the promoter[J]. Appl. Catal. A: General, 1999, 188(1-2): 187-199.
    [201] A. Sepulveda-Escribano, M. Primet, H. Praliaud. Influence of the preparation procedure and of the barium content on the physicochemical and catalytic properties of barium-modified platinum/alumina catalysts[J]. Appl. Catal. A: General, 1994, 108(2): 221-239.
    [202] J.S. Church, N.W. Cant, D.L. Trimm. Stabilisation of aluminas by rare earth and alkaline earth ions[J]. Appl. Catal. A: General, 1993, 101(1): 105-116.
    [203] T. Kobayashi, T. Yamada, K.Kayano. Effect of basic metal additives on NOx reduction property of Pd-based three-way catalyst[J]. Appl. Catal. B: Environmental, 2000, 30(3-4): 287-292.
    [204] 朱景利,张金昌,马润宇等. 改性贵金属催化剂催化还原脱除 NO[J],环境科学,2006,27(8): 1508-1511.
    [205] 李俊华,郝吉明,傅立新等. 镧、铈对 Pt,In/Al2O3 催化剂选择性还原 NO 性能的影响[J],中国稀土学报,2003, 21 卷专辑: 48-51.
    [206] 郑坚,董家禄,须沁华. 镧改性 Pt/KL 沸石芳构化催化剂的研究[J],中国稀土学报,1998, 16(2): 170-173.
    [207] 刘佳,杨锡尧,庞礼. 稀土氧化物对 Pt/Al2O3 催化剂的助催化效应[J]. 石油学报(石油加工),1992, 8(2): 46-51.
    [208] 严前古,高利珍,远松月等. Pt/Al2O3 和 Pt/CeO2-Al2O3 催化甲烷部分氧化制合成气反应[J]. 高等学校化学学报,1998, 19(8): 1300-1303.
    [209] 杨成,董庆年,张静等. 铈和镧改性 γ-Al2O3 担载 Pd 催化剂的结构效应[J]. 物理化学学报,2002, 18(2): 170-174.
    [210] D.R. Mullins, K.Z. Zhang. Metal-support interactions between Pt and thin film cerium oxide[J]. Surf. Sci., 2002, 513(1): 163-173.
    [211] J.Z. Shyu , W.H. Weber, H.S. Gandhi. Surface characterization of alumina-supported ceria[J]. J. Phys. Chem., 1998, 92(17): 4964-4970.
    [212] 尾崎萃,田丸谦二,田部浩三. 催化剂手册(按元素分类)[M]. 北京:化学工业出版社,1982, 355.
    [213] 刘洁翔,候忠德,谢鲜梅. 类水滑石化合物的合成及催化应用[J],太原理工大学学报,2000, 31(6): 628-632.
    [214] 吴旭,谢鲜梅,杜亚丽等. 水滑石类材料碱性催化性能的应用研究[J],应用化工,2005, 34(8): 469-472.
    [215] 吴旭,谢鲜梅,杜亚丽等.水滑石类材料在氧化还原催化反应中的应用[J],工业催化,2006, 14(3): 1-5.
    [216] 陈英红,薛锦珍,侯瑞玲等. 水滑石类复合氧化物在 CO+NO 反应中的应用[J],分子催化,2000, 14(4): 270-274.
    [217] 张赣道. 高分散度催化剂 Pt/Mg(Al)O 与 Pt/Al2O3 化学吸附 H2、CO 和 CO2 的性能比较[J]. 南京化工大学学报,1996, 18 卷增刊: 15-19.
    [218] 张赣道. 催化剂 Pt/Mg(Al)O 的制备与特性[J]. 南京化工大学学报,1996, 18(4): 51-55.
    [219] 程昊,陈光文,王树东等. Pt/Mg-Al-O 催化剂上 NOx 的存储性能,催化学报,2004, 25(4): 272-276.
    [220] S. Hamada, K. Ikeue, M. Machida. Catalytic NO-H2-O2 reaction over Pt/Mg-Al-O prepared from PtCl62?- and Pt(NO2)42?-exchanged hydrotalcites[J]. Appl. Catal. B: Environmental, 2007,71(1-2): 1-6.
    [221] G.D. Zhang, B. Coq, L.C. de Menorval, et al. Comparative behaviour of extremely dispersed Pt/Mg(A1)O and Pt/Al2O3 for the chemisorption of hydrogen, CO and CO2[J]. 1996, 147(2): 395-406.
    [222] R.J. Davis, E.G. Derouane. A non-porous supported-platinum catalyst for aromatization of n-hexane[J]. Nature, 1991, 349(6307):313315-313317.
    [223] 赵芸,矫庆泽,D.G. Evans, et al. 介孔镁铝复合氧化物的成孔机理及其结构特征[J]. 中国科学[B 辑],2002, 32(1): 67-73.
    [224] 李大塘,郭军,沈俭一等. 焙烧温度对 Mg(Al)O 复合物结构和表面酸碱性质影响的研究[J]. 化学物理学报,2000, 13(2): 220-225.
    [225] P.P Yang, W.L. Wang, J.F. Yu, et al. Preparation, characterization of hydrotalcites and the catalytic properties in synthesis of o-phenylphenol over Pt/CHT[J]. Chemical Research in Chinese Universities, 2005, 21(1): 83-87.
    [226] 张蕊,李殿卿,张法智等. γ-Al2O3 载体孔内原位合成水滑石[J]. 复旦学报(自然科学版),2003, 42(3): 333-338.
    [227] 杨飘萍,宿美平,杨胥微等. 尿素法合成高结晶度类水滑石[J]. 无机化学学报,2003, 19(5): 485-490.
    [228] G. 莱特. 催化剂的制备 III 制备非均相催化剂的科学基础[M]. 北京:化学工业出版社,1991.
    [229] F. Cavani, F. Trifiro, A. Vaccari. Hydrotalcite-type anionic clays: preparation, properties and applications[J]. Catal. Today, 1991, 11(2): 173-301.
    [230] 李蕾,张春英,矫庆泽等. Mg-Al-CO3 与 Zn-Al-CO3 水滑石热稳定性差异的研究[J]. 无机化学学报,2001, 17(1): 113-118.
    [231] H.A. Prescott, Z.J. Li, E. Kemnitz. Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity and acid-base properties[J]. J. Catal., 2005, 234(1): 119-130.
    [232] J.A. Rivera, G. Fetter, P. Bosch. Microwave power effect on hydrotalcite synthesis[J]. Micro. Meso. Mater., 2006, 89(1-3): 306-314.
    [233] P. Kustrowski, D. Sulkowska, L. Chmielarz. Aldol condensation of citral and acetone over mesoporous catalysts obtained by thermal and chemical activation of magnesium-aluminum hydrotalcite-like precursors[J]. Appl. Catal. A: General, 2006, 302(2): 317-324.
    [234] C.F. Linares, S. Solano, G. Infante. The influence of hydrotalcite and cancrinite-type zeolite in acidic aspirin solutions[J]. Micro. Meso. Mater., 2004, 74(1-3): 105-110.
    [235] J.T. Kloprogge, R.L. Frost. Fourier transform infrared and raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites[J]. J. Soli. Stat. Chem., 1999, 146(2): 506-515.
    [236] D.G. Cantrell, L.J. Gille, A.F. Lee, et al. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis[J]. Appl. Catal. A: General, 2005, 287(2): 183-190.
    [237] 李春虎,赵九生,王大祥等. 纳米 MgO 和 MgAl2O4 尖晶石的制备与表征[J]. 无机材料学报,1996,11(3): 557-560.
    [238] 江德恩,赵璧英,谢有畅. 硝酸镁在 γ-Al2O3 上的热分解及 MgO/Al2O3 的碱性[J]. 物理化学学报,2000, 16(2): 105-110
    [239] P. Kustrowski, T.Troski, L. Chmielarz, et al. Acidity and basicity of hydrotalcite derived mixed Mg-Al oxides studies by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2[J]. Mater. Res. Bull., 2004, 39:263-268.
    [240] K. Takehira, T. Shishido, P. Wang, et al. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay[J]. J. Catal., 2004, 221(1): 43-54.
    [241] 王大全. 精细化工辞典[M]. 北京:化学工业出版社,1998.
    [242] 中国化工产品大全(下卷)[M]. 北京:化学工业出版社,1994: 545-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700