毛茛科植物胚珠形态、结构、发育及其系统学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚珠是被子植物有性生殖的重要器官,许多生命周期中有意义的过程都要在胚珠中完成,如雌配子体的发生发育,引导花粉管,完成双受精,新孢子体的发育等等。毛茛目是基部真双子叶植物中最重要的类群之一。毛茛科,作为毛茛目的一个核心科,其形态学特征有丰富的变异,如叶、花、心皮和胚珠形态。毛茛科胚珠形态丰富的变异应该蕴藏有大量的系统进化信息。传统分类学和分子系统学研究结果对于毛茛科的划分既有相似又有差异。因此,我们期望对于毛茛科植物成熟胚珠形态及胚珠形态、结构发生发育的研究有助于更好的理解毛茛科下亚科、族甚至属间的分类和系统演化关系。
     本文对国产毛茛科3亚科11族25属42种植物成熟胚珠形态,3亚科11族18属19种植物胚珠形态发生发育,2亚科2族2属2种代表植物胚珠的组织发生和发育进行了观察研究。
     1)3亚科11族25属42种植物成熟胚珠形态观察结果表明:
     毛茛科植物胚珠的形态变异十分丰富,在毛茛科42种植物成熟心皮中,36种植物为倒生胚珠;只有侧金盏花属、毛茛属和水毛茛属植物为横生胚珠。
     黄连亚科,唐松草亚科所有的属,毛茛亚科中驴蹄草族,侧金盏花族,太白美花草族,黑种草族,升麻族和翠雀族植物的胚珠是双珠被;毛茛亚科中的铁筷子族,毛茛族和银莲花族植物的胚珠是单珠被。
     在双珠被胚珠中,内珠被均呈杯状,且在成熟时边缘具裂片;外珠被大多呈兜状,只有耧斗菜属的无距耧斗菜和侧金盏花属植物的外珠被杯状。在单珠被胚珠中,铁筷子族和毛茛族植物胚珠的珠被杯状且边缘具裂片;而银莲花族胚珠的珠被兜状且边缘均呈3裂片。
     双珠被胚珠中除了耧斗菜属的无距耧斗菜是非典型的双珠孔外,其余胚珠均为内珠孔。
     黄连亚科的黄连属植物的胚珠具有一个完全包被在胚珠外的附属物,毛茛科其他属均不具有这一结构。唐松草亚科3属(唐松草属,耧斗菜属,人字果属)植物成熟胚珠发育均具一明显的附属物,这一附属物的形态各异但均包围珠柄;其中唐松草属和耧斗菜属植物的胚珠附属物还延伸至胎座上。毛茛亚科11族21属植物的胚珠中大多不具附属物,只有银莲花族、毛茛族、太白美花草族、铁筷子族和升麻族5族9属16种植物具有附属物。其中铁筷子族的铁筷子属和升麻族菟葵属胚珠珠柄背侧具有一兜状附属物;太白美花草族的太白美花草属的胚珠珠柄腹侧具有一片状附属物;银莲花族的银莲花属、铁线莲属和白头翁属,毛茛族的毛茛属、水毛茛属和角果毛茛属植物成熟胚珠珠柄腹侧具有片状或乳突状的附属结构。
     2)3亚科11族18属19种植物胚珠形态发生发育观察结果表明:
     在双珠被胚珠中,内珠被均环状发生发育,成熟时杯状且边缘呈裂片状;外珠被大多半环状发生发育,成熟时兜状。只有耧斗菜属的无距耧斗菜和侧金盏花属不同,无距耧斗菜胚珠外珠被半环状发生发育,在发育后期由半环状转变为环状,成熟时外珠被杯状;侧金盏花属植物胚珠外珠被环状发生发育,成熟时杯状。在单珠被胚珠中,铁筷子属、鸦跖花属和毛茛属胚珠的珠被环状发生发育,成熟时杯状且边缘呈裂片状;而银莲花属和铁线莲属胚珠的珠被半环状发生发育,成熟时兜状且边缘均具3裂片。
     3)2亚科2族2属2种代表植物胚珠结构发生发育观察结果表明:
     黄连和驴蹄草胚珠的内外珠被均来自珠心基部表皮细胞的分裂。
     黄连和驴蹄草胚珠的厚珠心来源不同,黄连胚珠的厚珠心来源于珠心表皮和周缘细胞共同分裂;而驴蹄草胚珠的厚珠心来源于珠心表皮分裂。
     4)对具有诸多过渡性状的毛茛科植物成熟胚珠和胚珠形态、结构发生发育过程的研究使我们认识到倒生、双珠被、兜状外珠被和内珠孔可能是较横生、单珠被、杯状外珠被和双珠孔原始的性状。毛茛科植物胚珠的内外珠被可能均来自珠心基部表皮细胞的分裂;而厚珠心的来源具有多样性。一些植物胚珠的厚珠心来源于珠心表皮和周缘细胞共同分裂;一些植物胚珠的厚珠心来源于珠心表皮分裂。
     5)毛茛科胚珠形态特征与分子系统学研究结果最为吻合,进一步支持了近年来分子系统学将毛茛科划分为4个亚科的观点;也对形态学和分子系统学关于毛茛科内一些类群所存在争议的属间、族间关系提供了一些证据。通过胚珠形态学的研究认为唐松草亚科唐松草属,耧斗菜属和人字果属间的关系是平行的,支持将这3属置于唐松草亚科下不同的3个主要类群中;支持分别给予铁筷子属、美花草属族的分类等级的观点;对于侧金盏花属和毛茛亚科其他具蓇葖果的属之间具有较近的亲缘关系给予了一定的支持;支持银莲花属、白头翁属、獐耳细辛属和铁线莲属之间是有差异的,将其置于不同亚族不同属中是合理的;支持将水毛茛属和角果毛茛属做为亚属置于毛茛属中,碱毛茛属和鸦跖花属独立为属置于毛茛族中。
The ovule is vital in the angiosperms as a sexual reproductive organ. Many significant events of angiosperm life cycle, such as the initiation and development of female gametophyte, guidance for the pollen tube, the double fertilization, the development of the new sporophyte, are achieved in the ovule. Ranunculales is one of the most important groups in basal eudicots. Ranunculaceae, a core family in Ranunculales, is various in morphological characteristics, such as the leaves, flowers, carpels, and ovules. The variety of the ovules within Ranunculaceae may provide useful systematic information. There are some similarities and differences in molecular and non molecular systematic studies. The researches on ovule studies of Ranunculaceae may help us to understand the subfamilial, tribe, even genus relationships in Ranunculaceae.
     Mature ovules morphology of 42 species from 3 subfamilies, 11 tribes, and 25 genera of Ranunculaceae, ovules morphogenesis of 19 species from 3 subfamilies, 11 tribes, and 18 genera of Ranunculaceae, ovules histogenesis of 2 species from 2 subfamilies, 2tribes, and 2 genera of Ranunculaceae, were studied.
     1) Mature ovules morphology of 42 species from 3 subfamilies, 11 tribes, and 25 genera:
     The variety of the ovules within Ranunculaceae provide some useful information, the ovules of 36 species are anatropous; except Adonis, Ranunculus and Batrachium are hemianatropous.
     Mature ovules in genera of Subfam.Coptidoudeae and Subfam.Thalictroideae, Tribe Catheae, Tribe Adonideae, Tribe Callianthemeae, Tribe Nigelleae, Tribe Cimicifugeae and Tribe Delphineae of Subfam. Ranunculoideae are bitegmic integument; ovules in Tribe Helleboreae, Tribe Anemoneae and Tribe Ranunculeae of Subfam. Ranunculoideae are unitegmic integument.
     In bitegmic mature ovules, the inner integuments are all cup-shaped and the birms of the inner integuments are lobed; the outer integument of the most species is hood-shaped, except Aquilegia (Aquilegia ecalcarata) and Adonis are cupular-shaped. In unitegmic mature ovules, the integuments are cup-shaped and the brims of them are lobed in Tribe Helleboreae and Tribe Ranunculeae; the integuemnts are hood-shped and the brims of them are 3-lobed.
     In bitegmic mature ovules, the micropyles are endostomic except Aquilegia (Aquilegia ecalcarata) is atypical bistomic.
     In Coptis of Subfam. Coptidoideae, an appendage covers the ovule, and this kind of appendage was not found in other genera in the family. In Aquilegia, Dichocarpum, and Thalictrum of Subfam. Thalictroideae, the appedages are collar-shaped, or raphe-shaped, or ring-shaped and surrounding the funicles anyhow. In Subfam. Ranunculoideae, the ovules of most genera have no appendage except Tribe Helleboreae (Helleborus), Tribe Cimicifugeae (Eranthis), Tribe Callianthemeae (Callianthemum), Tribe Anemoneae (Anemone, Clematis, Pulsatilla) and Tribe Ranunculeae (Ranunculus, Batrachium, Ceratocephalus). In Helleborus and Eranthis, hood-shaped appendages form at the dorsal side of the funicle; in Callianthemum, a lamellar appendage arises on the ventral side of the funicle; in Anemone, Clematis, and Pulsatilla, the appendages arise on the ventral side of the funicle.
     2) Ovules morphogenesis of 19 species from 3 subfamilies, 11 tribes, and 18 genera:
     In bitegmic ovules, the inner integuments initiate annularly and become cup-shaped in maturity. The birms of the inner integuments are lobed. The outer integuments arise semi-annularly and become hood-shaped in maturity. But the ovules of Aquilegia (Aquilegia ecalcarata) and Adonis are different. The outer integument in Aquilegia ecalcarata initiates semi-annularly and becomes cupular-shaped in maturity. The outer integument in Adonis sutchuenensis initiates annularly and becomes cupular-shaped in maturity. In unitegmic ovules, the integuments in Helleborus, Oxygraphis and Ranunculus initiate annularly and become cup-shaped in maturity. The birms of the integuments are lobed. The integments in Anemone and Clematis initiate semi-annularly and become hood-shaped in maturity. The brims of the integuments are 3-lobed.
     3) Ovules histogenesis of 2 representive species from 2 subfamilies, 2tribes, and 2 genera
     The epidermal cells of the base of nucellus divide and then form the inner integument andouter integument in Coptis chinensis and Caltha palustris.
     The nucellus derivation of the crassinucellate ovule (Coptis chinensis and Caltha palustris) are different, the nucellus of Coptis chinensis derive from the division of the nucellus epidermal cells and the parietal cell, but the nucellus of Caltha palustris derive from the division of the nucellus epidermal cells only.
     4) The variety of the ovules within Ranunculaceae may provide useful information for better understanding of the evolution of ovules. It has been considered that the anatropous, bitegmic, hood-shapde outer integument and endostomic clearly represent more primitive characters than the hemianatropous, unitegmic, cupular-shped outer integument and bistomic ones. The inner integument and outer integument of the ovules in Ranunculaceae may all derive from the epidermal cells of the base of nucellus division. But the nucellus derivation of the crassinucellate ovule are different, the nucellus of some species derive from the division of the nucellus epidermal cells and the parietal cell, but the nucellus of some species derive from the division the nucellus epidermal cells only.
     5) The ovule morphology studies support the subdivision of the family based on the molecular systematics, i.e. 4 subfamilies, Hydrastidoideae, Coptidoideae, Thalictroideae, and Ranunculoideae. The researches on ovule studies of Ranunculaceae also help us to understand the subfamilial, tribe, even genus relationships in Ranunculaceae. It has been considered that the genetic relationship of Thalictrum, Dichocarpum and Aquilegia are equal; a tribal rank for Helleborus and Callianthemum is reasonable; the affinity between Adonis and other follicular genera are weak; Anemone, Clematis, Pulsatilla and Hepatica were divided in different subtribes and different genera are reasonable; a genus rank for Oxygraphis and Halerpestes is reasonable, but Batrachium and Ceratocephalus should be regard as subgenus rank in Ranunculus.
引文
[1]A.J.Eames.Morphology of the Angiosperms[M].NewYork:McGraw-Hill,1961,256-289.
    [2]胡适宜.被子植物胚胎学[M].北京:人民教育出版社,1982,67-79.
    [3]B.M.Johri,K.B.Ambegaokar,P.S.Srivastava.Comparative embryology of angiosperms,Vols.1,2.[M].Berlin:Springer-Verlag,1992.
    [4]Q.Y.Zhou,X.B.Jin,D.Z.Fu,Developmental morphology of obturator and micropyle and pathway of pollen tube growth in ovary in Phellodendron amurense (Rutaceae)[J].Acta Botanica Sinica.2004,46:1434-1442.
    [5]A.C.Joshi.Morphology of Tinospora cordifolia,with some observations on the origin of the single integument,nature of synergidae,and affinities of the Menispermaceae[J].American Journal of Botany 1939,26:433-439.
    [6]G.L.Stebbins.Flowering plants:evolution above the species level[M].Cambridge:Belknap Press of Harvard University Press.1974.
    [7]F.Bouman.The ovule[M].In:Johri B.M.(ed),(Embryology of angiosperms.Springer-Verlag,Berlin Heidelberg New York).1984:123-157.
    [8]A.Cronquist.The evolution and classification of flowering plants,2nd ed[M].New York:New York Botanical Garden.1988.
    [9]A.Takhtajan.Evolutionary trends in flowering plants[M].New York:Columbia University Press.1991.
    [10]P.K.Endress,A.Igersheim.Gynoecium structure and evolution in basal angiosperms[J].International Journal of Plant Science.2000a,161(Suppl.):S211-S223
    [11]P.K.Endress,A.Igersheim.The reproductive structures of the basal angiosperm Amborella trichopoda(Amborellaceae).International Journal of Plant Science[J].2000b,161(Suppl.):S237-S248.
    [12]T.Yamada,H.Tobe,R.Imaichi,M.Kato.Developmental morphology of the ovules of Arnborella trichopoda(Amborellaceae) and Chloranthus serratus (Chloranthaceae)[J].Botanical Journal of the Linnean Society 2001a,137:277-290.
    [13]J.M.Coulter,C.J.Chamberlain.Morphology of Angiosperms[M].New York:Appleton.1909.
    [14] W.G. Houk. The ovule and seed of Coffea arabica L [J]. Science. 1936, 83: 464-465.
    
    [15] W.G. Houk. Endosperm and perisperm of coffee with notes on the morphology of the ovule and seed development [J]. American Journal of Botany. 1938, 25: 56-61.
    [16] E.J.H. Corner, M.A., F.L.S. The annonaceous ovule and its four integuments [J]. New Phytologist. 1949,48: 332-364.
    [17] J.M. Coulter, C.J. Chamberlain. Morphology of angiosperms [M]. New York: Appleton. 1903.
    [18] F. Gonzalez, P.J. Rudall. Structure and development of the ovule and seed in Aristolochiaceae, with particular reference to Saruma [J]. Plant Systematics and Evolution. 2003, 241: 223-244.
    [19] Y. Kimoto, H. Tobe. Embryology of Siparunaceae (Laurales): characteristics and character evolution. Journal of Plant Research 2003,116: 281-294.
    [20] A.D.J. Meeuse, F. Bouman. The inner integument - its probable origin and homology [J]. Acta Botanica Neerlandica 1974.23, 237-249.
    [21] W.N. Stewart, G.W. Rothwell. Paleobotany and the evolution of plants, 2nd ed [M]. Cambridge: Cambridge University Press. 1993.
    [22] P.K. Endress. Origins of flower morphology. In: Wagner GP, ed. The character concept in evolutionary biology [M]. San Diego: Academic Press, 2001,495-512.
    [23] T. Yamada, R. Imaichi, M. Kato. The outer integument and funicular outgrowth complex in the ovule of Magnolia grandiflora (Magnoliaceae) [J]. Journal of Plant Research. 2003, 116:189-198.
    [24] A. Fahn. Plant anatomy, 4th ed [M]. London: Pergamon Press. 1990.
    [25] T. T. Earle. Embryology of certain Ranales [J]. Botanical Gazette.1938, 100, 257-275.
    [26] B.G.L. Swamy. Further contributions to the morphology of the Degeneriaceae [J]. Journal of the Arnold Arboretum. 1949, 30:10-38.
    [27] R.K. Lampton. Floral morphology in Asimina triloba Dunal. 1. Development of ovule and embryo sac [J]. Bulletin of the Torrey Botanical Club. 1957, 84: 151-156.
    [28] K. Periasamy, B.G.L. Swamy. Studies in the Annonaceae. 2. The development of ovule and seed in Cananga odorata and Millusa wightiana [J]. Journal of the India Botanical Society. 1961, 40: 206-216.
    [29] N.N. Bhandari. Embryology of Pseudowintera colorata-a. vesselless dicotyledon [J]. Phytomorphology. 1963,13: 303-316.
    [30] R. De Boer, F. Bouman. Integumentary studies in the Polycarpicae.III. Drimys winteri (Winteraceae) [J]. Acta Botanica Neerlandica. 1974, 23: 19-27.
    [31] P.R. Mohana Rao. Seed anatomy of Artabotrys odoratissimus with a discussion on chalaza, integumetary bundles and ruminate endosperm [J]. Phytomorphology. 1975,25:215-228
    [32] P.R. Mohana Rao. Seed and fruit anatomy in Polyalthia longifolia (Annonaceae) [J]. Botanische Jahrbiicher fur Systematik, Pflanzengeschichte und Pflanzengeographie. 1979,101: 83-89.
    [33] P.R. Mohana Rao. Seed and fruit anatomy in Asimina triloba, with a discussion on the affinities of Annonaceae [J]. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie. 1982,103: 47-57.
    [34] P.R. Mohana Rao. Seed and fruit anatomy in Eupomatia laurian with a discussuin of the affinities of Eupomatiaceae [J]. Flora. 1983, 173: 311-319.
    [35] F. Bouman. Integumentary studies in the Polycarpicae. V. Nigella damascena L [J]. Acta Botanica Neerlandica. 1978,27: 175-182.
    [36] P.K. Endress. Floral structure and relationships of Hortonia (Monimiaceae) [J]. Plant Systematics and Evolution. 1980a, 133: 199-221.
    [37] P.K. Endress. The reproductive structures and systematic position of the Austrobaileyaceae [J]. Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie. 1980b, 101: 393-433.
    [38] T.B. Batygina, G.E. Kolesova, V.E. asiljeva. Embryology of Nymphaeales and Nelumbonales. 3. Embryogenesis of Nelumbo nusifera [J]. Botanicheskii Zhurnal. 1983,68:311-315.
    [39] P.K. Endress, F.B. Sampson. Floral structure and relationships of the Trimeniaceae (Laurales) [J]. Journal of the Arnold Arboretum. 1983, 64: 447-473.
    [40] N. Prakash, D.B. Foreman, S.J. Griffith. Gametogenesis in Galbulimima belgraveana (Himantandraceae) [J]. Australian Journal of Botany. 1984, 32: 605-612.
    [41] N. Prakash, A.L. Lim, F.B. Sampson. Anther and ovule development in Tasmannia (Winteraceae) [J]. Australian Journal of Botany. 1992, 40: 877-885.
    [42] M. Matsui, R. Imaichi, M. Kato. Ovular development and morphology of some Magnoliaceae species [J]. Journal of Plant Research. 1993,106: 297-304.
    [43] A. Umeda, R. Imaichi, M. Kato. Ovular development and morphology of the outer integument of Magnolia grandiflora (Magnoliaceae) [J]. American Journal of Botany 1994, 81:361-367.
    [44] P.K. Endress, A. Igersheim. Gynoecium diversity and systematics of the Laurales[J]. Botanical Journal of the Linnean Society. 1997, 125: 93-168.
    [45] P.K. Endress, A. Igersheim. Gynoecium diversity and systematics of the basal eudicots [J]. Botanical Journal of the Linnean Society.1999, 130: 305-393.
    [46] T. Yamada, R. Imaichi, M. Kato. Developmental morphology of ovules and seeds of Nymphaeales [J]. American Journal of Botany. 2001b,88: 963-974.
    [47] V.R. Tilton, H.T. Horner. Stigma, style, and obturator of Ornithogalum caudatum (Liliaceae) [J]. American Journal of Botany. 1980, 67: 1113-1131.
    [48] F. Bouman. Integumentary studies in the Polycarpicae. IV. Liriodendron tulipifera L [J]. Acta Botanica Neerlandica.1977, 26: 213-223.
    [49] R. Imaichi, M. Kato, H. Okada. Morphology of the outer integument in three primitive angiosperm families [J]. Canadian Journal of Botany. 1995, 73: 1242-1249.
    [50] J.E. McNaughton, B.L. Robertson. Megasporogenesis and megagametogenesis in Aloe africana Mill [J]. Journal of South African Botany. 1974,40: 75-79.
    [51] A. Igersheim, P.K. Endress. Gynoecium diversity and systematics of the Magnoliales and winteroids. Botanical Journal of the Linnean Society 1997, 124: 213-271.
    [52] A. Igersheim, P.K. Endress. Gynoecium diversity and systematics of the paleoherbs [J]. Botanical Journal of the Linnean Society. 1998,127: 289-370.
    [53] H. Tobe, T. Jaffre, P.H. Raven. Embryology of Amborella (Amborellaceae): descriptions and polarity of character states [J]. Journal of Plant Research. 2000.113: 271 -280.
    [54] B. Wojciechowska. Gametogenesis in Ornithopus sp [J]. Genetica polonica. 1972, 13:13-35.
    [55] M.J. Schleiden. Einige blicke auf die entwicklungsgeschichte das vegetablischen organismus bei den phanerogamen [J]. Arch Bull Nat 1837, 1: 289-320.
    [56] F. Bouman, J.I.M. Calis. Integumentary shifting -a third way to unitegmy [J]. Bericht der Deutschen anischem Gesellschaft. 1977, 90: 15-28.
    [57] F.D. Boesewinkel. Development of ovule and testa in Rutaceae. III. Some representatives of the Aurantioideae [J]. Acta Botanica Neerlandica. 1978, 27: 341-354.
    [58] F.D. Boesewinkel, F. Bouman. Integument initiation in Juglans and Pterocarya [J]. Acta Botanica Neerlandica. 1967,16: 86-101
    [59] F.D. Boesewinkel, F. Bouman. Development of ovule and testa in Rutaceae. II. The unitegmic and pachychalazal seed of Glycosmis cf. arborea (Roxb.)D.C [J]. Acta Botanica Neerlandica. 1978, 24: 257-268.
    [60] R.Y. Berg. Development of ovule, embryo sac, and endosperm in Brodiaea (Liliales) [J]. Norwegian Journal of Botany. 1978, 25: 1-7.
    [61] V.R. Tilton, N.R. Lersten. Ovule development in Orithogalum caudatum (Liliaceae)with a review of selected papers on angiosperm reproduction [J]. New Phytologist.1981, 88: 439-457.
    [62] W.C. Worsdell. The structure and morphology of the ovule: an historical sketch [J]. Annals of Botany. 1904,18: 57-86.
    [63] J.M. Herr. The origin of the ovule [J]. American Journal of Botany. 1995, 82, 547-564.
    [64] F.W. Oliver, D.H. Scott. On the structure of the Paleozoic seed Lagenostoma lomaxi, with a statement of the evidence upon which it is referred to Lyginodendron [J]. Philosophical Transactions of the Royal Society. London 1904,197 B:193-247.
    [65] M. Benson. Telangium scottii, a new speices of Telangium showing structure [J]. Annals of Botany. 1904, 18: 161-177.
    [66] W.H. Camp, M. M. Hubbard. On the origins of the ovule and cupule in Lyginopterid pteridosperms[J]. American Journal of Botany. 1963a, 50: 235-243.
    [67] K. Periasamy, B. G. L. Swamy. Is the microsporangium of Angiosperms wall-less? [J]. Science Culture. 1964, 33: 735.
    [68] M. Guedes. Remarques sur la notion de carpelle conduplique[J]. Botanical Society of France Bulletin [J]. 1965, 112: 54.
    [69] M. Guedes. Stamen, carpel and ovule. The teratological approach to their interpretation [J]. Adv. Front. Plant Sci. Delhi. 1966, 14: 43.
    [70] M. Guedes. Contribution a al morphologie du phyllome [J]. Cellule. 1969, 67: 341.
    [71] O. Rohweder. Karpellbau und Synkarpie bei Ranunculaceen [J]. Ber. Schweiz. Bot.Ges. 1967,77:376.
    [72] P.K. Endress. Gesichtspunkte zur systematischen Stellung der Eupteleaceen (Magnoliales) [J]. Ber. Schweiz. Bot. Ges. 1969, 79: 229.
    [73] H.R.M. De Haan. Contribution to the knowledge of the morphological value and the phylogeny of the ovule and its integuments [J]. Recueil des Travaux des botaniques Neerlandais. 1920, 17: 219-324.
    [74] J. Walton. The evolution of the ovule in pteridosperms [J]. British Association for the Advancement of Science. 1953, 10: 223-230.
    [75] H.N. Andrews. Studies in paleobotany [M]. New York: John Wiley and Sons. 1961.
    [76] D.L. Smith. The evolution of the ovule [J]. Biological Review. 1964, 39: 137-159.
    [77] A.G. Long. Some lower carboniferous fructications from Berwickshire, together with a theoretical account of the evolution of ovules, cupules, and carpels [J]. Transactiosn of the Royal Society of Edinburgh. 1966, 66, 345-375.
    [78] P.G. Gensel, H.N. Andrews. Plant life in the Devonian [M]. New York: Praegler. 1984.
    [79] T.N. Taylor, E.L. Taylor. The biology and evolution of fossil plants [M]. New Jersey: Prentice Hall, Englewood Cliffs. 1993.
    [80] W.H. Camp, MM. Hubbard. Vascular supply and structure of the ovule and aril in peony and of the aril in nutmeg [J]. American Journal of Botany. 1963b, 50: 174-178.
    [81] D.J. Skinner, T.A. Hill, C.S. Gasser. Regulation of ovule development [J]. The Plant Cell. 2004,16: S32-S45.
    [82] E.S. Coen, E.M. Meyerowitz. The war of the whorls: genetic interactions controlling flower development[J]. Nature. 1991, 353: 31-37.
    [83] M.F. Yanofsky, H.Ma, J.L. Bowman, G.N. Drews, K.A. Feldmann, E.M. Meyerowitz. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors [J]. Nature. 1990, 346: 35-39.
    [84] L. Colombo, J. Franken, E. Koetje, J. Van Went, H. J. M. Dons, G. C. Angenent, A. J. Van Tunen. The petunia MADS box gene FBP1 /determines ovule identity. The Plant Cell. 1995, 7, 1859-1868.
    [85] K. Robinson-Beers, R.E. Pruitt, C.S. Gasser. Ovule development in wild-type Arabidopsis and two female-sterile mutants [J]. The Plant Cell. 1992,4: 1237-1249.
    [86] Z. Modrusan, L. Reiser, K.A. Feldmann, R.L. Fischer, G.W. Haughn. Homeotic transformation of ovules into carpel-like structures in Arabidopsis [J]. The Plant Cell 1994, 6: 333-349.
    [87] A. Ray, K. Robinson-Beers, S. Ray, S.C. Baker, J.D. Lang, D. Preuss, S.B. Milligan, C.S. Gasser. Arabidopsis floral homeotic gene BELL (BEL1) controls ovule development through negative regulation of AGAMOUS gene (AG) [J]. Proceedings of the National Academy of Sciences. 1994, 91: 5761-5765.
    [88] L. Reiser, Z. Modrusan, L. Margossian, A. Samach, N. Ohad, G.W. Haughn, R.L. Fischer. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium [J]. Cell. 1995, 83: 735-742.
    [89] G.C. Angenent, J. Franken, M. Busscher, A. Van Dijken, J.L. Van Went, H.J.M. Dons, A.J. Van Tunen. A novel class of MADS box genes is involved in ovule development in petunia [J]. The Plant Cell 1995, 7: 1569-1582.
    [90] T.Y. Tzeng, H.Y. Chen, C.H. Yang. Ectopic expression of carpel-specific MADS Box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis [J]. Plant Physiology.2002,130: 1827-1836.
    [91] R. Favaro, R. Battaglia, M. Kooiker, L. Borghi, G. Ditta, M.F. Yanofsky, M.M. Kater, L. Colombo. MADS-box protein complexes control carpel and ovule development in Arabidopsis [J]. The Plant Cell. 2003, 15: 2603-2611.
    [92] A. Pinyopich, G.S. Ditta, B. Savidge, S.J. Liljegren, E. Baumann, E. Wisman, M.F. Yanofsky. Assessing the redundancy of MADS-box genes during carpel and ovule development [J]. Nature. 2003, 424: 85-88.
    [93] C.W. Vroemen, A.P. Mordhorst, C. Albrecht, M.A. Kwaaitaal, S.C. De Vries. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem forma- tion in Arabidopsis [J]. The Plant Cell. 2003, 15: 1563-1577.
    [94] H.Y. Xu, X.G. Li, Q.Z. Li, S.N. Bai, W.L. Lu, X.S. Zhang. Characterization of HoMADSl and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L [J]. Plant Molecular Biology. 2004, 55: 209-220.
    [95] S.O. Park, S. Hwang, B.A. Hauser. The phenotype of Arabidopsis ovule mutants mimics the morphology of primitive seed plants[J].Proceeding of the Royal Society B:Biological Sciences.2004,271:311-316.
    [96]S.O.Park,Z.Zheng,D.G.Oppenheimer,B.A.Hauser.The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development[J].Development.2005,132:841-849.
    [97]K.Schneitz,M.H(u|¨)lskamp,R.E.Pruitt.Wild-type ovule development in Arabidopsis thaliana.A light microscope study of cleared whole-mout tissue[J].The Plant Journal.1995,7:731-749.
    [98]R.C.Elliott,A.S.Betzner,E.Huttner,M.P.Oakes,W.Q.J.Tucker,D.Gerentes,P.Perez,D.R.Smyth.AINTEGUMENTA,an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development floral organ growth[J].The Plant Cell.1996,8:155-168.
    [99]K.M.Klucher,H.Chow,L.Reiser,R.L.Fischer.The AINTEGUMENTA gene of Arabidopsis requiredfor ovule and female gametophyte developmentis related to the floral homeotic gene APETALA2[J].The Plant Cell.1996,8:137-153.
    [100]S.C.Baker,K.Robinson-Beers,J.M.Villanueva,J.C.Gaiser,C.S.Gasser.Interactions among genes regulating ovule development in Arabidopsis thaliana[J].Genetics.1997,145:1109-1124.
    [101]U.Schiefthaler,S.Balasubramanian,P.Sieber,D.Chevalier,E.Wisman,K.Schneitz.Molecular analysis of NOZZLE,a gene involved in pattern formation and early sporoge- nesis during sex organ development in Arabidopsis thaliana[J].Proceedings of the National Academy of Sciences.1999,96:11664-11669.
    [102]S.Balasubramanian,K.Schneitz.NOZZLE regulates proximal-distal pattern form- ation,cell proliferation and early sporogenesis during ovule development in Arabidopsis thali- ana[J].Development.2000,127:4227-4238.
    [103]S.Balasubramanian,K.Schneitz.NOZZLE links proximal-distal and adaxial-aba-xial pattern formation during ovule development in Arabidopsis thaliana[J].Development 2002,129:4291-4300.
    [104]B.A.Krizek,V.Prost,A.Macias.AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS[J].The Plant Cell 2000,12:1357-1366.
    [105]R.Gross-Hardt,M.Lenhard,T.Laux.WUSCHEL signaling functions in interre- gional communication during Arabidopsis ovule development [J]. Genes and Development. 2002,16: 1129-1138.
    [106] P. Sieber, J. Gheyselinck, R. Gross-Hardt, T. Laux, U. Grossniklaus, K. Schneitz. Pattern formation during early ovule development in Arabidopsis thaliana [J]. Developmental Biology. 2004, 273: 321-334.
    [107] G. Bocquet, J.D. Bersier. La valeur systematique de l'ovule: developpements teratologiques [J]. Archaeological Science. 1960, 13: 475-496.
    [108] G. Retallack, D.L. Kilcher. Arguments for a glossopterid ancestry of angiosperms [J]. Paleobiology. 1981, 7: 54-67.
    [109] R. Dahlgren. General aspects of angiosperm evolution and macrosystematics [J]. Nordic Journal of Botany. 1983, 3: 119-149.
    [110] W.D. Taylor. Angiosperm ovules and carpels: their characters and polarities, distribution in basal clades, and structural evolution [J], Postilla 1991,208: 1-40.
    [111] J.A. Doyle. Seed plant phylogeny and the relationships of Gnetales [J]. International Journal of Plant Science. 1996,157(6 Suppl): S3-S39.
    [112] C.S. Gasser, J. Broadhvest, B.A. Hauser. Genetic analysis of ovule development [J]. Annual Review of Plant Physiology and Plant Molecular Biology. 1998, 49: 1-24.
    [113] U. Grossniklaus, K. Schneitz. The molecular and genetic basis of ovule and megag- ametophyte development [J]. Seminars in Cell and Developmental Biology. 1998, 9: 227-238.
    [114] K. Schneitz, S. Balasubramanian, U. Schiefthaler. Organogenesis in plants: the molecular and genetic control of ovule development [J]. Trends in Plant Science. 1998a, 3: 468-472.
    [115] K. Schneitz. The molecular and genetic control of ovule development [J]. Current Opinion in Plant Biology. 1999, 2:13-17.
    [116] K. Schneitz, S.C. Baker, C.S. Gasser, A. Redweik. Pattern formation and growth during floral organogenesis, HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana [J]. Development. 1998b, 125: 2555-2563.
    [117] K.R. Siegfried, Y. Eshed, S.F. Baum, D. Otsuga, G.N. Drews, J.L. Bowman. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis [J]. Development. 1999,126: 4117-4128.
    [118]J.M.Villanueva,J.Broadhvest,B.A.Hauser,R.J.Meister,K.Schneitz,C.S.Gasser.INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules[J].Genes and Development.1999,13:3160-3169.
    [119]J.L.Bowman,H.Sakai,T.Jack,D.Weigel,U.Mayer,E.M.Meyerowitz SUPERMAN,a regulator of floral homeotic genes in Arabidopsis[J].Development.1992,114:599-615.
    [120]J.D.Lang,S.Ray,A.Ray.sinl,a mutation affecting female fertility in Arabidopsis,interacts with modl,its recessive modifier[J].Genetics.1994,137:1101-1110.
    [121]J.C.Gaiser,K.Robinson-Beers,C.S.Gasser.The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules[J].The Plant Cell.1995,7:333-345.
    [122]M.L.Gifford,S.Dean,G.C.Ingram.The Arabidopsis ACR4 gene plays a role in cell layer organisation during ovule integument and sepal margin development[J].Development.2003,130:4249-4258.
    [123]J.M.McAbee,T.A.Hill,D.J.Skinner,A.Izhaki,B.A.Hauser,R.J.Meister,G.Venugopala Reddy,E.M.Meyerowitz,J.L.Bowman,C.S.Gasser.ABERRANT TESTA SHAPE encodes a KANADI family member,linking polarity determination to separation and growth of Arabidopsis ovule integuments[J].The Plant Journal.2006,46:552-531.
    [124]M.Adanson.Familles des plantes[M].2 Vols.Paris:Vincent.1763.
    [125]J.Hutchinson.Contributions towards a phylogenetic classification of flowering plants 1[M].Kew Bulletin 1923,65-89.
    [126]O.Langlet.(U|¨)ber Chromosomenverh(a|¨)ltnisse und Systematik der Ranunculaceae [J].Svensk Botanisk Tidskrift 1932,26:381-400.
    [127]U.Jensen.Serologishes Beitr(a|¨)ge zur Systematik der Ranunculaceae[J].Botanische Jahrb(u|¨)cher f(u|¨)r Systematik Pflanzengeschichte und Pflanzengeographie 1968,88:204-310.
    [128]W.C.Wang.Flora Reipublicae Popularis Sinicae[M].Beijing:Science Press.1979,27:24-601.
    [128]W.C.Wang.Flora Reipublicae Popularis Sinicae[M].Beijing:Science Press.1980,28:1-345.
    [130] M. Tamura. Morphology, ecology and phylogeny of the Ranunculaceae [J]. VI. Science Reports Osaka University 1966,15:13-35.
    [131] M. Tamura. Ranunculaceae. In Kubitzki K, Rohwer JG, Bittrich V. eds. The families and genera of vascular plants [M]. Berlin: Springer-Verlag. 1993, 2: 563-583.
    [132] M. Tamura. Ranunculaceae. In: Engler A, Prantl K, Hiepko P. eds. Die naturlichen pflanzenfamilien. 17 a IV [M]. Berlin: Duncker & Humblot. 1995a, 1-555.
    [133] S.B. Hoot. Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data [J]. Plant Systematics and Evolution (Suppl.) 1995, 9: 241-251.
    [134] K.E. Ro, C.S. Keener, B.A. Mcpheron. Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S Ribosomal DNA in inferring intrafamilial relationships [J]. Molecular Phylogenetics and Evolution 1997, 8: 117-127.
    [135] W. Wang, R.Q. Li, Z.D. Chen. Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences [J]. Plant Systematics and Evolution. 2005, 255: 41-54.
    [136] W. Wang. Phylogeny of Ranunculales: evidence from molecular and morphological data [D]. Dissertation. Beijing, The institute of botany, Chinese academy of sciences. 2007.
    [137] APG. An ordinal classification for the families of flowering plants [J]. Annals of the Missouri Botanical Garden. 1998, 85: 531-553.
    [138] APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II [J]. Botanical Journal of the Linnean Society 2003,141:399-436.
    [139] J.T. Johansson. A revised chloroplast DNA phylogeny of the Ranunculaceae [J]. Plant Systematics and Evolution (Suppl.) 1995, 9: 253-261.
    [140] J.T. Johansson, R.K. Jansen. Chloroplast DNA variation and phylogeny of the Ranunculaceae [J]. Plant Systematics and Evolution 1993, 187: 29-49.
    [141] Kosuge, K., Sawada, K., Denda, T., Adachi, J., Watanabe, K., 1995. Phylogenetic relationships of some genera in the Ranunculaceae based on alcohol dehydrogenase genes [J]. Plant Syst. Evol. [Suppl.] 9,263-271.
    [142] H. Okada, M. Tamura. Karyomorphology and relationship on the Ranunculaceae [J]. The Journal of Japan Botany. 1979, 54: 65-77.
    [143] M. Tamura. Phylogeny and classification of the Ranunculaceae [J]. Plant Systematics and Evolution. [Suppl] 1995b, 9: 201-206.
    [144] U. Jensen, S.B. Hoot, J.T. Johansson, K..Kosuge. Systematics and phylogeny of the Ranunculaceae - a revised family concept on the basis of molecular data [J]. Plant Systematics and Evolution (Suppl.) 1995, 9: 273-280.
    [145] W. Wang, Z.D. Chen. Generic level phylogeny of Thalictroideae (Ranunculaceae) - implications for the taxonomic status of Paropyrum and petal evolution [J]. Taxon 2007, 56: 811-821.
    [146] Tamura, M. Morphology, ecology and phylogeny of the Ranunculaceae VII [J]. Science Reports Osaka University. 1967,16, 21-43.
    [147] Tamura, M. A new classification of the family Ranunculaceae II [J]. Acta Phytotax. Geobot. 1991, 42, 177-187.
    [148] S.B. Hoot, A.A. Reznicek. Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA [J]. Systematic Botany, 1994,19(1): 169-200.
    [149] G. Bentham, J. D. Hooker. Genera plantarum I [M]. London. 1862.
    [150] A. P. De Candolle. Regni vegetabilis systema naturale I [M]. Paris. 1818.
    [151] E. Janchen, Die systematische Gliederung der Ranunculaceen und Berberidaceen [J]. Denkschr. Akad. Wiss. Wien, Math.-Naturw. K1. 1949, 108(4): 1-82.
    [152] K. Kubitzki. Ranunculoideae. In: Kubitzki K, Rohwer J G & Bittrich V: The families and genera of vascular plants. II [M]. Berlin. 1987, 575-582.
    [153] K. Prantl. Ranunculaceae. In A. Engler & K. Prantl, Die naturlichen Pflanzenfamilien III [M]. Leipzig. 1891,2: 43-66.
    [154] A. P. De Candolle. Prodromus systematis naturalis regni vegetabilis I [M]. Leipzig. Paris. 1824
    [155] S. Endlicher. Genera plantarum II [M]. London1839.
    [156] M. Tamura. Taxonomical and phylogenetical consideration of the Ranunculaceae[J]. Acta Phytotaxonomica Geobotanica 1962, 20: 71-81.
    [157] E. HOrandl a, O. Paun, J. T. Johansson, C. Lehnebach, T. Armstrong, L. Chen, P. Lockhart. Phylogenetic relationships and evolutionary traits in Ranunculus s.1. (Ranunculaceae) inferred from ITS sequence analysis [J]. Molecular Phylogenetics and Evolution. 2005, 36: 305-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700