非线性高阶抛物型偏微分方程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体薄膜在表面张力作用下的运动,比如流体薄膜覆盖固体表面的现象,是我们日常生活中经常遇到的。这种现象背后的流体动力学机制主要与表面化学作用有关。如何控制这种相互作用不仅在工业生产中有重要的地位而且近二十年来引起了数学上的许多关注,产生了很多与实际背景相联系的数学问题。本论文首先研究了粘性流体薄膜沿倾斜平面的运动,证明了描述这一运动过程的偏微分方程的解具有有限传播速度的性质;此外还证明了一类固体薄膜运动方程弱解的适定性和有限时间爆破的现象。主要成果如下:
     1.考虑流体薄膜方程
     这是一个退化的四阶抛物型方程,用来描述粘性流体薄膜沿倾斜平面的运动,其中函数h(x,t)表示流体的厚度;常数α>0和β>0分别依赖于gsinθ和gcosθ(g是重力加速度,θ∈(0,π/2)是倾斜角);指数n>0表示附加在流体/固体界面上的边界条件(n=3表示无滑动切触,n∈(0,3)表示流体的部分滑动切触运动)。利用基于局部熵估计的逼近方法和局部能量方法,证明了当指数n满足4/3≤n<2时方程的强解具有有限传播速度的性质,并给出了解的支集的运动速度的上界估计。
     在物理上有意义的自由边值问题所具有的一个非常重要的特性就是有限传播速度。我们的结果验证了用来描述上述薄膜运动的方程的确是物理上正确的模型。
     2.考虑固体薄膜方程
     这是一个非线性一致的六阶抛物型方程,用来描述外延拉紧的固体薄膜当和基底有浸润相交作用时在表面张力驱动下的运动,其中g,p,q是物理常数。我们利用Galerkin逼近方法和能量估计的方法证明了在周期边界条件下方程弱解的存在性,唯一性和正则性;利用第一特征值的方法证明了在Dirichlet边界条件下,当系数g,p,q满足一定条件时,方程弱解的L2范数具有有限时间爆破的现象,并给出了爆破时间的估计。
The motion of a liquid under the influence of surface tension, such as a fluid coating a solid surface, is a phenomenon we experience every day. The underlying dynamics of such phenomenon depend heavily on the surface chemistry. Many industrial processes rely on the ability to control these interactions. And such contact line problem has generated some very interesting and difficult mathemat-ical problems associated with the model equations. In this dissertation, the thin viscous flows over an inclined plane is considered. It is proved that this model has finite speed of propagation for the solutions. Furthermore, the wellposedness of the weak solution to the sixth-order nonlinear uniformly parabolic equation which arises in the description of thin, epitaxially strained films in the presence of wetting intersections with the substrate is obtained. And the finite-time blow-up is shown. The main achievements contained here are as follows:
     1. Considering the thin liquid film equation
     this is a fourth-order nonlinear degenerate parabolic equation which arises in the description of thin viscous flows over an inclined plane with slopeθ∈(0,π/2), where the function h(x, t) represents the thickness of the film,α> 0 andβ> 0 are constants proportional to g sin 9 and g cosθrespectively (g is the gravitational acceleration), and the exponent n> 0 characterizes the condition assumed on the fluid-solid interface (the case n= 3 corresponds to contact without slip, while n∈(0,3) corresponds to the motion of the fluid with partial slip). We prove that the finite speed propagation property for the strong solutions of this equa-tion holds if the exponent n satisfies 4/3≤n<2. Our approach for proving is perturbation method combined with the local energy method which relies on local energy/entropy estimates and differential inequalities. And the upper bound for the speed of the support of this solution is obtained.
     One of the characteristics of the physically correct free boundary value prob-lem is the finite speed of propagation. Our results indeed confirm that the model we considered is physically correct one.
     2. Considering the thin solid film equation
     this is a sixth-order nonlinear uniformly parabolic equation which arises in the de-scription of thin, epitaxially strained films in the presence of wetting intersections with the substrate with constants g,p and q depending on some characteristic of the physical domain. Under periodic boundary conditions we prove the existence, uniqueness and regularity of the weak solution by means of Galerkin method and energy method. Also, we show the finite-time blow-up under the Dirichlet bound-ary conditions using the method of the first eigenvalue and obtain the estimates for the blow-up time.
引文
[1]D. J. Acheson, Elementary Fluid Dynamics, Clarendon Press, Oxford,2000.
    [2]L. Ansini, and L. Giacomelli, Doubly nonlinear thin-film equations in one space dimension, Arch. Rational Mech. Anal.,2004, vol.173,89-131.
    [3]J. Becker, and G. Grun, The thin-film equation:recent advances and some new perspectives, J. Phys.:Condens. Matter,2005, vol.17,291-307.
    [4]E. Beretta, M. Bertsch, and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal., 1995, vol.129, no.2,175-200.
    [5]F. Bernis, On some nonlinear singular boundary value problems of higher order, Nonlinear Anal.,1996, vol.26, no.6,1061-1078.
    [6]F. Bernis, Finite speed of propagation and continuity of the interface for thin vicous flows, Advances in Differential Equations,1996, vol.1, no.3,337-368.
    [7]F. Bernis, Finite speed of propagation for thin viscous flows when 2≤n<3, Comptes rendus de I'Academie des sciences. Serie 1, Mathematique,1996, vol.322, no.12,1169-1174.
    [8]F. Bernis, and A. Friedman, Higer order nonlinear degenerate parabolic equa-tions, J. Differential Equations,1990, vol.83, no.1,179-206.
    [9]F. Bernis, L. A. Peletier, and S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation, Nonlinear Anal.,1992, vol.18, no.3,217-234.
    [10]A. J. Bernoff, and A. L. Bertozzi, Singularities in a modified Kuramoto-Sivashinsky equation describing interface motion for phase transition, Physica D,1995, vol.85,375-404.
    [11]A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math.,1996, vol.56, nol 3,681-714.
    [12]A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc.,1998, vol.45, no.6,689-697.
    [13]A. L. Bertozzi, and M. Bowen, Thin film dynamics:theory and applications, in Modern methods in scientific compution and applications (Montreal, QC, 2001), vol.75 of NATO Sci. Ser.Ⅱ Math. Phys.Chem.,31-79, Dordrecht: Kluwer Acad. Publ.,2002.
    [14]A. L. Bertozzi, M. P. Brenner, T. F. Dupont, and L. P. Kadanoff, Singu-larities and similarities in interface flows, Trends and perspectives in applied mathematics, vol.100 of Appl. Math. Sci.155-208, New York:Springer, 1994.
    [15]A. L. Bertozzi, and M. C. Pugh, The lubrication approximation for thin film viscous films:the moving contact line with a porous media cutoff of the van der waals interactions, Nonlinearity,1994, vol.7,1535-1564.
    [16]A. L. Bertozzi, and M. C. Pugh, The lubrication approximation for thin vis-cous films:regularity and long-time behaviour of weak solutions, Comm. Pure Appl. Math.,1996, vol.49, no.2,85-123.
    [17]A. L. Bertozzi, and M. C. Pugh, Long-wave instabilities and saturation inthin film equations, Commun. Pure Appl. Math.,1998, vol.51, no.6,625-661.
    [18]A. L. Bertozzi, and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana University Mathematics Journal, 2000, vol.49, no.4, 1323-1366.
    [19]M. Bertsch, R. Dal Passo, H. Garcke, and G. Grun, The thin viscous flow equation in higher space dimensions, Adv. Differential Equations,1998, vol. 3, no.3,417-440.
    [20]M. Boutat, Y. D'Angelo, S. Hilout, and V. Lods, Existence and finite-time blow-up for the solution to a thin-film surface evolution problem, Asymptot. Anal.,2004, vol.38,93-128.
    [21]M. Boutata, S. Hiloutb, J.-E. Rakotosonc, and J.-M. Rakotoson, A generalized thin-film equation in multidimensional space, Nonlinear Analysis:T. M. A., 2008, vol.69, no.4,1268-1286.
    [22]J. P. Burelbach, S. Bankoff, and S. Davis, Coation flows:Form and function, J. Fluid Mech.,1988, vol.195,463-494.
    [23]E. A. Carlen, and S. Ulusoy, An entropy dissipation-entropy estimate for a thin film type equation, Commun. Math. Sci.,2005, vol.3, no.2,171-178.
    [24]E. A. Carlen, and S. Ulusoy, Asymptotic equipartition and long time behaviour of solutions of a thin-film equation, J. Ditterential Equa.,2007, vol.241, no. 2,279-292.
    [25]J. A. Carrillo, A. Juengel, P. A. Markowich, G. Toscani, and A. Unterreiter, Entropy Dissipation Methods for Degenerate Parabolic Problems and Gener-alized Sobolev Inequalities, Monatsh. Math.,2001, vol.133,1-82.
    [26]J. A. Carrillo, and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys.,2002, vol.225, no.3,551-571.
    [27]J. D. Chen, P. Hahn, and J. Slattery, Coalescense time for a small drop or bubble at a fluid-fluid interface, AIChE J.,1984, vol.30,622-630.
    [28]S. Childress, and E. A. Spiegel, Pattern formation in a suspension of swim-ming microorganisms:nonlinear aspects, A celebration of mathematical mod-eling,33-52, Kluwer Acad. Publ., Dordrecht,2004.
    [29]P. Collet, J.-P. Eckmann, H. Esptein, and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Comm. Math. Phys.,1993, vol.152, 203-214.
    [30]P. Constantin, T. F. Dupont, R. E. Goldstein, L. R. Kadanoff, M. J. Shelley, and S. M. Zhou, Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E,1993, vol.47, no.6,4169-4181.
    [31]Z. Csahok, C. Misbah, and A. Valance, A class of nonlinear front evolution equations derived from geometry and conservation, Physica D,1999, vol.128, 87-100.
    [32]M. C. Depassier, and E. A. Spiegel, The large-scale structure of compressible
    convection, Astronom J.,1981, vol.86, no.3,496-512.
    [33]T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, and S. M. Zhou, Finite-time
    singularity formation in Hele-Shaw systems, Phys. Rev. E,1993, vol.47, no. 6,4182-4196.
    [34]J. Evans, V. A. Galaktionov, and J. R. King, Unstable sixth-order thin film
    equation:Ⅰ. Blow-up similarity solutions, Nonlinearity,2007, vol.20, no.8, 1799-1841.
    [35]J. Evans, V. A. Galaktionov, and J. R. King, Unstable sixth-order thin film
    equation:Ⅱ. Global similarity patterns, Nonlinearity,2007, vol.20, no.8, 1843-1881.
    [36]L. C. Evans, Partial Differential Equations, Grad. Stud. Math. vol.19, Amer-
    ican Mathematical Society, Providence, RI 1998.
    [37]M. L. Frankel, On the nonlinear evolution of a solid-liquid interface, Phys. Lett. A,1988, vol.128,57-60.
    [38]M. L. Frankel, On a free boundary problem associated with combustion and solidification, Math. Modelling Num.Anal.,1989, vol.23,283-291.
    [39]M. L. Frankel, and G. I. Sivashinsky, On the nonlinear thermal diffusive theory
    of curved flames, J. Physique,1987, vol.48,25-28.
    [40]M. L. Frankel, and G. I. Sivashinsky, On the equation of a curved flame front, Physica D,1988, vol.30,28-42.
    [41]A. Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London,1969
    [42]V. A. Galaktionov, and S. R. Svirshchevskii, Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman & Hall/CRC, Boca Raton,2007.
    [43]P. G. DE Gennes, Wetting:Statics and dynamics, Rev. Modern Phys.,1985, vol.57,827-863.
    [44]L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane, Applied Mathematics Letters,1999, vol. 12,107-111.
    [45]L. Giacomelli, and G. Grun, Lower bounds on waiting times for degenerate parabolic equations and systems, Interfaces Free Bound.,2006, vol.8, no.1, 111-129.
    [46]L. Giacomelli, and A. Shishkov, Propagation of support in one-dimensional convected thin-film flow, Indiana University Mathematics Journal,2005, vol. 54, no.4,1181-1215.
    [47]S. Goldstein, ed., Modern developments in fluid dynamics, vol.2, Dover, Inc., 1965.
    [48]R. E. Goldstein, A. I. Pesci, and M. J. Shelley, Instabilities and singularities in Hele-Shaw flow, Phys. Fluids,1998, vol.10,no.11,2701-2723.
    [49]A. A. Golovin, S. H. Davis, and P. W. Voorhees, Self-organization of quantum dots in epitaxially strained solid films, Phys. Rev. E,2003, vol.68,056203.
    [50]J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Comm. Pure Appl. Math.,1994, vol.47,293-306.
    [51]J. Grotberg, Pulmonary flow and transfer phenomena, Annu. Rev. Fluid Mech.,1994, vol.26,529-571.
    [52]G. Grun, Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening, Z. Anal. Anwendungen,1995, vol. 14, no.3,541-574.
    [53]G. Grun, On Bernis'interpolation inequalities in multiple space dimensions, Z. Anal. Anwendungen,2001, vol.20, no.4,987-998.
    [54]G. Grun, Droplet spreading under weak slippage-existence for the Cauchy prob-lem, Comm. PDE,2004, vol.29, no.11-12,1697-1744.
    [55]L. M. Hocking, Spreading and instability of a viscous fluid sheet, Journal of fluid Mechanics, 1990, vol.211, 373-392.
    [56]J. Hulshof, and A. Shishkov, The thin film equation with 2≤n< 3:Fi-nite speed of propagation in terms of the L1-norm, Advances in Differential Equations,1998, vol.3, no.5,625-642.
    [57]H. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech.,1982, vol. 121,43-58.
    [58]H. Huppert, and J. Simpson, The slumping of grivity currents, J. Fluid Mech., 1980, vol.99,785-799.
    [59]M. P. Ida, and M. J. Miksis, Dynamics of a lamella in a capillary tube, SIAM J. Appl. Math.,1995, vol.55, no.1,23-57.
    [60]Kai-Seng Chou, On a modified Kuramoto-Sivashinsky equation, Diff. Integr. Equations,2002, vol.15,863-874.
    [61]J. R. King, The isolation oxidation of silicon, SIAM J. Appl. Math.,1989, vol.49, no.1,264-280.
    [62]J. R. King, The isolation oxidation of silicon:the reaction-controlled case, SIAM J. Appl. Math.,1989, vol.49, no.4,1064-1080.
    [63]J. R. King, Two generalisations of the thin film equation, Math. Comput. Modelling, 2001, vol.34, no.7-8,737-756.
    [64]L. Kondic, Instabilities in gravity driven flow of thin fluid films, SIAM Rev., 2003, vol.45, no.1,95-115.
    [65]R. S. Laugesen, New dissipated energies for the thin fluid film equation, Com-mun. Pure Appl. Anal.,2005, vol.4, no.3,613-634.
    [66]Xiaochuan Liu and Changzheng Qu, Long-time behaviour of solutions of a
    class of nonlinear parablic equations, Nonlinear Anal.:Theory, Methods and Applications,2008,69, no.12,4470-4481.
    [67]Xiaochuan Liu, and Changzheng Qu, Existence and blow-up of weak solutions
    for a sixth-order equation related to thin solid films, Nonlinear Anal.:Real World Applications, to appear, doi:10. 1016/j. nonrwa.2010.05. 008.
    [68]Xiaochuan Liu, and Changzheng Qu, Finite speed of propagation for thin
    viscous flows over an inclined plane, Math. Methods Appl. Sci. (Submitted).
    [69]J. L. Lopez, J. Soler, and G. Toscani, Time rescaling and asymptotic behavior
    of some fourth order degenerate diffusion equations, Comm. Appl. Nonlinear Anal.,2002, vol.9, no.1,31-48.
    [70]E. Momoniat, T. G. Myers, and S. Abelman, Similarity solutions of thin film
    flow driven by gravity and surface shear, Nonlinear Analysis:Real World Applications,2009, vol.10,3443-3450.
    [71]J. A. Moriarty, and E. L. Terrill, Dynamic considerations in the opening and
    closing of holes in thin liquid films, J. Coll. Interf. Sci.,1993, vol.161,335-342.
    [72]J. A. Moriarty, and E. L. Terrill, Mathematical modelling of the motion of hard contact lenses, European J. Appl. Math.,1996, vol.7, no.6,575-594.
    [73]T. G. Myers, Thin films with high surface tension, SIAM Rev.,1998, vol.40, no.3,441-462.
    [74]B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations:nonlinear stability and attractors, Physica D,1985, vol.16,155-183.
    [75]L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 1959, vol.13,115-162.
    [76]L. Nirenberg, An extended interpolation inequality, Ann. Scuola Norm. Sup. Pisa 1966, vol.20,733-737.
    [77]A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Reviews of Modern Physics,1997, vol.69, no.3,931-980.
    [78]F. Otto, Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations,1998, vol.23, no.11-12,2077-2164.
    [79]R. Dal Passo, H. Garcke, and G. Grun, On a fourth-order degenerate parabolic equation:global entropy estimates, existence, and qualitative behaviour of so-lutioins, SIAM J. Math. Anal.,1998, vol.29, no.2, 321-342.
    [80]R. Dal Passo, L. Giacomelli, and G. Grun, A waiting time phenomenon for thin film equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),2001, vol.30, no.2,437-463.
    [81]R. Dal Passo, L. Giacomelli, and A. Shishkov, The thin film equation with nonlinear diffusion, Communications in Partial Differential Equations,2001, vol.26,1509-1557.
    [82]J. E. Rakotoson, J. M. Rakotoson, and Cedric Verbeke, Higher order equations related to thin films:Blow-up and global existence, the influence of the initial data, J. Diff. Equations,2008, vol.244,2693-2740.
    [83]D. C. Sarocka, and A. J. Bernoff, An intrinsic equation of interfacial motion for the solidification of a pure hypercooled melt, Pysica D,1995, vol.85,348-374.
    [84]L. W. Schwartz, and D. E. Weidner, Modelinq of coatinq flows on curved surfaces, J. Engrg. Math.,1995, vol.29, no.1,91-103.
    [85]A. Sharma, and E. Ruckenstien, An analytical nonlinear theory of thin film rupture and its applications to wetting films, J. Colloid Sci.,1986, vol. 113, 456-479.
    [86]G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivation of basic equations, Acta Astronautica,1997, vol.4,1177-1206.
    [87]W. Smith, S. Howison, and D. Mayers, Numerical and saymptotic solution of a sixth-order nonlinear diffusion equation and related coupled system, IMA J. Appl. Math.,1996, vol.57,79-98.
    [88]N. F. Smyth, and J. M. Hill, Higher-order nonlinear diffusion, IMA J. Appl. Math.,1988, vol.40, no.2,73-86.
    [89]B. J. Spencer, S. H. Davis, and P. W. Voorhees, Morphological instability in epitaxially strained dislocation-free solid films, Phys. Rev. Lett.,1991, vol.67, 3696-3699.
    [90]B. J. Spencer, S. H. Davis, and P. W. Voorhees, Morphological instability in epitaxially stramea dislocation-free solid films:Nonlinear evolution, Phys. Rev. B,1993, vol.47, no.15, 9760-9777.
    [91]B. J. Spencer, S. H. Davis, and P. W. Voorhees, Morphological instability in epitaxially strained dislocation-free solid films:Linear stability theory, J. Appl. Phys.,1993, vol.73,4955.
    [92]A. B. Tayler, and J. R. King, Free boundaries in semi-conductor fabrication. free boundary problems:theory and applications, Vol.1,1987,243-259, Pit-man Res. Notes Math. Ser.,185, Longman Sci. Tech., Harlow,1990.
    [93]R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, third revised ed., North-Holland, Amsterdam,1984.
    [94]E. O. Tuck, and L. W. Schwartz, Thin static drops with afree attachment boundary, Journal of Fluid Mechanics,1991, vol.223,313-324.
    [95]A. Tudorascu, Lubrication approximation for thin viscous films:asymptotic behaviour of nonnegative solutions, Commun. in PDE,2007, vol.32,1147-1172.
    [96]S. Ulusoy, A new family of higher order nonlinear degenerate parabolic equa-tions, Nonlinearity,2007, vol.20, no.3, 685-712.
    [97]S. Ulusoy, On a new family of degenerate parabolic equations, Appl. Math. Res. express,2007, no.2, Art. ID abm010,28 pp.
    [98]S. K. Wilson, The levelling of paint films, IMA J. Appl. Math.,1993, vol.50, no.2,149-166.
    [99]S. Wilson, and E. Terrill, The dynamics of planar and axisymmetric holes in
    thin fluid layers, in P. H. Gaskell, M. D. Savage, and J. L. Summers, editors, first European coating symposium on The mechanics of thin film coatings, World Scientific,1995.
    [100]H. Wong, C. Radke, and S. Morris, The motion of long bubbles in polygonal capillaries, part 1. thin films, J. Fluid Mech.1995, vol.292, no.3,71-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700