磁性复合纳米材料的制备及其电化学传感研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米材料因其易于制备、无毒且具有超顺磁性和良好的生物相容性,已被广泛应用于信息存储、磁共振成像、药物载体、癌症的诊断与治疗以及生物样品的分离与提纯等方面,也因此被认为是最有前途的材料之一。磁性复合纳米材料是磁性纳米粒子以及其他成分通过物理或化学的方法结合形成的,集成了各组分的特殊性质且具有协同效应的一类复合材料,其应用范围更加广泛。本论文设计合成了一系列性能优良的磁性复合纳米材料,例如:二茂铁功能化的Fe3O4@SiO2磁性纳米粒子、核-壳金属或金属氧化物包裹的Fe3O4磁性纳米粒子、石墨烯/Fe3O4复合纳米材料、纳米金-聚多巴胺-Fe3O4-氧化石墨烯复合纳米材料和蛋白质-金钠米粒子-聚多巴胺-Fe3O4磁性生物复合纳米粒子,并将其应用于构建性能优良的生物传感器,这一系列的研究工作充分体现了Fe3O4纳米粒子在电化学传感领域中的巨大潜在应用价值。本论文主要内容包括:
     1、对磁性纳米粒子及其复合材料的研究现状进行了综述,着重介绍了磁性纳米粒子的性质、制备方法及其功能化;详细介绍了磁性纳米粒子及其复合材料在生化医学领域中的应用;综述了电化学传感器及磁性纳米材料在电化学传感器中的应用。在以上基础上,提出了本论文的主要研究内容。
     2、制备了羧基二茂铁修饰的磁性核-壳Fe3O4@SiO2复合材料(FMC-AFSNPs),将该复合材料与葡萄糖氧化酶(GOx)及壳聚糖(CS)混合修饰于自制的磁性碳糊电极表面,构建了FMC-AFSNPs/GOx/CS复合膜生物传感器。通过循环伏安和计时电流法对传感器的电化学特性进行了研究。结果表明,固定在磁性碳糊电极表面的FMC-AFSNPs复合物良好地保持了二茂铁的氧化还原电活性,有效防止了电子介体二茂铁在电极表面的泄漏。而且,FMC-AFSNPs/CS复合膜良好的生物相容性还极大地改善了固定化GOx的生物活性,使得制备的传感器对葡萄糖具有良好的电催化氧化性能,对葡萄糖检测的线性范围为1.0±10-5~4.0×10-3M,检测限为3.2μM(S/N=3)。
     3、设计合成了一系列新型核-壳结构磁性纳米粒子(Fe3O4@Au、Fe3O4@ZrO2、Fe3O4@Al2O3等),将该功能化核-壳磁性纳米粒子通过外磁场作用固定在电极表面,进而通过蛋白质与核-壳磁性纳米粒子上的壳层之间的相互作用将血红素类蛋白质固定在核-壳磁性纳米粒子表面,从而提出了一种简单便捷的血红素类蛋白质的固定化方法。采用透射电镜、紫外光谱、交流阻抗和循环伏安等方法对核-壳磁性纳米粒子的形貌以及蛋白质的固定化过程进行了表征。结果表明,核-壳结构的磁性纳米粒子不仅有效克服了Fe3O4易团聚和易氧化等缺陷,而且具有良好生物相容性的Au、ZrO2或Al2O3等壳层能够很好地保持固定化蛋白质的生物活性。该磁性复合纳米粒子/血红素类蛋白质生物传感界面成功地实现了蛋白质和电极之间的直接电子转移及表现出对H2O2良好的电催化还原行为。该方法极大地简化了蛋白质在电极表面的固定化过程,为生物电子器件的制备开辟了新途径。
     4、在多元醇体系中,通过在石墨烯表面原位高温分解乙酰丙酮化铁(Fe(acac)3)制备了四氧化三铁/石墨烯(Fe3O4/rGO)复合纳米材料。采用透射电镜、X射线衍射、紫外-可见吸收光谱、红外光谱和电化学等方法对该复合物的形貌和性能进行了表征。利用Fe3O4具有良好的磁性性能及过氧化物酶活性,仅仅在外磁场作用下即实现了Fe3O4/rGO复合物在电极表面的固定,同时,利用Fe3O4良好的过氧化物酶活性,Fe3O4/rGO复合物修饰电极对H2O2的电化学还原展现出良好的催化性能。而且,石墨烯的大比表面积还有效提高了Fe3O4纳米粒子在rGO表面的负载量,增强了对H2O2的催化能力。Fe3O4和石墨烯的协同催化作用,使得Fe3O4/rGO复合物电极对H2O2的电催化还原能力大大增强,实现了对H2O2的高灵敏检测,测定的线性范围为2.0~983μM,检测限为0.66μM(S/N=3)。
     5、发展了一种基于纳米金-聚多巴胺-四氧化三铁-氧化石墨烯复合纳米材料(Au-PDA-Fe3O4-GO)的简单方便的生物分子固定化方法,以乙肝表面抗体(HBsAb)为例开展研究,构建了高灵敏特异性检测乙肝表面抗原(HBsAg)的电流型免疫传感器。采用透射电镜、电子能谱图和X射线衍射等方法对制备的Au-PDA-Fe3O4/GO复合纳米材料进行了表征,采用电化学方法对传感界面的构建过程进行了研究。设计合成的Au-PDA-Fe3O4/GO复合纳米材料不仅具有良好的生物相容性,能够有效保持固定化抗体的生物活性,而且,石墨烯特有的二维纳米结构还极大地增大了HBsAb在电极表面的负载量,并有效提高了复合材料的导电性。此外,利用Fe3O4自身具有的良好氧化还原电化学特性,在无需加入其它电子介体的条件下即可实现对HBsAg的电化学检测。采用示差脉冲伏安法对HBsAg测定的线性范围为0.1~180.0 ngmL-1,检出限为0.033 ng mL-1(S/N =3)。本法构建的传感界面兼具GO、PDA、Fe3O4和AuNPs的优点,对HBsAg的检测具有检出限低、灵敏度高、稳定性好等特点,具有良好的应用前景。
     6、采用一步原位化学聚合法制备了一种多功能蛋白质(酶)-金纳米粒子-聚多巴胺-四氧化三铁磁性生物纳米粒子。反应中,DA作为还原剂和聚合物单体,多种蛋白质(酶),如血红蛋白(Hb)、肌红蛋白(Mb)、辣根过氧化酶(HRP)以及葡萄糖氧化酶(GOx)为模型生物分子,HAuCl4为氧化剂,触发DA发生聚合反应,同时自身生成Au纳米粒子。采用扫描电镜、X射线能谱、紫外光谱及电化学等方法对复合物的形貌和生物分子的固定化进行了表征。结果表明,利用Fe3O4的磁性,该复合物仅在外磁场存在下就可有效固定于电极表面。而且,多巴胺原位聚合法固定蛋白质过程温和,金纳米粒子和聚多巴胺为固定化的蛋白质提供了良好的生物微环境。因此,用该方法构建的仿生纳米传感界面不仅很好地保持了固定化蛋白质的生物活性,还有效防止了固定化生物分子从电极表面的泄露。此外,金纳米粒子还可作为电子导线,有效接触蛋白质的电活性中心,并在蛋白质与电极之间建立起良好的传导桥梁,显著促进了生物分子与电极表面的直接电子传递速率。因此,该方法构建的生物传感界面不仅有效地促进了电极表面蛋白质(酶)与电极之间的直接电子转移,而且也表现出对H2O2及葡萄糖等的良好电催化行为。该方法为构建真正的第三代生物传感器件提供了有益尝试。
Magnetite nanoparticles have long been one of the most promising materials because of their good biocompatibility, strong superparamagnetic property, low toxicity and easy preparation and great potential for various biomedical applications, such as magnetic data storage, NMR imaging, targeted drug delivery, and biomolecule separation. Various magnetic nanocomposites have been intensively investigated because of their hybrid properties of the involved magnetic nanoparticles and other materials. In this dissertation, various magnetic nanocomposites with excellent properties have been designed and synthesized, such as ferrocene-modified magnetic nanoparticles, core-shell metal or metal oxide coated Fe3O4 nanoparticles, graphene/Fe3O4 composite, Au-polydopamine-Fe3O4-graphene nanocomposite, and protein-Au-polydopamine-Fe3O4 magnetic bionanoparticles and applied to construct a series of novel electrochemical sensing. The details are given as follows:
     1. Introdution
     In this section, the characteristics, synthesis methods, and modification of the magnetic nanomaterials and their composites were introduced, and their applications in biochemistry and medicine were summarized. Furthermore, we have described the electrochemical biosensor and summarized the applications of magnetic materials in electrochemistry sensing. At last, the works and innovations of this dissertation were presented.
     2. The preparation of ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles and their applications for electrochemical biosensor
     A novel amperometric glucose biosensor was developed by entrapping glucose oxidase in chitosan composite doped with ferrocene monocarboxylic acid-modified magnetic core-shell Fe3O4@SiO2 nanoparticles (FMC-AFSNPs). It is shown that the obtained magnetic bio-nanoparticles attached to the surface of a carbon paste electrode with the employment of a permanent magnet showed excellent electrochemical characteristics and at the same time acted as mediator to transfer electrons between the enzyme and the electrode. Under optimal conditions, this biosensor was able to detect glucose in the linear range from 1.0×10-5~4.0×10-3 M with a detection limit of 3.2μM (S/N=3). This immobilization approach effectively improved the stability of the electron transfer mediator and is promising for construction of biosensor and bioelectronic devices.
     3. The construction of core-shell magnetic nanoparticles/heme protein nano-functional interfaces and their applications
     A simple approach for the immobilization of heme proteins using core-shell magnetic nanoparticles (Fe3O4@Au, Fe3O4@ZrO2 and Fe3O4@Al2O3) as the building block has been developed, and the direct electron transfer between the immobilized proteins and electrode was studied. The bifunctional core-shell magnetic nanoparticles were initially deposited on the electrode surface by applying a constant magnetic field, and then heme proteins were immobilized on the core-shell magnetic nanoparticles surface via interaction between the shell and the protein. Transmission electron microscope, UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were carried out to characterize the morphology, structure, and electrochemistry of the nanocomposite and the biofilm. The modified electrode based on this core-shell magnetic nanoparticles/heme proteins films well retained the native structure of the immobilized proteins and displayed good electrocatalytic activity to the reduction of H2O2. The proposed method simplified the immobilization methodology of proteins and showed potential application for construction of third-generation biosensors and other bio-magnetic induction devices.
     4. The synthesis of Fe3O4/graphene nanocomposite and its application in electrochemical sensing
     A novel electrochemical sensing platform based on graphene supported Fe3O4 nanoparticles (Fe3O4/rGO) composite was constructed for the detection of hydrogen peroxide (H2O2). The Fe3O4/rGO composite was prepared by one-step in situ high-temperature decomposition of the precursor iron (Ⅲ) acetylacetonate on graphene oxide sheets in polyol solution. The morphologies and characteristics of the as-prepared Fe3O4/rGO composite were investigated by using transmission electron microscopy, X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectra and electrochemical techniques, respectively. With the advantages of the magnetism and the intrinsic peroxidase-like activity of Fe3O4 nanoparticles, the composite film could be easily fabricated in the present of external magnetic field and shows excellent electrocatalytic activity towards the reduction of H2O2. In addition, the large surface area and high electrical conductivity of graphene dramatically increased the loading capability of Fe3O4 nanoparticles and enhanced the conductivity of the composite. Together with the electrocatalytic activity of the graphene towards H2O2, the Fe3O4/rGO composite-modified electrode had a better synergistic electrocatalytic effect on the reduction of H2O2 than did Fe3O4 or graphene-modified electrode. At physiological condition, the constructed sensor showed a linear range for the detection of H2O2 from 2.0 to 983μM with a low detection limit of 0.66μM (S/N=3) and exhibited high selectivity, excellent stability and reproducibility.
     5. A label-free amperometric immunosensor based on biocompatible Au-polydopamine-Fe3O4-graphene nanocomposite
     A novel and facile biomolecule immobilization strategy based on Au-polydopamine-Fe3O4-graphene oxide (Au-PDA-Fe3O4-GO) nanocomposite was used to develop a highly sensitive amperometric immunosensor. The morphologies and characteristics of the as-prepared Au-PDA-Fe3O4-GO nanocomposite were investigated by using transmission electron microscopy, powder X-ray diffraction, energy dispersive X-ray and electrochemical techniques, respectively. The characteristics of the modified electrode at different stages of modification were studied by cyclic voltammetry and electrochemical impedance spectroscopy. In addition, the performances of the resulting immunosensor were studied by differential pulse voltammetric. The as-prepared Au-PDA-Fe3O4-GO nanocomposite not only provided a favorable microenvironment to maintain the activity of the immobilized HBsAb, but also increased the loading capacity of the HBsAb due to the two-dimensional structure of the graphene, and the present of graphene and Au nanoparticles enhanced the conductivity and charge-transport properties of the composite. In addition, due to the redox characteristic of the Fe3O4 nanoparticles, the constructed immunosensor could realize the electrochemical detection of HBsAg without using other electron mediator. The present immunosensor exhibited a wide linear range from 0.1~180.0 ng ml/-1 with a low detection limit of 0.033 ng-mL-1 at signal to noise ratio of 3. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility and long-term stability. The prepared immunosensor exhibited high selectivity, low detection limit, long-term stability and good reproducibility.
     6. The synthesis of protein-polydopamine-Au-Fe3O4 nanocomposites and their application in electrochemical biosensor
     A novel protein-Au-polydopamine-Fe3O4 magnetic polymeric bionanocoparticles (protein-Au-PDA-Fe3O4 MPBNPs) with proteins entrapped at high load/activity for direct electrochemistry was designed and prepared by a one-pot in situ chemical synthesis. As representative materials here, DA as a reductant and a monomer, proteins including hemoglobin (Hb), myoglobin (Mb), horseradish peroxidase (HRP), and glucose oxidase (GOx) as the model proteins/enzyme, Fe3O4 NPs as model magnetic nanomaterial and the core of the MPBNPs, and HAuCl4 as an oxidant to trigger DA polymerization and the source of the Au nanoparticles, were simply mixed to yield protein-Au-PDA-Fe3O4 MPBNPs. Scanning electron microscope, energy dispersive X-ray, UV-vis spectroscopy, and electrochemical methods were used to characterize the protein-Au-PDA-Fe3O4 MPBNPs. Results demonstrated that the resultant protein-Au-PDA-Fe3O4 MPBNPs not only have the magnetism of Fe3O4 NPs which makes them easily manipulated by an external magnetic field, but also have the excellent biocompatibility of the functional shell which can maintain the native structure of the entrapped proteins and facilitate the direct electrochemistry of the heme proteins. Based on the direct electron transfer of the immobilized proteins, the protein-Au-PDA-FesO4 MPBNPs-modified electrode exhibited excellent catalytic performance for H2O2.
引文
[1]Ziolo R F, Giannelis E P, Weinstein B A, et al. Matrix-mediated synthesis of nanocrystalline γ-Fe2O3:A new optically transparent magnetic material [J]. Science,1992,257(5067): 219~223.
    [2]姜继森,杨燮龙,沈鸿烈.Zn铁氧体纳米晶的磁性及微结构研究[J].功能材料,2000,6(6):593-595.
    [3]Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media [J]. Magnetics, IEEE Transactions on,1981,17(2):1247-1248.
    [4]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles [J]. Chemistry of Materials,1996,8(9):2209~2211.
    [5]Liu Z L, Wang H B, Lu Q H, et al. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles [J]. Journal of Magnetism and Magnetic Materials,2004,283(2-3): 258-262.
    [6]Deng H, Li X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie International Edition,2005,117(18):2842~2845.
    [7]Ge S, Shi X, Sun K, et al. Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties [J]. The Journal of Physical Chemistry C,2009,113(31): 13593~13599.
    [8]Liu Z L, Wang X, Yao K L, et al. Synthesis of magnetite nanoparticles in W/O microemulsion [J]. Journal of Materials Science,2004,39(7):2633~2636.
    [9]Feltin N, Pileni M P. New technique for synthesizing iron ferrite magnetic nanosized particles [J]. Langmuir,1997,13(15):3927~3933.
    [10]Lin J, Zhou W, Kumbhar A, et al. Gold-coated iron (Fe@Au) nanoparticles:synthesis, characterization, and magnetic field-induced self-assembly [J]. Journal of Solid State Chemistry,2001,159(1):26~31.
    [11]Zeng H, Li J, Wang Z L, et al. Bimagnetic core/shell FePt/Fe3O4 nanoparticles [J]. Nano Letters,2003,4(1):187~190.
    [12]Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. Journal of the American Chemical Society,2002,124(28):8204~8205.
    [13]Chen M, Liu J P, Sun S. One-step synthesis of FePt nanoparticles with tunable size [J]. Journal of the American Chemical Society,2004,126(27):8394~8395.
    [14]Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nature Materials,2004,3(12):891~895.
    [15]Wan J, Cai W, Meng X, et al. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging [J]. Chemical Communications,2007,47:5004~5006.
    [16]Mikhaylova M, Kim D K, Bobrysheva N, et al. Superparamagnetism of magnetite nanoparticles:dependence on surface modification [J]. Langmuir,2004,20(6):2472~2477.
    [17]Lyon J L, Fleming D A, Stone M B, et al. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding [J]. Nano Letters,2004,4(4):719~723.
    [18]Wu W, He Q, Chen H, et al. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles [J]. Nanotechnology,2007,18(14):145609.
    [19]Qiu J D, Xiong M, Liang R P, et al. Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application [J]. Biosensors and Bioelectronics, 2009,24(8):2649~2653.
    [20]Park H Y, Schadt M J, Wang, et al. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation [J]. Langmuir,2007,23(17): 9050~9056.
    [21]Tang D P, Yuan R, Chai Y Q. Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay [J]. The Journal of Physical Chemistry B,2006,110(24):11640~11646.
    [22]Sun Y, Yan F, Yang W, et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment [J]. Biomaterials, 2006,27(21):4042~4049.
    [23]Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:The effect of nonionic surfactants [J]. Langmuir, 2001,17(10):2900~2906.
    [24]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J]. Journal of the American Chemical Society,2007,130(1):28~29.
    [25]Tang J, Yin P, Lu X, et al. Development of mesoporous TiO2 microspheres with high specific surface area for selective enrichment of phosphopeptides by mass spectrometric analysis [J]. Journal of Chromatography A,2010,1217(15):2197~2205.
    [26]Li Y, Liu Y, Tang J, et al. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis [J]. Journal of Chromatography A,2007,1172(1):57~71.
    [27]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666~669.
    [28]Rege K, Raravikar N R, Kim D Y, et al. Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films [J]. Nano Letters,2003,3(6):829~832.
    [29]Cheung C L, Hafner J H, Odom T M, et al. Growth and fabrication with single-walled carbon nanotube probe microscopy tips [J]. Applied Physics Letters,2000,76(21):3136~3138.
    [30]Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science,2000,287(5459):1801~1804.
    [31]Qu S, Wang J, Kong J, et al. Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing [J]. Talanta,2007,71(3):1096~1102.
    [32]Wan J, Cai W, Feng J, et al. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols [J]. Journal of Materials Chemistry,2007,17(12): 1188~1192.
    [33]Georgakilas V, Tzitzios V, Gournis D, et al. Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives [J]. Chemistry of Materials,2005,17(7):1613~1617.
    [34]Correa-Duarte M A, Grzelczak M, Salgueirino-Maceira V, et al. Alignment of carbon nanotubes under Low magnetic fields through attachment of magnetic nanoparticles [J]. The Journal of Physical Chemistry B,2005,109(41):19060~19063.
    [35]Jiang L, Gao L. Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties [J]. Chemistry of Materials, 2003,15(14):2848-2853.
    [36]He H, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles [J]. ACS Applied Materials and Interfaces,2010,2(11):3201~3210.
    [37]Cong H P, He J J, Lu Y, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets:in situ synthesis and magnetic resonance imaging applications [J]. Small,2010,6(2): 169~173.
    [38]He F, Fan J, Ma D, et al. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding [J]. Carbon,2010,48(11):3139~3144.
    [39]Zhu G, Liu Y, Xu Z, et al. Flexible magnetic nanoparticles-reduced graphene oxide composite membranes formed by self-assembly in solution [J]. ChemPhysChem,2010, 11(11):2432~2437.
    [40]Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano,2010,4(7):3979~3986.
    [41]Yang X, Zhang X, Ma Y, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers [J]. Journal of Materials Chemistry,2009,19(18): 2710~2714.
    [42]Sajitha E P, Prasad V, Subramanyam S V, et al. Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon [J]. Carbon,2004,42(14):2815~2820.
    [43]Domingo J C, Mercadal M, Petriz J, et al. Preparation of PEG-grafted immunomagnetoliposomes entrapping citrate stabilized magnetite particles and their application in cell sorting [J]. Journal of Microencapsulation,2001,18(1):41~54.
    [44]Bonacchi D, Caneschi A, Dorignac D, et al. Nanosized iron oxide particles entrapped in pseudo-single crystals of y-cyclodextrin [J]. Chemistry of Materials,2004,16(10): 2016~2020.
    [45]Sousa M H, Rubim J C, Sobrinho P G, et al. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures [J]. Journal of Magnetism and Magnetic Materials,2001,225(1-2):67~72.
    [46]Shen L, Laibinis P E, Hatton T A. Bilayer surfactant stabilized magnetic fluids:synthesis and interactions at interfaces [J]. Langmuir,1998,15(2):447~453.
    [47]Lattuada M, Hatton T A. Functionalization of monodisperse magnetic nanoparticles [J]. Langmuir,2006,23(4):2158~2168.
    [48]Pyun J. Nanocomposite materials from functional polymers and magnetic nanoparticles [J]. Polymer Reviews,2007,47(2):231~263.
    [49]Kaushik A, Khan R, Solanki P R, et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor [J]. Biosensors and Bioelectronics,2008,24(4):676-683.
    [50]Pirkkalainen K, Leppanen K, Vainio U, et al. Nanocomposites of magnetic cobalt nanoparticles and cellulose [J]. The European Physical Journal D,2008,49(3):333~342.
    [51]Deng J, Peng Y, He C, et al. Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure [J]. Polymer International,2003,52(7):1182~1187.
    [52]Yu S, Chow G M. Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications [J]. Journal of Materials Chemistry,2004,14(18): 2781~2786.
    [53]Xu C J, Sun S H. Monodisperse magnetic nanoparticles for biomedical applications [J]. Polymer International,2007,56(6):821~826.
    [54]Liu Z L, Ding Z H, Yao K L, et al. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads [J]. Journal of Magnetism and Magnetic Materials, 2003,265(1):98~105.
    [55]Xia H, Cheng D, Xiao C, et al. Controlled synthesis of polyaniline nanostructures with junctions using in situ self-assembly of magnetic nanoparticles [J]. Journal of Materials Chemistry,2005,15(38):4161~4166.
    [56]Gupta A K, Vaidya V D. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications [J]. Biotechnology,2007,2(1):23~39.
    [57]Chen H M, Deng C H, Zhang X M. Synthesis of Fe3O4@SiO2@PMMA core-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-TOF MS analysis [J]. Angewandte Chemie International Edition,2010,122(3):617~621.
    [58]Yang M, Li H, Javadi A, et al. Multifunctional mesoporous silica nanoparticles as labels for the preparation of ultrasensitive electrochemical immunosensors [J]. Biomaterials,2010, 31(12):3281~3286.
    [59]Osaka T, Matsunaga T, Nakanishi T, et al. Synthesis of magnetic nanoparticles and their application to bioassays [J]. Analytical and Bioanalytical Chemistry,2006,384(3):593~600.
    [60]Pankhurst Q A, Connolly J, Jones S K, et al. Applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D-Applied Physics,2003,36(13):167~181.
    [61]Alexiou C, Schmid R, Jurgons R, et al. Targeting cancer cells:magnetic nanoparticles as drug carriers [J]. European Biophysics Journal,2006,35(5):446~450.
    [62]Poduslo J F, Wengenack T M, Curran G L, et al. Molecular targeting of alzheimer's amyloid plaques for contrast-enhanced magnetic resonance imaging [J]. Neurobiology of Disease, 2002,11(2):315~329.
    [63]Wadghiri Y Z, Sigurdsson E M, Sadowski M, et al. Detection of alzheimer's amyloid in transgenic mice using magnetic resonance microimaging [J]. Magnetic Resonance in Medicine,2003,50(2):293~302.
    [64]Suzuki M, Shinkai M, Honda H, et al. Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes [J]. Melanoma Research,2003,13(2):129~135.
    [65]Yiu H H P, Niu H J, Biermans E, et al. Designed multifunctional nanocomposites for biomedical applications [J]. Advanced Functional Materials,2010,20(10):1599~1609.
    [66]Xu C, Xu K, Gu H, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles [J]. Journal of the American Chemical Society,2004,126(32):9938~9939.
    [67]Lee S M, Wroble M, Ross J. L-asparaginase from erwinia-carotovora an improved recovery and purification process using affinity-chromatography [J]. Applied Biochemistry and Biotechnology,1989,22(1):1~11.
    [68]Fernandez-Sanchez C, Costa-Garcia A. Competitive enzyme immounosensor developed on a reneable carbon paste electrode support. [J]. Analytica Chimica Acta,1999,402(1-2): 119~127.
    [69]Liu Z M, Yang H F, Li Y F, et al. Core-shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode and amperometric immunosensing. [J]. Sensors and Actuators B-Chemical,2006,113(2):956~962.
    [70]布莱恩,埃金斯.化学传感器与生物传感器[M]北京:化学工业出版社,2005,2-3.
    [71]刘长春,崔大付.电化学传感器及其在芯片实验室中的应用[M].传感技术,2003.
    [72]焦奎,张书圣.酶联免疫分析技术及应用[M].北京:化学工业出版社,2004.
    [73]Torriero A A J, Piola H D, Martinez N A, et al. Enzymatic oxidation of tert-butylcatechol in the presence of sulfhydryl compounds:Application to the amperometric detection of penicillamine [J]. Talanta,2007,71(3):1198~1204.
    [74]Porterfield D M. Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains:Recent developments in self-referencing amperometry for physiological sensing [J]. Biosensors and Bioelectronics,2007,22(7):1186~1196.
    [75]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003.
    [76]Guilbault G G, Montalvo J G. Urea-specific enzyme electrode [J]. Journal of the American Chemical Society,1969,91(8):2164~2165.
    [77]Daigle F, Leech D. Reagentless tyrosinase enzyme electrodes:effects of enzyme loading, electrolyte ph, ionic strength, and temperature [J]. Analytical Chemistry,1997,69(20): 4108~4112.
    [78]Zuo X, He S, Li D, et al. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces [J]. Langmuir,2010,26(3):1936~1939.
    [79]Li Z, Hu N. Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles [J]. Journal of Electroanalytical Chemistry,2003,558(2):155~165.
    [80]Wang J, Liu J, Cepra G. Thermal stabilization of enzymes immobilized within carbon paste electrodes [J]. Analytical Chemistry,1997,69(15):3124~3127.
    [81]Rusling J F, Nassar A E F. Enhanced electron transfer for myoglobin in surfactant films on electrodes [J]. Journal of the American Chemical Society,1993,115(25):11891~11897.
    [82]Kong Y T, Boopathi M, Shim Y B. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode [J]. Biosensors and Bioelectronics, 2003,19(3):227~232.
    [83]Wu Y, Hu S. Biosensors based on direct electron transfer in redox proteins [J]. Microchimica Acta,2007,159(1-2):1~17.
    [84]Zhang L, Tian D B, Zhu J J. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode [J]. Bioelectrochemistry,2008,74(1):157~163.
    [85]Guo X, Zheng D, Hu N. Enhancement of Au nanoparticles formed by in situ electrodeposition on direct electrochemistry of myoglobin loaded into layer-by-layer films of chitosan and silica nanoparticles [J]. The Journal of Physical Chemistry B,2008,112(48): 15513~15520.
    [86]Dai Z, Xiao Y, Yu X, et al. Direct electrochemistry of myoglobin based on ionic liquid-clay composite films [J]. Biosensors and Bioelectronics,2009,24(6):1629~1634.
    [87]Zhang Y, Zheng J. Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film [J]. Electrochemistry Communications,2008,10(9):1400~1403.
    [88]Hu Y, Hu N. pH-dependent behaviors of electroactive myoglobin loaded into layer-by-layer films assembled with alginate and hydroxyethyl cellulose ethoxylate [J]. The Journal of Physical Chemistry B,2008,112(31):9523~9531.
    [89]Shan C, Yang H, Song J, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J]. Analytical Chemistry,2009,81(6):2378~2382.
    [90]Gu H, Xu K, Xu C, et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chemical Communications,2006, (9):941~949.
    [91]Pingarron J M, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors [J]. Electrochimica Acta,2008,53(19):5848~5866.
    [92]Zou C, Fu Y, Xie Q, et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics,2010,25(6): 1277-~282.
    [93]Angel Gonzalez-Martinez M, Puchades R, Maquieira A, et al. Reversible immunosensor for the automatic determination of atrazine. Selection and performance of three polyclonal antisera [J]. Analytica ChimicaActa,1999,386(3):201~210.
    [94]Jeffries C, Pasco N, Baronian K, et al. Evaluation of a thermophile enzyme for a carbon paste amperometric biosensor:L-glutamate dehydrogenase [J]. Biosensors and Bioelectronics, 1997,12(3):225~232.
    [95]Motonaka J, Kamizasa M, Faulkner L R. Micro-enzyme sensors with osmium complex as mediator for 1- and d-amino acids [J]. Journal of Electroanalytical Chemistry,1994,373(1-2): 75~81.
    [96]Qiu J D, Guo J, Liang R P, et al. a nanocomposite chitosan based on ferrocene-modified silica nanoparticles and carbon nanotubes for biosensor application [J]. Electroanalysis,2007, 19(22):2335~2341.
    [97]Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites [J]. Science, 1997,277(5330):1232~1237.
    [98]Fiorito P A, Goncales V R, Ponzio E A, et al. Synthesis, characterization and immobilization of prussian blue nanoparticles. A potential tool for biosensing devices [J]. Chemical Communications,2005, (3):366~368.
    [99]Qiu J D, Peng H Z, Liang R P, et al. Preparation of three-dimensional ordered macroporous prussian blue film electrode for glucose biosensor application [J]. Electroanalysis,2007, 19(11):1201~1206.
    [100]Liu Y, Yu D, Zeng C, et al. Biocompatible graphene oxide-based glucose biosensors [J]. Langmuir,2010,26(9):6158~6160.
    [101]Liang R, Peng H, Qiu J. Fabrication, characterization, and application of potentiometric immunosensor based on biocompatible and controllable three-dimensional porous chitosan membranes [J]. Journal of Colloid and Interface Science,2008,320(1):125~131.
    [102]Mu S L, Xue H G. Bioelectrochemical characteristics of glucoseoxidase immobilized in a polyaniline film [J]. Sensors and Actuators B:Chemical,1996,31(3):155~160.
    [103]Ghanbari K, Bathaie S Z, Mousavi M F. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor [J]. Biosensors and Bioelectronics,2008,23(12):1825~1831.
    [104]Vedrine C, Fabiano S, Tran-Minh C. Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support [J]. Talanta,2003,59(3): 535~544.
    [105]Dai Y Q, Zhou D M, Shiu K K. Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode [J]. Electrochimica Acta,2006,52(1): 297~303.
    [106]Fu Y, Chen C, Xie Q, et al. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance [J]. Analytical chemistry, 2008,80(15):5829~5838.
    [107]Fu Y C, Li P H, Xie Q J, et al. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose [J]. Advanced Functional Materials,2009,19(11):1784~1791.
    [108]Yu D, Renedo O D, Blankert B, et al. A peroxidase-based biosensor supported by nanopouous magnetic silica microparticles for acetaminophen biotransformation and inhibition studies [J]. Electroanalysis,2006,18(17):1637-1642.
    [109]Jia X, Tan L, Zhou Y P, et al. Magnetic immobilization and electrochemical detection of leukemia K562 cells [J]. Electrochemistry Communications,2009,11(1):141~144.
    [110]Wilson R, Turner A P F. Glucose oxidase:an ideal enzyme [J]. Biosensors and Bioelectronics, 1992,7(3):165~185.
    [111]Xiao F, Zhao F Q, Zhang Y F, et al. Ultrasonic electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors [J]. The Journal of Physical Chemistry C,2009, 113(3):849~855.
    [112]Forzani E S, Rivas G A, Solis V M. Amperometric determination of dopamine on an enzymatically modified carbon paste electrode [J]. Journal of Electroanalytical Chemistry, 1995,382(1-2):33~40.
    [113]Matos R C, Pedrotti J J, Angnes L. Flow-injection system with enzyme reactor for differential amperometric determination of hydrogen peroxide in rainwater [J]. Analytica Chimica Acta,2001,441(1):73~79.
    [114]Han X, Huang W, Jia J, et al. Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2 [J]. Biosensors and Bioelectronics, 2002,17(9):741~746.
    [115]You T Y, Niwa O, Tomita M, et al. Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide [J]. Analytical Chemistry,2003, 75(9):2080~2085.
    [116]Han C H, Hong D W, Kim I J, et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor [J]. Sensors and Actuators B:Chemical, 2007,128(1):320~325.
    [117]Guascito M R, Filippo E, Malitesta C, et al. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide [J]. Biosensors and Bioelectronics,2008, 24(4):1057~1063.
    [118]Miao X M, Yuan R, Chai Y Q, et al. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode [J]. Journal of Electroanalytical Chemistry,2008,612(2):157~163.
    [119]Zhang L H, Zhai Y M, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochemistry Communications,2008,10(10): 1524~1526.
    [120]Dai Z, Liu S, Bao J, et al. Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing [J]. Chemistry-A European Journal,2009,15(17):4321~4326.
    [121]Popovic K D, Tripkovic A V, Adzic R R. Oxidation of glucose on single-crystal platinum electrodes:A mechanistic study [J]. Journal of Electroanalytical Chemistry,1992,339(1-2): 227~245.
    [122]Vassilyev Y B, Khazova O A, Nikolaeva N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts:Part I. Adsorption and oxidation on platinum [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1985, 196(1):105~125.
    [123]Beden B, Largeaud F, Kokoh K B, et al. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of glucose:Identification of reactive intermediates and reaction products [J]. Electrochimica Acta,1996,41(5):701~709.
    [124]Luo P, Zhang F, Baldwin R P. Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems [J]. Analytica Chimica Acta,1991,244(1):169~178.
    [125]Nagy L, Nagy G, Hajos P. Copper electrode based amperometric detector cell for sugar and organic acid measurements [J]. Sensors and Actuators B:Chemical,2001,76(1-3):494~499.
    [126]Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors [J]. Analytica Chimica Acta,2006,556(1):46~57.
    [127]Wang J, Thomas D F, Chen A. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks [J]. Analytical Chemistry,2008,80(4):997~1004.
    [128]Wang F, Hu S. Electrochemical sensors based on metal and semiconductor nanoparticles [J]. Microchimica Acta,2009,165(1):1-22.
    [129]Manesh K M, Santhosh P, Gopalan A, et al. Electrospun poly(vinylidene fluoride)/poly(aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor [J]. Analytical Biochemistry,2007,360(2):189~195.
    [130]Gooding J J, Wibowo R, Liu, et al. Protein electrochemistry using aligned carbon nanotube arrays [J]. Journal of the American Chemical Society,2003,125(30):9006~9007.
    [131]Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum [J]. Analytical Chemistry,2003,75(13):3046~3049.
    [132]Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochemistry Communications,2007,9(5):981~988.
    [133]Shin C, Shin W, Hong H G. Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor [J]. Electrochimica Acta,2007,53(2):720~728.
    [134]Xu Q, Zhao Y, Xu J Z, et al. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor [J]. Sensors and Actuators B:Chemical,2006,114(1): 379~386.
    [135]You T, Niwa O, Chen Z, et al. An Amperometric detector formed of highly dispersed ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination [J]. Analytical Chemistry,2003,75(19):5191~5196.
    [136]Myung Y, Jang D M, Cho Y J, et al. Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures [J]. The Journal of Physical Chemistry C,2009,113(4):1251~1259.
    [137]Li L H, Zhang W D, Ye J S. Electrocatalytic oxidation of glucose at carbon nanotubes supported ptru nanoparticles and its detection [J]. Electroanalysis,2008,20(20):2212~2216.
    [138]Liu Z M, Liu Y L, Yang H F, et al. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode [J]. Ananlytica Chimica Acta,2005,533(1):3-9.
    [139]Cao D, He P, Hu N F. Electrochemical biosensors utilising electron transfer in heme proteins immobilised on Fe3O4 nanoparticles electronic supplementary information (ESI) available: characterization of protein/Fe3O4 films [J]. Analyst,2003,128(10):1268~1273.
    [140]Gong J M, Lin X G. Direct electrochemistry of horseradish peroxidase embedded in nano-Fe304 matrix on paraffin impregnated graphite electrode and its electrochemical catalysis for H2O2 [J]. Chinese journal of chemistry,2003,21(17):761~766.
    [141]Gong J, Lin X. Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid [J]. Microchemical Journal,2003,75(1):51~57.
    [142]Jun H, Ying Z J, Yan X H, et al. Study of CuTAPc-Fe3O4 nanoparticles and their laccase immobilization [J]. Acta chimica sinca,2005,63(14):1343~1347.
    [143]Rossi L M, Quach A D, Rosenzweig Z. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing [J]. Analytical and Bioanalytical Chemistry,2004,380(4): 606~613.
    [144]Katz E, Willner I. Magneto-stimulated hydrodynamic control of electrocatalytic and bioelectrocatalytic processes [J]. Journal of the American Chemical Society,2002,124(35): 10290~10291.
    [145]Willner I, Katz E. Magnetic control of electrocatalytic and bioelectrocatalytic processes [J]. Angewandte Chemie International Edition,2003,42(38):4576~4588.
    [146]Dequaire M, Degrand C, Limoges B. An immunomagnetic electrochemical sensor based on a perfluorosulfonate-coated screen-printed electrode for the determination of 2,4-dichlorophenoxyacetic acid [J]. Analytical Chemistry,1999,71(13):2571~2577.
    [147]Purushothama S, Supaporn Kradtap C A, Wijayawardhana H, et al. Small volume bead assay for ovalbumin with electrochemical detection [J]. Analyst,2001,126(3):337~341.
    [148]Wijayawardhana C A, Purushothama S, Cousino M A, et al. Rotating disk electrode amperometric detection for a bead-based immunoassay [J]. Journal of Electroanalytical Chemistry,1999,468(1):2-8.
    [149]Mani V, Chikkaveeraiah B V, Patel V, et al. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification [J]. ACS Nano,2009,3(3):585~594.
    [150]Wang J, Liu G, Polsky R, et al. Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags [J]. Electrochemistry Communications,2002, 4(9):722~726.
    [151]Wang J, Liu G, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple dna targets [J]. Journal of the American Chemical Society,2003,125(11): 3214-3215.
    [152]Wang J, Polsky R, Xu D. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization [J]. Langmuir,2001,17(19):5739~5741.
    [153]Singh R, Verma R, Kaushik A, et al. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for neisseria gonorrhoeae detection causing sexually transmitted disease [J]. Biosensors and Bioelectronics,2011,26(6):2967~2974.
    [154]Bai Y H, Li J Y, Xu J J, et al. Ultrasensitive electrochemical detection of DNA hybridization using Au/Fe3O4 magnetic composites combined with silver enhancement [J]. Analyst,2010, 135(7):1672~1679.
    [155]Lin M S, Leu H J. A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide [J]. Electroanalysis,2005,17(22):2068~2073.
    [156]Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nat Nano,2007,2(9):577~583.
    [157]Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection [J]. Analytical Chemistry,2008,80(6):2250~2254.
    [1]Ken Heng S, Mullins M E, Mills O P, et al. A reactive core-shell nanoparticle approach to prepare hybrid nanocomposites:effects of processing variables [J]. Nanotechnology,2005, 16(9):1950.
    [2]Liu Z, Liu Y, Yang H, et al. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode [J]. Analytica Chimica Acta,2005,533(1):3-9.
    [3]Sakai T, Yoshida R. Self-oscillating nanogel particles [J]. Langmuir,2004,20(4):1036-1038.
    [4]Wang J, Liu G, Engelhard M H, et al. Sensitive immunoassay of a biomarker tumor necrosis factor-a based on poly(guanine)-functionalized silica nanoparticle label [J]. Analytical Chemistry,2006,78(19):6974~6979.
    [5]Heitmann J, Muller F, Zacharias M, et al. Silicon nanocrystals:size matters [J]. Advanced Materials,2005,17(7):795~803.
    [6]Wellman A D, Sepaniak M J. Magnetically-assisted transport evanescent field fluoro-immunoassay [J]. Analytical Chemistry,2006,78(13):4450~4456.
    [7]Zhao X, Shippy S A. Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection [J]. Analytical Chemistry,2004,76(7): 1871~1876.
    [8]Cass A E G, Davis G, Francis G D, et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose [J]. Analytical Chemistry,1984,56(4):667~671.
    [9]Morris N A, Cardosi M F, Birch B J, et al. An electrochemical capillary fill device for the analysis of glucose incorporating glucose oxidase and ruthenium (Ⅲ) hexamine as mediator [J]. Electroanalysis,1992,4(1):1-9.
    [10]Li J, Wang Y B, Qiu J D, et al. Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor [J]. Analytical and Bioanalytical Chemistry,2005, 383(6):918~922.
    [11]Kandimalla V B, Tripathi V S, Ju H. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application [J]. Biomaterials,2006, 27(7):1167~1174.
    [12]Tsiafoulis C G, Florou A B, Trikalitis P N, et al. Electrochemical study of ferrocene intercalated vanadium pentoxide xerogel/polyvinyl alcohol composite films:Application in the development of amperometric biosensors [J]. Electrochemistry Communications,2005, 7(7):781~788.
    [13]Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media [J]. Magnetics, IEEE Transactions on,1981,17(2):1247~1248.
    [14]Philipse A P, van Bruggen M P B, Pathmamanoharan C. Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core [J]. Langmuir,1994,10(1):92~99.
    [15]Tang D, Yuan R, Chai Y. Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay [J]. The Journal of Physical Chemistry B,2006,110(24):11640~11646.
    [16]Ya D, Xia X H, Zhang C. Synthesis of metallic nanoparticles protected with N, N, N-trimethy] chitosan chloride via a relatively weak affinity [J]. Nanotechnology,2006, 17(16):4156.
    [17]Guan L, Shi Z, Li M, et al. Ferrocene-filled single-walled carbon nanotubes [J]. Carbon, 2005,43(13):2780~2785.
    [18]Zhang F F, Wan Q, Wang X L, et al. Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis [J]. Journal of Electroanalytical Chemistry,2004,571(2): 133~138.
    [19]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors [J]. Journal of the American Chemical Society,2003, 125(9):2408~2409.
    [1]Zhang Z, Chouchane S, Magliozzo R S, et al. Direct voltammetry and catalysis with mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid films [J]. Analytical Chemistry,2001,74(1):163~170.
    [2]Wang J, Liu J, Cepra G. Thermal stabilization of enzymes immobilized within carbon paste electrodes [J]. Analytical Chemistry,1997,69(15):3124~3127.
    [3]Rusling J F, Nassar A E F. Enhanced electron transfer for myoglobin in surfactant films on electrodes [J]. Journal of the American Chemical Society,1993,115(25):11891~11897.
    [4]Kong Y T, Boopathi M, Shim Y B. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode [J]. Biosensors and Bioelectronics, 2003,19(3):227~232.
    [5]Wu Y, Hu S. Biosensors based on direct electron transfer in redox proteins [J]. Microchimica Acta,2007,159(1-2):1~17.
    [6]Zhang L, Tian D B, Zhu J J. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode [J]. Bioelectrochemistry,2008,74(1):157~163.
    [7]Guo X, Zheng D, Hu N F. Enhancement of Au nanoparticles formed by in situ electrodeposition on direct electrochemistry of myoglobin loaded into layer-by-layer films of chitosan and silica nanoparticles [J]. The Journal of Physical Chemistry B,2008,112(48): 15513~15520.
    [8]Dai Z, Xiao Y, Yu X, et al. Direct electrochemistry of myoglobin based on ionic liquid-clay composite films [J]. Biosensors and Bioelectronics,2009,24(6):1629~1634.
    [9]Weizmann Y, Patolsky F, Katz E, et al. Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles [J]. Journal of the American Chemical Society,2003, 125(12):3452~3454.
    [10]Willner I, Katz E. Magnetic control of electrocatalytic and bioelectrocatalytic processes [J]. Angewandte Chemie International Edition,2003,42(38):4576~4588.
    [11]Katz E, Lioubashevski O, Willner I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:Enhanced Performance of Biofuel Cells [J]. Journal of the American Chemical Society,2005,127(11):3979~3988.
    [12]Zou C, Fu Y, Xie Q, et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics,2010,25(6): 1277~1282.
    [13]Salgueirino-Maceira V, Correa-Duarte M A, Spasova M, et al. Composite silica spheres with magnetic and luminescent functionalities [J]. Advanced Functional Materials,2006,16(4): 509~514.
    [14]Wu W, He Q G, Jiang C Z. Magnetic iron oxide nanoparticles:synthesis and surface functionalization strategies [J]. Nanoscale Research Letters,2008,3(11):397~415.
    [15]Zhang Y, Zhang Y, Wang H, et al. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles [J]. Journal of Electroanalytical Chemistry,2009,627(1-2):9-14.
    [16]Jena B K, Raj C R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles [J]. Analytical Chemistry,2006,78(18): 6332~6339.
    [17]Qiu J D, Xiong M, Liang R P, et al. Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application [J]. Biosensors and Bioelectronics, 2009,24(8):2649~2653.
    [18]Liu J C, Tsai P J, Lee Y C, et al. Affinity capture of uropathogenic escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles [J]. Analytical Chemistry, 2008,80(14):5425~5432.
    [19]Zhou H J, Ye M L, Dong J, et al. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis [J]. Journal of proteome research,2008,7(9):3957~3967.
    [20]Yao N, Chen H M, Lin H Q, et al. Enrichment of peptides in serum by C8-functionalized magnetic nanoparticles for direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis [J]. Journal of Chromatography A,2008,1185(1):93~101.
    [21]Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media [J]. Magnetics, IEEE Transactions on,1981,17(2):1247~1248.
    [22]Wu W, He Q, Chen H, et al. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles [J]. Nanotechnology,2007,18(14):145609.
    [23]Wang J, Kawde A N. Magnetic-field stimulated DNA oxidation [J]. Electrochemistry Communications,2002,4(4):349~352.
    [24]Wang L W, Luo J, Fan Q, et al. Monodispersed core-shell Fe3O4@Au nanoparticles [J]. The Journal of Physical Chemistry B,2005,109(46):21593~21601.
    [25]George P, Hanania G. A spectrophotometric study of ionizations in methaemoglobin [J]. Biochemical Journal,1953,55(2):236~243.
    [26]Katz E, Willner I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy:routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors [J]. Electroanalysis,2003,15(11):913~947.
    [27]Riskin M, Basnar B, Huang Y, et al. Magnetoswitchable charge transport and bioelectrocatalysis using maghemite-Au core-shell nanoparticle/polyaniline composites [J]. Advanced Materials,2007,19(18):2691~2695.
    [28]Zhang H, Lu H Y, Hu N F. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes [J]. The Journal of Physical Chemistry B,2006, 110(5):2171~2179.
    [29]Lu H, Yang J, Rusling J F, et al. Vapor-surface sol-gel deposition of titania alternated with protein adsorption for assembly of electroactive, enzyme-active films [J]. Electroanalysis, 2006,18(4):379~390.
    [30]Zhang H M, Li N Q. The direct electrochemistry of myoglobin at a homocysteine self-assembled gold electrode [J]. Bioelectrochemistry,2001,53(1):97~101.
    [31]Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode [J]. Analytical Chemistry,2000,72(18):4420~4427.
    [32]Laviron E. The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrode [J]. Journal of Electroanalytical Chemistry,1979,100(2):263~270.
    [33]Strelow F W E, Weinert C H S W. Quantitative separation of beryllium from magnesium, calcium, aluminium, iron and other elements by cation-exchange chromatography in nitric acid-methanol [J]. Analytica Chimica Acta,1976,83(1):179~186.
    [34]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J]. Langmuir, 2005,21(20):9260~9266.
    [35]Nassar A E F, Zhang Z, Hu N, et al. Proton-coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like films [J]. The Journal of Physical Chemistry B, 1997,101(12):2224~2231.
    [36]Dai Z H, Xu X X, Ju H X. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix [J]. Analytical Biochemistry,2004, 332(1):23~31.
    [37]He P L, Hu N F, Zhou G. Assembly of electroactive layer-by-layer films of hemoglobin and polycationic poly(diallyldimethylammonium) [J]. Biomacromolecules,2001,3(1):139-146.
    [38]Zhao G, Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film [J]. Electrochemistry Communications,2005,7(7): 724~729.
    [39]Zong S Z, Cao Y, Zhou Y M, et al. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix [J]. Biosensors and Bioelectronics,2007,22(8):1776~1782.
    [40]Shu F R, Wilson G S. Rotating ring-disk enzyme electrode for surface catalysis studies [J]. Analytical Chemistry,1976,48(12):1679~1686.
    [41]Wang H Y, Guan R, Fan C H, et al. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film [J]. Sensors and Actuators B:Chemical,2002,84(2-3):214~218.
    [42]Franks G V, Meagher L. The isoelectric points of sapphire crystals and alpha-alumina powder [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003, 214(1-3):99~110.
    [43]Zhang Y, He P L, Hu N F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis [J]. Electrochimica Acta,2004,49(12):1981~1988.
    [44]Liu H H, Tian Z Q, Lu Z X, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosensors and Bioelectronics,2004, 20(2):294~304.
    [45]Ma W, Tian D. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix [J]. Bioelectrochemistry,2010, 78(2):106~112.
    [46]Zhang J J, Liu YG, Jiang L P, et al. Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin [J]. Electrochemistry Communications,2008,10(3):355~358.
    [47]Jia N, Wen Y, Yang G, et al. Direct electrochemistry and enzymatic activity of hemoglobin immobilized in ordered mesoporous titanium oxide matrix [J]. Electrochemistry Communications,2008,10(5):774~777.
    [48]Zhang L, Jiang X, Wang E, et al. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin [J]. Biosensors and Bioelectronics,2005,21(2):337~345.
    [49]Chen X L, Hu N F, Zeng Y H, et al. Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions, and clay [J]. Langmuir,1999,15(20):7022~7030.
    [50]Liu L, Shen B, Shi J, et al. A novel mediator-free biosensor based on co-intercalation of DNA and hemoglobin in the interlayer galleries of α-zirconium phosphate [J]. Biosensors and Bioelectronics,2010,25(12):2627~2632.
    [51]Zhang J, Liu Y, Jiang L, et al. Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin [J]. Electrochemistry Communications, 2007,10(3):355~358.
    [52]Wang S, Chen T, Zhang Z, et al. Effects of hydrophilic room-temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films [J]. Electrochemistry Communications,2007,9(7):1709~1714.
    [53]Wade R S, Castro C E. Oixidation of heme proteins by alkyl halides [J]. Journal of the American Chemical Society,1973,95(1):231~234.
    [54]Xu H, Xiong H, Zeng Q, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids [J]. Electrochemistry Communications,2009,11(2):286~289.
    [55]Gao R, Zheng J. Direct electrochemistry of myoglobin based on DNA accumulation on carbon ionic liquid electrode [J]. Electrochemistry Communications,2009,11(7): 1527~1529.
    [56]Zhang L H, Zhai Y M, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochemistry Communication,2008,10(10): 1524~1526.
    [57]Ferapontova E E. Direct peroxidase bioelectrocatalysis on a variety of electrode materials [J]. Electroanalysis,2004,16(13-14):1101~1112.
    [58]Gu B X, Xu C X, Zhu G P, et al. Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing [J]. The Journal of Physical Chemistry B,2009,113(18): 6553~6557.
    [59]Huang J L, Tsai Y C. Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode [J]. Sensors and Actuators B:Chemical, 2009,140(1):267~272.
    [60]Xiang C, Zou Y, Sun L X, et al. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite [J]. Sensors and Actuators B:Chemical,2009,136(1):158~162.
    [61]Zhao X, Mai Z, Kang X, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite [J]. Biosensors and Bioelectronics,2008,23(7):1032~1038.
    [62]Tan X, Zhang J, Tan S, et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe304/chitosan modified glassy carbon electrode [J]. Electroanalysis,2009,21(13):1514~1520.
    [63]Klimova T, Luisa M, Castillo P, et al. Characterization of Al2O3-ZrO2 mixed oxide catalytic supports prepared by the sol-gel method [J]. Microporous Mesoporous Materials,1998, 20(1):293~306.
    [64]Li Y, Leng T, Lin H, et al. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry [J]. Journal of Proteome Research,2007,6(11):4498~4510.
    [65]Moghaddam A B, Ganjali M R, Dinarvand R, et al. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry [J]. Biophysical Chemistry,2008,134(1-2):25~33.
    [66]Qiu J D, Cui S G, Deng M Q, et al. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide [J]. Journal of Applied Electrochemistry,2010,40(9):1651~1657.
    [67]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J]. Langmuir, 2005,21(20):9260~9266.
    [68]Safavi A, Farjami F. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film [J]. Analytical Biochemistry,2010,402(1):20~25.
    [69]Guo W, Lu H Y, Hu N F. Comparative bioelectrochemical study of two types of myoglobin layer-by-layer films with alumina:Vapor-surface sol-gel deposited Al2O3 films versus Al2O3 nanoparticle films [J]. Electrochimica Acta,2006,52(1):123~132.
    [70]Qiao K, Hu N F. Direct electron transfer and electrocatalysis of myoglobin loaded in layer-by-layer films assembled with nonionic poly(ethylene glycol) and ZrO2 nanoparticles [J]. Bioelectrochemistry,2009,75(1):71-76.
    [71]Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J]. Electrochemistry Communications,2006,8(5):874~878.
    [72]Zhang L, Zhang Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry [J]. Advanced Functional Materials,2007,17(12):1958~1965.
    [73]Qiu J D, Cui S G, Liang R P. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubesby a hydrothermal synthetic method [J]. Microchimica Acta,2010,171(3): 333~339.
    [74]Shi G, Sun Z, Liu M, et al. Electrochemistry and electrocatalytic properties of hemoglobin in layer-by-layer films of SiO2 with vapor-surface sol-gel deposition [J]. Analytical Chemistry, 2007,79(10):3581~3588.
    [1]Jeong U, Teng X, Wang Y, et al. Superparamagnetic colloids:controlled synthesis and niche applications [J]. Advanced Materials,2007,19(1):33~60.
    [2]Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nature Nanotechnology,2007,2(9):577~583.
    [3]Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection [J]. Analytical Chemistry,2008,80(6):2250~2254.
    [4]Ding N, Yan N, Ren C, et al. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-ABTS detection system. [J]. Analytical Chemistry,2010, 82(13):5897~5899.
    [5]Zhang L, Zhai Y, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochemistry Communications,2008,10(10):1524-1526.
    [6]Wang N, Zhu L, Wang D, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2 [J]. Ultrasonics Sonochemistry,2010,17(3):526~533.
    [7]Zhao G, Xu J J, Chen H Y. Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin [J]. Electrochemistry Communications,2006,8(1):148~154.
    [8]Kaushik A, Solanki P R, Ansari A A, et al. Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-A [J]. Electrochemistry Communications,2008,10(9): 1364~1368.
    [9]Pal S, Chandra S, Phan M-H, et al. Carbon nanostraws:nanotubes filled with superparamagnetic nanoparticles [J]. Nanotechnology,2009,20(48):485604.
    [10]Song S, Song S, Rao R, et al. Facile synthesis of Fe3O4/MWCNTs by spontaneous redox and their catalytic performance [J]. Nanotechnology,2010,21(18):185602.
    [11]Jia B, Gao L, Sun J. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process [J]. Carbon,2007,45(7):1476~1481.
    [12]Panels J E, Lee J, Park K Y, et al. Synthesis and characterization of magnetically active carbon nanofiber/iron oxide composites with hierarchical pore structures [J]. Nanotechnology,2008,19(45):455612.
    [13]Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano,2010,4(7):3979~3986.
    [14]Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries [J]. Journal of Materials Chemistry,2010,20(26):5538~5543.
    [15]He F, Fan J, Ma D, et al. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding [J]. Carbon,2010,48(11):3139~3144.
    [16]Yang X, Zhang X, Ma Y, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers [J]. Journal of Materials Chemistry,2009,19(18): 2710~2714.
    [17]Cong H P, He J J, Lu Y, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets:in situ synthesis and magnetic resonance imaging applications [J]. Small,2010, 6(2):169~173.
    [18]Shen J, Hu Y, Shi M, et al. One step synthesis of graphene oxide-magnetic nanoparticle composite [J]. The Journal of Physical Chemistry C,2010,114(3):1498~1503.
    [19]Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide:synthesis, properties, and applications [J]. Advanced Materials,2010,22(35):3906~3924.
    [20]Liang J, Xu Y, Sui D, et al. Flexible, magnetic, and electrically conductive graphene/Fe3O4 Paper and its application for magnetic-controlled switches [J]. The Journal of Physical Chemistry C,2010,114(11):17465~17471.
    [21]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339~1339.
    [22]Cote L J, Kim F, Huang J. Langmuir-blodgett assembly of graphite oxide single layers [J]. Journal of the American Chemical Society,2009,131(3):1043~1049.
    [23]Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Advanced Functional Materials, 2009,19(12):1987~1992.
    [24]Zou C, Fu Y, Xie Q, et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics,2010,25(6): 1277~1282.
    [25]Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets [J]. ACS Nano,2009,3(9):2653~2659.
    [26]Chin S F, Iyer K S, Raston C L. Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions [J]. Lab on a Chip,2008, 8(3):439~442.
    [27]Rocchiccioli-Deltche C, R. Franck V C, Massart R. Surfacted ferrofluids:interactions at the surfactant-magnetic iron oxide interface [J]. Journal of Chemical Research,1987,5(1): 126~131.
    [28]Li Y, Leng T, Lin H, et al. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. [J]. Journal of proteome research,2007,6(11):4498~4510.
    [29]Liu H, Gao J, Xue M, et al. Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. [J]. Langmuir,2009,25(20):12006~12010.
    [30]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nature Nanotechnology,2008,3(2):101~105.
    [31]Cai D, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents [J]. Journal of Materials Chemistry,2007,17(35):3678~3680.
    [32]Banks C E, Davies T J, Wildgoose G G, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes:edge-plane sites and tube ends are the reactive sites [J]. Chemical Communications,2005,7:829~841.
    [33]Lin M S, Leu H J. A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide [J]. Electroanalysis,2005,17(22):2068~2073.
    [34]Cao Z, Zhang J, Zeng J, et al. Mesoporous silica hollow sphere (MSHS) for the bioelectrochemistry of horseradish peroxidase [J]. Talanta,2009,77(3):943~947.
    [35]Sun X, Zhang Y, Shen H, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film [J]. Electrochimica Acta,2010,56(2):700~705.
    [36]Kafi A, Wu G, Chen A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays [J]. Biosensors and Bioelectronics,2008,24(4):566~571.
    [37]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Analytical Chemistry,1980,52(8): 1198~1205.
    [38]Xu J, Shang F, Luong J H T, et al. Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode [J]. Biosensors and Bioelectronics,2010,25(6):1313~1318.
    [39]Yin H, Ai S, Shi W, et al. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase [J]. Sensors and Actuators B: Chemical,2009,137(2):747~753.
    [40]Wu F, Xu J, Tian Y, et al. Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis [J]. Biosensors and Bioelectronics,2008,24(2): 198~203.
    [41]Zhang M, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes [J]. Analytical Chemistry,2005,77(13):3960~3965.
    [42]Li J, Qiu J D, Xu J J, et al. The synergistic effect of prussian-blue-grafted carbon Nanotube/Poly(4-vinylpyridine) composites for amperometric sensing [J]. Advanced Functional Materials,2007,17(9):1574~1580.
    [1]Ionescu R E G C, Gheber L A, et al. Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film [J]. Analytical Chemistry, 2004,76(22):6808-6813.
    [2]Li N, Yuan R, Chai Y Q, et al. New antibody immobilization strategy based on gold nanoparticles and azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor [J]. Journal of Physical Chemistry C,2007,111(24): 8443-8450.
    [3]Tang D P, Yuan R, Chai Y Q, et al. New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations [J]. Biosensors and Bioelectronics,2005,21(4):539~548.
    [4]Zhuo Y, Yuan R, Chai Y Q, et al. An amperometric immunosensor based on immobilization of hepatitis B surface antibody on gold electrode modified gold nanoparticles and horseradish peroxidase [J]. Analytica Chimica Acta,2005,548(1-2):205~210.
    [5]Qiu J D, Liang R P, Wang R, et al. A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix [J]. Biosensors and Bioelectronics,2009,25(4):852~857.
    [6]Chen C, Wang L, Tan Y, et al. High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped [J]. Biosensors and Bioelectronics, 2011,26(5):2311~2316.
    [7]Fu Y C, Li P H, Xie Q J, et al. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose [J]. Advanced Functional Materials,2009,19(11):1784~1791.
    [8]Fu Y, Li P, Wang T, et al. Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay [J]. Biosensors and Bioelectronics,2010,25(7):1699~1704.
    [9]Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications [J]. Accounts of Chemical Research,2009,42(8):1097~1107.
    [10]Zhang L, Zhai Y, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochemistry Communications,2008,10(10):1524~1526.
    [11]Zou C, Fu Y, Xie Q, et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics,2010,25(6): 1277~1282.
    [12]Huang J, Han B, Yue W, et al. Magnetic polymer microspheres with polymer brushes and the immobilization of protein on the brushes [J]. Journal of Material Chemisry,2007,17(36): 3812~3818.
    [13]Hong J, Xu D, Gong P, et al. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels [J]. Microporous and Mesoporous Materials,2008, 109(2):470~477.
    [14]Pezzella A, Ischia M, Napolitano A, et al. Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine:a possible contributory mechanism for neuronal degeneration in parkinson's disease [J]. Journal of Medicinal Chemistry,1997,40(14):2211-2216.
    [15]Parikh J R, Doering W E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide [J]. Journal of the American Chemical Society,1967,89(21):5505~5507.
    [16]Mo J W, Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber [J]. Analytical Chemistry,2001,73(6): 1196~1202.
    [17]Baron R, Zayats M, Willner I. Dopamine, 1-DOPA, adrenaline, and noradrenaline-induced growth of Au nanoparticles:assays for the detection of neurotransmitters and of tyrosinase activity [J]. Analytical Chemistry,2005,77(6):1566~1571.
    [18]Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318(5849):426~430.
    [19]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5296):666~669.
    [20]Yang X, Zhang X, Ma Y, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers [J]. Journal of Materials Chemistry,2009,19(18): 2710~2714.
    [21]Liang J, Xu Y, Sui D, et al. Flexible, Magnetic, and electrically conductive graphene/Fe3O4 Paper and its application for magnetic-controlled switches [J]. The Journal of Physical Chemistry C,2010,114(11):17465~17471.
    [22]Cong H P, He J J, Lu Y, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets:in situ synthesis and magnetic resonance imaging applications [J]. Small,2010,6(2): 169~173.
    [23]Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries [J]. Journal of Materials Chemistry,2010,20(26):5538~5543.
    [24]Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano,2010,4(7):3979~3986.
    [25]Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. Journal of the American Chemical Society,1958,80(6):1339~1339.
    [26]Cote L J, Kim F, Huang J. Langmuir-blodgett assembly of graphite oxide single layers [J]. Journal of the American Chemical Society,2009,131(3):1043~1049.
    [27]Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Advanced Functional Materials, 2009,19(12):1987~1992.
    [28]Cai D, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents [J]. Journal of Materials Chemistry,2007,17(35):3678~3680.
    [29]He X L, Yuan R, Chai Y Q, et al. A new antibody immobilization strategy based on electro-deposition of gold nanoparticles and prussian blue for label-free amperometric immunosensor [J]. Biotechnology Letters,2007,29(1):149~155.
    [30]Lin J H, Qu W, Zhang S S. Electrochemical immunosensor for carcinoembryonic antigen based on antigen immobilization in gold nanoparticles modified chitosan membrane [J]. Analytical Sciences,2007,23(6):1059~1063.
    [1]Cao D, He P, Hu N F. Electrochemical biosensors utilising electron transfer in heme proteins immobilised on Fe3O4 nanoparticlesElectronic supplementary information (ESI) available: characterization of protein/Fe3O4 films [J]. Analyst,2003,128(10):1268-1273.
    [2]Mani V, Chikkaveeraiah B V, Patel V, et al. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification [J]. ACS Nano,2009,3(3):585~594.
    [3]Singh R, R V, A K, et al. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for neisseria gonorrhoeae detection causing sexually transmitted disease [J]. Biosensors Bioelectronics,,2011,26(6):2967~2974.
    [4]Zhang L H, Zhai Y M, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film [J]. Electrochemistry Communication,2008,10(10): 1524~1526.
    [5]Chen C, Wang L, Tan Y, et al. High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped [J]. Biosensors and Bioelectronics, 2011,26(5):2311~2316.
    [6]Fu Y C, Li P H, Xie Q J, et al. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose [J]. Advanced Functional Materials,2009,19(11):1784~1791.
    [7]Fu Y, Li P, Wang T, et al. Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay [J]. Biosensors and Bioelectronics,2010,25(7):1699~1704.
    [8]Zou C, Fu Y C, Xie Q J, et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J]. Biosensors and Bioelectronics,2010,25(6): 1277~1282.
    [9]Huang J, Han B, Yue W, et al. Magnetic polymer microspheres with polymer brushes and the immobilization of protein on the brushes [J]. Journal of Material Chemisry,2007,17(36), 3812~3818.
    [10]Hong J, Xu D, Gong P, et al. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels [J]. Microporous and Mesoporous Materials,2008, 109(2):470~477.
    [11]Parikh J R, Doering W E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide [J]. Journal of the American Chemical Society,1967,89(21):5505~5507.
    [12]Mo J W, Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber [J]. Analytical Chemistry,2001,73(6): 1196~1202.
    [13]Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science,2007,318(5849):426~430.
    [14]Ouyang R, Lei J, Ju H. Artificial receptor-functionalized nanoshell:facile preparation, fast separation and specific protein recognition [J]. Nanotechnology,2010,21(18):185502.
    [15]Zhou W H, Lu C H, Guo X C, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition [J]. Journal of Materials Chemistry, 2010,20(5):880~883.
    [16]Ye W C, Hu H Y, Zhang H, et al. Multi-walled carbon nanotube supported Pd and Pt nanoparticles with high solution affinity for effective electrocatalysis [J]. Applied Surface Science,2010,256(22):6723~6728.
    [17]Tan Y, Deng W, Li Y, et al. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications [J]. The Journal of Physical Chemistry B,2010,114(15):5016~5024.
    [18]Fu Y C, Chen C, Xie Q J, et al. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions to develop biosensors with improved performance [J]. Analytical chemistry, 2008,80(15):5829~5838.
    [19]Zhang H, Hu N F. Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM-Au/Mb}n layer-by-layer films [J]. The journal of physical chemistry B,2007, 111(35):10583-10590.
    [20]Hu Y, Hu N. pH-dependent behaviors of electroactive myoglobin loaded into layer-by-layer films assembled with alginate and hydroxyethyl cellulose ethoxylate [J]. The Journal of Physical Chemistry B,2008,112(31):9523~9531.
    [21]Zuo X L, He S J, Li D, et al. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces [J]. Langmuir,2010,26(3):1936~1939.
    [22]Benkert A, Scheller F, Schossler W, et al. Development of a creatinine ELISA and an amperometric antibody-based creatinine sensor with a detection limit in the nanomolar range [J]. Analytical chemistry,2000,72(5):916~921.
    [23]Qiu J D, Wang R, Liang R P, et al. Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application [J]. Biosensors and Bioelectronics, 2009,24(9):2920~2925.
    [24]Dai Y Q, Zhou D M. Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode [J]. Electrochimica Acta,2006,52(3):297~303.
    [25]Jia X, Tan L, Zho Y, et al. Magnetic immobilization and electrochemical detection of leukemia K562 cells [J]. Electrochemistry Communication,2009,11(1):141~144.
    [26]Zhang Y, Zeng G M, Tang L, et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode [J]. Biosensors and Bioelectronics,2007,22(9-10):2121~2126.
    [27]Hirsch R, Katz E, Willner I. Magneto-switchable bioelectrocatalysis [J]. Journal of the American Chemical Society,2000,122(48):12053~12054.
    [28]Deng H, Li X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie International Edition,2005,44(18):2782~2785.
    [29]Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode [J]. Analytical Chemistry,2000,72(18):4420~4427.
    [30]Liu H H, Tian Z Q, Lu Z X, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosensors and Bioelectronics,2004, 20(2):294~304.
    [31]Ma W, Tian D. Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix [J]. Bioelectrochemistry,2010, 78(2):106~112.
    [32]Zhang J J, Liu Y G, Jiang L P, et al. Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin [J]. Electrochemistry Communications,2008,10(3):355~358.
    [33]Jia N, Wen Y, Yang G, et al. Direct electrochemistry and enzymatic activity of hemoglobin immobilized in ordered mesoporous titanium oxide matrix [J]. Electrochemistry Communications,2008,10(5):774~777.
    [34]Zhang L, Jiang X, Wang E, et al. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin [J]. Biosensors and Bioelectronics,2005,21(2):337~345.
    [35]Chen X, Hu N, Zeng Y, et al. Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions, and clay [J]. Langmuir,1999,15(20):7022~7030.
    [36]Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Analytical Chemistry,1980,52(8): 1198~1205.
    [37]Liu L, Shen B, Shi J, et al. A novel mediator-free biosensor based on co-intercalation of DNA and hemoglobin in the interlayer galleries of a-zirconium phosphate [J]. Biosensors and Bioelectronics,2010,25(12):2627~2632.
    [38]Zhang J, Liu Y, Jiang L, et al. Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin [J]. Electrochemistry Communications, 2007,10(3):355~358.
    [39]Wang S, Chen T, Zhang Z, et al. Effects of hydrophilic room-temperature ionic liquid l-butyl-3-methylimidazolium tetrafluoroborate on direct electrochemistry and bioelectrocatalysis of heme proteins entrapped in agarose hydrogel films [J]. Electrochemistry Communications,2007,9(7):1709~1714.
    [40]Xu H, Xiong H, Zeng Q, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids [J]. Electrochemistry Communications,2009,11(2):286~289.
    [41]Gao R F, Zheng J B. Direct electrochemistry of myoglobin based on DNA accumulation on carbon ionic liquid electrode [J]. Electrochemistry Communications,2009,11(7): 1527~1529.
    [42]Zhang Y, Zheng J. Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film [J]. Electrochemistry Communications,2008,10(9):1400~1403.
    [43]Qiu J D, Cui S G, Deng M Q, et al. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide [J]. Journal of Applied Electrochemistry,2010,40(9):1651~1657.
    [44]Huang J L, Tsai Y C. Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode [J]. Sensors and Actuators B:Chemical, 2009,140(1):267~272.
    [45]Gu B X, Xu C X, Zhu G P, et al. Layer by Layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing [J]. The Journal of Physical Chemistry B,2009,113(18): 6553~6557.
    [46]Kaoutit M, Naranjo-Rodriguez I, Dominguez M, et al. A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite [J]. Electrochimica Acta,2008,53(24):7131~7137.
    [47]Xiang C, Zou Y, Sun L X, et al. Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite [J]. Sensors and Actuators B:Chemical,2009,136(1):158~162.
    [48]Zhao X, Mai Z, Kang X, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite [J]. Biosensors and Bioelectronics,2008,23(7):1032~1038.
    [49]Tan X, Zhang J, Tan S, et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode [J]. Electroanalysis,2009,21(13):1514~1520.
    [50]Fang Y, Guo S, Zhu C, et al. Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles:a two-dimensional heterostructure for hydrogen peroxide sensing [J]. Langmuir,2010,26(13):11277~11282.
    [51]Liu Y, Wang M K, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosensors and Bioelectronics, 2005,21 (2):984~988.
    [52]Shan C S, Yang H F, Song J F, et al. Direct electrochemistry of gucose oxidase and biosensing for glucose based on graphene [J]. Analytical chemistry,2009,81(6):2378~2382.
    [53]Wu S, Ju H X, Liu Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins [J]. Advanced Functional Materials,2007,17(4):585~592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700