磷酸铁纳米材料的制备及在生物传感和锂离子电池正极材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸铁(FePO4)具有良好的生物相容性、丰富的P043-和稳定的3D骨架结构,已广泛应用于催化领域,并在生物传感和新能源领域有着潜在的应用。因此,研究FePO4及其纳米复合物的制备方法并应用于生物传感和新能源领域,有利于生态环境的保护。本文以FePO4为研究对象,发展了简单、快速制备FePO4纳米材料及其复合材料的方法,并研究了FePO4及其纳米复合材料在生物传感和锂离子电池中的应用,拓展了FePO4的应用范围。本论文的主要研究内容及结果有:
     (1)利用微波法制备了FePO4纳米材料并研究了其在蛋白质固定及生物传感方面的应用
     利用快速简单的微波法制备了FePO4纳米材料。用透射电镜(TEM)、扫描电镜(SEM)、能量散射光谱仪(EDS)、X(?)衬线光电子能谱(XPS)、X--射线粉末衍射(XRD)、红外光谱光谱(FT-IR)和紫外可见光谱(UV-vis)等技术对产物进行了表征;结果表明,所得FePO4纳米材料的形貌和尺寸受表面活性剂的种类和前驱体(Fe2+/PO43-)物质的量的比的影响。当使用阳离子表面活性剂CTAB作为稳定剂时,得到分散均匀的FePO4纳米球;如使用阴离子表面活性剂SDS或非离子表面活性剂PEG和PVP时,产物易团聚。当Fe2+/PO43-物质的量的比为1:2时,得到平均粒径约(50±10)nm的FePO4纳米球;当前驱体物质的量的比为1:1和2:1时,FePO4纳米球的平均粒径分别增加到(80±20)和(150±20)nin。将血红素类蛋白质(以肌红蛋白Mb为例)固定在FePO4纳米材料表面,制备了Mb-FePO4/GC电极,研究了Mb在FePO4纳米材料表面的直接电子转移及对H202还原的电催化性能,结果表明,固定在FePO4纳米材料表面的Mb能够保持其原有的天然结构,其循环伏安曲线上呈现出了一对良好的、准可逆的氧化还原峰,峰电位分别为Epa=-284mV,Epc=-373mV (100mVs-1),式量电位Eo’约为-(330±3.0)mV(pH6.8),电子转移表观速率常数约为ks=5.54s-1,说明Mb在FePO4纳米材料表面能进行有效的直接电子转移反应。Mb-FePO4/GC电极对H202的还原表现出良好的电催化性能,催化电流与H202浓度在0.01-2.5mmol L-1的范围内成良好的线性关系,最低检测限约(5±1)μmol L-1,灵敏度为(85±3) μA (mmol L-1)-1cm-2,并具有良好的重现性和稳定性,可作为检测H202的生物传感器。因此,FePO4纳米材料能够促进蛋白质/酶和电极间的直接电子转移,可用于构建检测H202的生物传感,拓宽了其在生物电化学中的应用范围。
     (2)普鲁士蓝(PB)对FePO4纳米材料表面的修饰及用于胆碱氧化酶(ChOx)的固定和胆碱的电化学测定
     胆碱是脑组织中类胆碱功能活性的标识物,在生物和临床分析中,特别是在神经变性疾病的临床检测中非常重要。我们提出通过电化学方法基于普鲁士蓝(PB)修饰的FePO4纳米复合材料(PB-FePO4)实现对胆碱的检测。用透射电镜(TEM)、X-射线粉末衍射(XRD)、红外光谱光谱(FT-IR)和紫外可见光谱(UV-vis)等技术对产物进行了表征;结果表明,通过简单的方法可以在FePO4纳米材料的表面修饰PB形成PB-FePO4纳米复合材料。将胆碱氧化酶(ChOx)固定在PB-FePO4纳米材料表面制备了ChOx-PDDA-PB-FePO4/GC电极,研究了ChOx对胆碱的电催化性能,结果表明固定在PB-FePO4纳米复合材料表面的ChOx能够保持其生物活性,对胆碱表现出良好的电催化性能。研究了溶液的pH、温度和检测电压对修饰电极响应的影响,结果表明当溶液pH为8.0、温度为37℃和检测电位为-0.05V时具有最佳响应,催化电流与胆碱浓度在2μmol L-1-3.2mmol L-1范围内呈良好的线性关系,最低检测限约(0.4±0.05)灵敏度约为75.2μA (mmol L-1)-1cm-2,并具有良好的重现性和稳定性。另外,当检测电位为-0.05V(相对于饱和甘汞电极)时能够有效避免常见的干扰物质如抗坏血酸、尿酸和4-乙酰氨基苯酚的干扰。因此,该纳米复合材料能够作为合适的平台构建基于其他氧化酶的生物传感。
     (3)制备了壳厚可调的FePO4纳米空心球并用于锂离子电池的正极材料
     利用水热法一步合成了FePO4纳米空心球。用透射电镜(TEM)、高分辨透射电镜(HRTEM)、扫描电镜(SEM)、能量散射光谱仪(EDS)、X-射线光电子能谱(XPS)、X-射线粉末衍射(XRD)等技术对产物进行了表征;结果表明产物为非晶态的FePO4纳米空心球(平均粒径约250nm),壳壁厚度为40nm。研究了前驱体(Fe2+/PO43-)物质的量的比、表面活性剂SDS的量和反应时间对产物形貌的影响,结果表明,SDS的量和反应时间是合成纳米空心球的关键条件;在0.05g SDS和反应时间为12h时,通过调节反应前驱体(Fe2+/PO43-)的物质的量比可以实现对纳米球的形貌和壳壁厚度的可控合成;当Fe2+/PO43-物质的量的比为1:1时,得到FePO4纳米实心球(平均粒径约250nm);当前驱体物质的量的比大于1:l时,得到平均粒径约250nm的FePO4空心球,且随着前驱体物质的量的比的增加,空心球的壳壁厚度减小;当前驱体物质的量的比为1:2时,空心球的壳壁厚约40nm;当前驱体物质的量的比增加到1:3和1:4时,空心球的壳壁厚分别减少至22和10nm。以该非晶态FePO4纳米空心球作为锂离子电池的正极材料,研究了其循环性能和倍率性能。电流密度为20mA g-1时,壳壁厚为10nm、22nm和40nm的纳米空心球,其放电比容量分别为170.5、166.2和159.4mAh g-1;50次循环后,比容量分别保持在167.1、163.8和156.6mAh g-1,表现出良好的循环稳定性;壳壁厚为10nm的FePO4纳米空心球在100、200、500、1000和2000mAg-1的电流密度下,放电比容量分别为141.8.135.6.118.5.100.3.76.3mAh g1;随着空心球壳壁厚度的增加,倍率性能略有降低。FePO4纳米空心球的比容量、循环性能和倍率性能明显优于纳米实心球,独特的空心结构有利于Li+的快速扩散,大的比表面积增加了电极和电解质的接触面,有效降低电流密度,减少大电流充放电下对电极材料的破坏程度。因此,FePO4纳米空心球是最具开发和应用潜力的新一代锂离子正极材料,同时该方法还为提高锂离子电池电极材料特别是低电导率电极材料的比容量和倍率性能提供了一种有效、方便的途径。
     (4)制备了石墨烯-FePO4纳米空心球复合物并用于锂离子电池的正极材料
     通过一步合成法制备了石墨烯-FePO4纳米空心球复合物(非晶态FePO4纳米空心球直接生长在石墨烯的表面)。用透射电镜(TEM)、高分辨透射电镜(HRTEM).扫描电镜(SEM)、能量散射光谱仪(EDS)、X-射线光电子能谱(XPS)、X-射线粉末衍射(XRD)、红外光谱光谱(FT-IR)等技术对产物进行了表征;结果表明非晶态FePO4纳米空心球均匀地分散在石墨烯上,空心球粒径约50nm,壁厚约4nm。研究了表面活性剂对产物形貌的影响,结果表明适量的SDS有利于FePO4空心球的形成,当SDS为0.1g时,可以制备出石墨烯-FePO4空心球复合物。以该复合物作为锂离子电池的正极材料,研究了其循环性能和倍率性能。电流密度为20mA g-1时,放电比容量为174.1mAhg-1;50次循环后,放电比容量仍保持在173.3mAh g-1,表现出良好的循环稳定性;电流密度为100、200、500和1000mA g-1时,放电比容量分别为157.2、149.1、121.4和99.2mAhg-1,表现出高倍率性能。该复合材料促进了Li+的快速扩散和电子的传递,具有高比容量、良好的循环稳定性和高倍率性能,有望成为最具开发和应用潜力的新一代锂离子正极材料。这种直接生长在石墨烯上方法为提高锂离子电池电极材料特别是高度绝缘的电极材料的比容量和倍率性能提供了一种有效、方便的途径,同时该方法也适合于工业合成各种基于石墨烯的纳米复合材料。
With good biocompatibility, abundant PO43-, and3D skeleton structure, FePO4has been widely applicated in catalysis, which also has potential application in biosenseor and new energy. Research of FePO4and its composite is beneficial to the protection of the ecological environment. This work develops the facile synthesis of FePO4and its composite. Their application in sensors and lithium ion battery is investigated, which expand the platform of application. The main conclusions are summarized as following:
     (1) Iron phosphate nanostructures synthesized by microwave method and their applications in biosensing
     A fast, simple microwave heating method has been developed for synthesizing iron phosphate (FePO4) nanostructures. The nanostructures were characterized and confirmed by transmission electronic microscope (TEM), scanning electronic microscope (SEM), energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR), and UV-vis spectroscopy. The morphology and the size of the nanomaterials are significantly influenced by the concentration of the precursors and the kinds of surfactants. CTAB plays a crucial role in controlling the spherical morphology of the product, as well as preventing the nanomaterials from aggregation. The nanoparticles are easily aggregated in the course of their growth in the case of SDS, PEG and PVP. The nanospheres with the average diameters of (50±10) nm are obtained at the molar ratio of1:2. The average size of the nanomaterials increases to (80±20) and (150±20) nm, respectively, at the molar ratio of1:1and2:1. The nanostructures have been employed as electrode substrate to immobilize myoglobin (Mb) and to facilitate the direct electron transfer (DET) reaction of the protein. After immobilized on the nanomaterials, Mb can keep its natural structure and undergo effective DET reaction with a pair of well-defined redox peak, the anodic (Epa) and cathodic (Epc) peak potentials of at ca.-284and-373mV, respectively, at a scan rate of100mV s-1. The formal potential, E0' is found to be-(330±3.0) mV (pH6.8) and the apparent electron transfer rate constant of5.54s-1. The Mb-FePO4/GC electrode displays good features in electrocatalytic reduction of H2O2, and thus can be used as a biosensor for detecting the substrate. The response displays a good linear range from0.01to2.5mM, the sensitivity is evaluated to be ca.(85±3) μA mM-1cm-2. The detection limit is estimated to be ca.(5±1) μM with good stability and reproducibility. Therefore, FePO4 nanomaterials can be become a simple and effective biosensing platform for the integration of proteins/enzymes and electrodes, which can provide analytical access to a large group of enzymes for a wide range of bioelectrochemical applications.
     (2) Indirect electrocatalytic determination of choline by monitoring hydrogen peroxide at the choline oxidase-prussian blue modified iron phosphate nanostructures
     Choline, as a marker of cholinergic activity in brain tissue, is very important in biological and clinical analysis, especially in the clinic detection of the neurodegenerative disorders disease. This work presents an electrochemical approach for the detection of choline based on Prussian blue (PB) modified iron phosphate (FePO4) nanostructures (PB-FePO4). The nanostructures were characterized and confirmed by transmission electronic microscope (TEM), x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR), and UV-vis spectroscopy. The nanostructures have been employed as electrode substrate to immobilize ChOx. After immobilized on the nanomaterials, ChOx can keep its electrocatalytic reduction of Choline. The response current of the biosensor usually depends on the solution pH, performance temperature, and detection potential. The pH8.0、temperature37℃and the detection potential of-0.05V are chosen as the optimal condition for the ChOx-PDDA-PB-FePO4/GC electrode sensing choline chloride. The response current displays a good linear range2μM-3.2mM. The sensitivity is evaluated to be-75.2μA mM-1cm-2. The detection limit is estimated to be ca.0.4±0.05μM. The electrode displays good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid and4-acetamidophenol did not cause obvious interference due to the low detection potential (-0.05V vs. saturated calomel electrode). This nanostructure could be used as a platform for the construction of other oxidase-based biosensors.
     (3) Enhanced cathode performances of amorphous FePO4hollow nanospheres with tunable shell thickness in lithium ion batteries
     We report the facile synthesis of an amorphous FePO4hollow nanosphere with tunable shell thickness for use as a cathode material in lithium ion batteries (LIBs). The nanostructures were characterized and confirmed by transmission electronic microscope (TEM, HRTEM), scanning electronic microscope (SEM), energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and x-ray powder diffraction (XRD). The morphology and the size of the nanomaterials are significantly influenced by the amount of surfactant SDS and reaction time. The0.05g SDS and12h are chosen as the optimal condition. The thickness of the shell of the prepared sample can be easily controlled by adjusting the molar ratio of the precursors. When the samples were prepared at the Fe2+/PO43-ratio of1:1, FePO4solid nanospheres with the average diameters of (250±20) nm were obtained. While the samples were prepared at the Fe2+/PO43-ratio higher than1:1, FePO4hollow nanospheres were obtained. Moreover, the shell thickness of the nanospheres significantly depends on the ratio of the precursors. It decreases from approximately40nm at the ratio of1:2to about10nm at the ratio of1:4. At a current rate of20mA g-1The first discharge-charge cycle delivered specific capacities of170.5,166.2and159.4mAh g-1, respectively, for the hollow nanosphere with shell thickness of10nm,22and40nm, respectively. The discharge capacity maintains a reversible capacity after50cycles of approximately167.1,163.8and156.6mAh g-1, respectively. The discharge capacities were approximately166,150,133,114, and90mAh g-1at current rates of100,200,500,1000, and2000mA g-1, respectively, for the nanospheres with shell thickness of10nm. Moreover, with increase of the shell thickness, the rate capacities have only slight decrease. These results indicate good cycling stability and a good rate performance of the hollow nanosphere. The electrochemical performance of these hollow nanospheres was much better than that of the solid nanospheres.The high rate capacity is due to the unique hollow structure of the FePO4nanospheres, which shortens the diffusion path for both electrons and Li+ions, ensures a high electrode-electrolyte contact area, and offers more active sites for electrochemical reactions. The approach offers an effective route to improve the performance of highly insulating electrode materials for batteries.
     (4) Graphene-Amorphous Hollow FePO4Nanosphere Hybrids as Cathode Materials for Lithium Ion Batteries
     A facile one-step synthesis approach to prepare the graphene-amorphous hollow FePO4nanosphere hybrids (amorphous hollow FePO4nanospheres were directly grew on graphene) for use as cathode materials in lithium ion batteries (LIBs) is developed. The nanostructures were characterized and confirmed by transmission electronic microscope (TEM, HRTEM), scanning electronic microscope (SEM), energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The0.1g SDS is chosen as the optimal condition.This hybrid exhibits good electrochemical performance with high specific capacity up to174.1mAh g-1(at a current rate of20mA g-1), the discharge capacity maintains a reversible capacity after50cycles of approximately173.3mAh g-1. The discharge capacities were approximately157.2,149.1,121.4, and99.2mAh g-1based on the weight of amorphous FePO4hollow nanospheres at current rates of100,200,500, and1000mA g-1, respectively, indicating good capacity retention and high rate capability upon cycling due to facile Li+ions diffusion through the thin wall of the hollow FePO4nanospheres and fast electron transport through the graphene. The hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly cathode for LIBs. The growth-on-graphene approach offers an effective and convenient technique to improve the specific capacities and rate capabilities of highly insulating electrode material in battery area, and is also beneficial to the industrial-scale synthesis of various graphene-based hybrid nanomaterials.
引文
[1]L. B. Vitaly, H. C. James, L. Rafael, et al. Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chem.,2007,9(9):992-995.
    [2]J. de A. A. S. Galo, S. Clement, L. Benedicte, et al. Chemical strategies to design textures materials:from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev.,2002,102(11):4093-4138.
    [3]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997,144(4):1188-1194.
    [4]C. Gerbaldi, G. Meligrana, S. Bodoardo, et al. FePO4 nanoparticles supported on mesoporous SBA-15:Interesting cathode materials for Li-ion cells. J. Power Sources, 2007,174(2):501-507.
    [5]K. J. Lee, J. H. Oh, Y. Kim, et al. Fabrication of photoluminescent dyes/ poly(acrylonitrile) coaxial nanotubes using vapor deposition polymerization. Chem. Mater.,2006,18(26):5002-5008.
    [6]J. Liu, X. Li, L. Dai. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv. Mater.,2006,18(13):1740-1744.
    [7]Y. Wang, N. Herron. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem.,1991,95(2): 525-532.
    [8]G. Derrien, J. Hassoun, S. Panero, et al. Nanostructured Sn-C composite as an advanced anode material in high performance lithium-ion batteries. Adv. Mater.,2007, 19(24):2336-2340.
    [9]B.-k. Guo, J. Shu, K. Tang, et al. Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency. J. Power Sources,2008,177(1):205-210.
    [10]Z. F. Wang, H. S. Guo, Y. L. Yu, et al. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. J. Magn. Magn. Mater.,2006,302(2):397-404.
    [11]R. B. Zheng, X. W. Meng, F. Q. Tang. High-density magnetite nanoparticles located in carbon hollow microspheres with good dispersibility and durability:their one-pot preparation and magnetic property. Eur. J. Inorg. Chem.,2009,42(20):3003-3007.
    [12]P. Tartaj, T. Gonzalez-Carreno, C. J. Serna. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv. Mater., 2001,13(21):1620-1624.
    [13]R. B. Zheng, X. W. Meng, F. Q. Tang. A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent. J. Solid State Chem., 2009,182(5):1235-1240.
    [14]L. Q. Xu, W. Q. Zhang, Y. W. Ding, et al. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes. J. Phys. Chem. B, 2004,108(30):10859-10862.
    [15]L. M. Liz-Marzan, P. Mulvaney. The assembly of coated nanocrystals. J. Phys. Chem. B,2003,107(30):7312-7326.
    [16]X. W. Lou, L. A. Archer, Z. C. Yang. Hollow micro-/nanostructures:synthesis and applications. Adv. Mater.,2008,20(21):3987-4019.
    [17]A. H. Lu, E. L. Salabas, F. Schuth. Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed.,2007,46(8):1222-1224.
    [18]X. W. Lou, C. L. Yuan, L. A. Archer. Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv. Mater.,2007,19(20):3328-3332.
    [19]P. Wang, D. Chen, F. Q. Tang. Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir,2006,22(10):4832-4835
    [20]X. M. Sun, J. F. Liu, Y. D. Li. Oxides/C core-shell nanostructures:one-pot synthesis, rational conversion, and Li storage property. Chem. Mater.,2006,18 (15):3486-3494.
    [21]S. J. Hurst, E. K. Payne, L. D. Qin, et al. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed.,2006,45(17): 2672-2692.
    [22]J. J. Mock, S. J. Oldenburg, D. R. Smith, et al. Composite plasmon resonant nanowires. Nano Lett.,2002,2(5):465-469.
    [23]T. K. Sau, C. J. Murphy. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir,2004,20(15):6414-6420.
    [24]T. K. Sau, C. J. Murphy. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir,2005,21(7):2923-2929.
    [25]F. Gao, M. S. El-Deab, T. Okajima, et al. Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction. J. Electrochem. Soc.,2005,152(6):A1226-A1232.
    [26]M. S. El-Deab, T. Sotomura, T. Ohsaka. Morphological selection of gold nanoparticles electrodeposited on various substrates. J. Electrochem. Soc.,2005, 152(11):C730-C733.
    [27]K. Bonroy, J. M. Friedt, F. Frederix, et al. Realization and characterization of porous gold for increased protein coverage on acoustic sensors. Anal. Chem.,2004,76(15): 4299-4306.
    [28]S. Toyama, O. Takei, M. Tsugue, et al. Surface plasmon resonance of electrochemically deposited Au-black. Electrochem. Commun.,2002,4(7):540-544.
    [29]S. X. Huang, H. Y. Ma, X. K. Zhang, et al. Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization. J. Phys. Chem. B,2005,109(42): 19823-19830.
    [30]G. T. Duan, W. P. Cai, Y. Y. Lou, et al. Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect. Appl. Phys. Lett.,2006,89(21):211905-211908.
    [31]Y. Tian, H. Q. Liu, G. H. Zhao, et al. Shape-controlled electrodeposition of gold nanostructures. J. Phys. Chem. B,2006,110(46):23478-23481.
    [32]X. Zhang, F. Shi, X. Yu, et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:toward super-hydrophobic surface. J. Am. Chem. Soc., 2004,126(10):3064-3065.
    [33]Y. Li, F. Q. Shi. Electrochemical gowth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J. Phys. Chem. B,2005,109(50): 23787-23793.
    [34]S. J. Guo, L. Wang, E. Wang. Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with "clean" surface. Chem. Commun.,2007, (30):3163-3165.
    [35]N. Hatta, K. Murata. Very long graphitic nano-tubules synthesized by plasma-decomposition of benzene. Chem. Phys. Lett.,1994,217(4):398-402.
    [36]A. Thess, R. Ixe, P. Nidoaev. Crystalline ropes of metallic carbon nanotubes. Science, 1996,273(5274):483-487.
    [37]Y. Zhang, G. M. Zeng, L. Tang, et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens. Bioelectron.,2007,22(9-10):2121-2126.
    [38]G. S. Lai, H. L. Zhang, D. Y. Ha. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sens. Actuators, B,2008,129(2):497-503.
    [39]J. D. Qiu, H. P. Peg, R. P. Liang. Ferrocene-modified Fe3O4/SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors. Electrochem. Commun.,2007,9(11):2734-2738.
    [40]G F. Zou, H. Li, Y. G. Zhang, et al. Solvothermal/hydrothermal route to semiconductor nanowires. Nanotechnology,2006,17:S313-S320.
    [41]G J. Zhou, M. K. Lu, Z. L. Xiu, et al. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J. Phys. Chem. B,2006,110(13):6543-6548.
    [42]H. N. Wang, F. L. Du. Hydrothermal synthesis of ZnSe hollow micropheres. Cryst. Res. Technol.,2006,41(4):323-327.
    [43]X. L. Guo, F. Y. Cheng, Y. H. Shi, et al. Supramolecular compounds from multiple ugi multi component macrocyclizations:peptoid-based cryptands, cages, and cryptophanes. J. Am. Chem. Soc.,2006,128(22):7222-7229.
    [44]M. H. Chen, L. Gao. Synthesis of leaf-like Ag2S nanosheets by hydrothermal in water-alcohol homogenous medium. Mater. Lett.,2006,60(8):1059-1062.
    [45]G. F. Lin, J. W. Zheng, R. J. Xu. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J. Phys. Chem. C,2008,112(20): 7363-7370.
    [46]F. Wei, G. C. Li, Z. Zhang. Hydrothermal synthesis of spindle-like ZnS hollow nanostructures. Mater. Res. Bull.,2005,40(8):1402-1407.
    [47]J. Lu, S. Wei, W. C. Yu, et al. Hydrothermal route to InAs semiconductor nanocrystals. Inorg. Chem.,2004,43(15):4543-4545.
    [48]P. S. Nair, G. D. Scholes. Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals. J. Mater. Chem.,2006,16(5): 467-473.
    [49]Y. Lin, A. Boker, H. Skaff, et al. Nanoparticle assembly at fluid interfaces:structure and dynamics. Langmuir,2005,21(1):191-194.
    [50]D. C. Pan, Q. Wang, S. C. Jiang, et al. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach. Adv. Mater.,2005,17(2):176-179.
    [51]P. K. Khanna, K. W. Jun, A. Gokarna, et al. One-step sythesis of TOP capped PbSe pyramidal nonocrystal. Mater. Chem. Phys.,2006,96(1):154-157.
    [52]W. G Lu, J. Y. Fang, J. Lin, et al. Syntheses of Ag, PbSe, and PbTe nanocrystals and their binary self-assembly exploration at low size-ratio. J. Nanosci. nanotechnol., 2006,6(6):1662-1666.
    [53]K. Aoki, J. Chen, Q. Ke, et al. Redox reactions of polyaniline-coated latex suspensions. Langmuir,2003,19(13):5511-5516.
    [54]T. Lei, K. Aoki, K. Fujita. Periodical oxidation current of single particle made of redox latex. Electrochem. Commun.,2000,2(5):290-294.
    [55]C. Barthet, S. P. Armes, S. F. Lascelles, et al. Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes. Langmuir,1998,14(8): 2032-2041.
    [56]I. Capek. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv. Colloid Interface Sci.,2004,110(1-2):19-48.
    [57]Z. Cao, W. Q. Jiang, X. Z. Ye, et al. Preparation of superparamagnetic Fe3O4/PMMA nano composites and their magnetorheological characteristics. J. Magn. Magn. Mater., 2008,320(8):1499-1502.
    [58]Y. A. Zhai, Q. Zhang, F. Q. Liu, et al. Synthesis of nanostructure rutile TiO2 in a carboxyl-containing ionic liquid. Mater. Lett.,2008,62(30):4563-4565.
    [59]S. Lim, C. S. Yoon, J. Cho. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem. Mater.,2008,20(14):4560-4564.
    [60]C. Sun, S. Rajasekhare, J. B. Goodenough, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc.,2011, 133(7):2132-2135.
    [61]Z. Wang, D. Luan, F. Y. C. Boey, et al. Fast formation of SnO2 nanoboxes with enhanced Lithium storage capability. J. Am. Chem. Soc.,2011,133(13):4738-4741.
    [62]Q. Wang, L. Jiao, Y. Han, et al. CoS2 hollow spheres:fabrication and their application in Lithium-ion batteries. J. Phys. Chem. C,2011,115(16):8300-8304.
    [63]J. U. Park, H. J. Lee, W. Cho, et al. Facile synthetic route for thickness and composition tunable hollow metal oxide spheres from silica-templated coordination polymers. Adv. Mater.,2011,23(28):3161-3164.
    [64]H. Xu, W. Wang. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed.,2007,46(9):1489-1492.
    [65]H. J. Fan, U. Gosele, M. Zacharias. Nanotubes and hollow nanoparticles based on Kirkendall and diffusion process:A review. Small,2007,3(10):1660-1671.
    [66]Y. D. Yin, R. M. Rioux, C. K. Erdonmez, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science,2004,304(5671):711-714.
    [67]H. J. Fan, M. Knez, R. Scholz, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater.,2006,5(8):627-631.
    [68]M.Y. Liao, C. C. Huang, M. C. Chang, et al. Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor. J. Mater. Chem.,2011,21(22),7974-7981.
    [69]M. Shang, W. Wang, J. Ren, et al. Nanoscale Kirkendall effect for the synthesis of Bi2MoO6 boxes via a facile solution-phase method. Nanoscale,2011,3(4), 1474-1476.
    [70]X. Liang, B. A. Xu, S. M. Kuang, et al. Multi-functionalized inorganic-organic rare earth hybrid microcapsules. Adv. Mater.,2008,19(20):3739-3744.
    [71]M.-H. Park, Y. Cho, K. Kim, et al. Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem. Int. Ed., 2011,50(41):9647-9650.
    [72]H. C. Zeng. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem.,2006,16(7):649-662
    [73]H. Zhang, Q. Zhu, Y. Zhang, et al. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater.,2007,17(15):2766-2771.
    [74]X. W. Lou, Y. Wang, C. L. Yuan, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater.,2006,18(17):2325-2329.
    [75]X. W. Lou, C. Yuan, E. Rhoades, et al. Encapsulation and Ostwald ripening of Au and Au-Cl complex nanostructures in silica shells. Adv. Funct. Mater.,2006,16(13): 1679-1684.
    [76]J. Li, H. C. Zeng. Hollowing Sn-doped TiO2 nanospheres via Ostwald Ripening. J. Am. Chem. Soc.,2007,129(51):15839-15847.
    [77]B. Liu, H. C. Zeng. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small,2005,1(5):566-571.
    [78]X. Wang, F. Yuan, P. Hu, et al. Self-assembled growth of hollow spheres with octahedron-like Co nanocrystals via one-pot solution fabrication. J. Phys. Chem. C, 2008,112(24):8773-8778.
    [79]T. Ye, Z. Dong, Y. Zhao, et al. Controllable synthesis and photoluminescence of single-crystalline BaHfO3 hollow micro-and nanospheres. Langmuir,2011,27(14), 8878-8884.
    [80]P. Hu, X. Zhang, N. Han, et al. Solution-controlled self-assembly of ZnO nanorods into hollow microspheres. Cryst. Growth Des.,2011,11(5),1520-1526.
    [81]P. Grandio, F. H. Schneider, A. B. Schwartz, et al. Toluene disproportion over zeolite catalysts. Pap. Am. Chem. Soc. Prepr. Div. Petrol. Chem.,1971,16(3):B70.
    [82]N. Y. Chen, W. W. Kaeding, F. G. Dwyer. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc.,1971,93(25): 6783-6784.
    [83]S. T. Wilson, B. M. Lok, C. A. Messina, et al. Aluminophosphate molecular sieves-a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.,1982, 104(4):1146-1147.
    [84]J. Zhao, B. Z. Tian, Y. H. Yue, et al. New catalysts for dichlorodifluoromethane hydrolysis:mesostructured titanium and aluminum phosphates. J. Mol. Cata. A: Chem.,2005,242(1-2):218-223.
    [85]T. Kimura. Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress. Micro. Mes. Mater.,2005,77(2-3):97-107.
    [86]J. Yu, R. Xu. Rich structure chemistry in the Aluminophosphate family. Acc. Chem. Res.,2003,36(7):481-490.
    [87]J. Yu, R. Xu. Insight into the construction of open-framework Aluminophosphates. Chem. Soc. Rev.,2006,35(7):593-604.
    [88]M. E. Estermann, L. B. McCusker, C. Boelocher, et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature,1991,352: 320-323.
    [89]C. Sassoye, T. Loiseau, F. Taulelle, et al. A new open-framework fluorinated gallium phosphate with large 18-ring channels (MIL-31). Chem. Commun.,2000, (11): 943-944.
    [90]I. D. Williams, J. Yu, H. Du, et al. A metal-rich fluorinated indium phosphate, 4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with 14-membered ring Channels. Chem. Mater.,1998,10(3):773-776.
    [91]A. Thirumurugan, S. Natarajan. Synthesis and structure of a new three-dimensional indium phosphate with 16-membered one-dimensional channels. Dalton Transactions, 2003, (17):3387-3391.
    [92]S. K. Mohapatra, S. U. Sonavane, R. V. Jayaram, et al. Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves. Appl. Catal. B-Environ.,2003,46(1):155-163.
    [93]P. Selvam, S. K. Mohapatra, S. U. Sonavane, et al. Chemo- and regioselective reduction of nitroarenes, carbonyls and azo dyes over niekel-incorporated hexagonal mesoporous aluminophosphate moleculate sieves. Tetrahedron Lett.,2004,45(9): 2003-2007.
    [94]S. U. Sonavane, S. K. Mohapatra, R. V. Jayaram, et al. Catalytic transfer hydrogenation of nitro and carbonyl compound sover novel Fe(Ⅲ)substituted hexagonal mesoporous aluminophosphates. Chem. Lett.,2003,32(2):142-143.
    [95]P. Selvam, S. K. Mohapatra. Synthesis and characterization of divalent cobalt-substituted mesoporous aluminophosphate molecular sieves and their applieation as novel heterogeneous catalysts for the oxidation of cycloalkanes. J. Catal.,2005, 233(2):276-287.
    [96]P. Selvam, S. K. Mohapatra. Thermally stable trivalent iron-substituted hexagonal mesoporous aluminophosphate (FeHMA) molecular sieves:Synthesis characterization, and catalytic properties. J. Catal.,2006,238(1):88-99.
    [97]S. K. Mohapatra, P. Selvam. Selective oxidation of cycloalkanes over iron-substituted hexagonal mesoporous aluminophosphate molecular sieves. Chem. Lett., 2004,33(2):198-199.
    [98]S. K. Mohapatra, F. Hussain, P. Selvam. Synthesis, characterization, and catalytic properties of chromium-containing hexagonal mesoporous aluminophosphate molecular sieves. Catal. Lett.,2003,85(34):217-222.
    [99]M. Karthik, A. Vinu, A. K. Tripathi, et al. Sythesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates. Micro. Mes. Mater.,2004,70(1-3):15-25.
    [100]M. P. Kapoor, A. Raj. Synthesis of mesoporous hexagonal titanium aluminophosphate molecular sieves and their catalytic applications. Appl. Catal. A-General,2000,203(2):311-319.
    [101]R. Murugavel, A. Choudhury, M. G. Walawalkar, et al. Metal complexes of organophosphate estersand open-framework metal phosphates:synthesis, structure, transformations, and applications. Chem. Rev.,2008,108(9):3549-3655.
    [102]T. M. Nenoff, W. T. A. Harrison, T. E. Gier, et al. Room-temperature synthesis and characterization of new ZnPO and ZnAsO sodalite open frameworks. J. Am. Chem. Soc.,1991,113(1):378-379.
    [103]U. R. Pillai, E. Sahle-Demessie. Mesoporous iron phosphate as an active, selective and recyclable catalyst for the synthesis of nopol by Prins condensation. Chem. Commun.,2004, (7):826-827.
    [104]A. Bhaumik, S. Inagaki. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc.,2001,123(4):691-696.
    [105]T. Czuryszkiewicz, F. Kleitz, F. Schuth, et al. Combined use of cosurfactant/surfactant mixtures and swelling agents in the synthesis of mesoporous titanium oxophosphates. Chem. Mater.,2003,15(19):3704-3709
    [106]J. Jimenez-Jimenez, J. Merida-Robles, E. Rodriguez-Castellon, et al. Oxidation of oxylene on mesoporous Ti-phosphate-supported VOX catalysts and promoter effect of K+on selectivity. Catalysis Today,2005,99(1-2):179-186.
    [107]T. Doi, T. Miyake. Synthesis of a novel mesoporous VPO compound. Chem. Commun.,1996, (14):1635-1636.
    [108]M. Roca, J. E. Haskouri, S. Cabrera, et al. Supramolecular self-assembling in mesostructured materials through charge tuning in the inorganic phase. Chem. Commun.,1998,(17):1883-1884.
    [109]D. Eliche-Quesada, M. I. Macias-Ortiz, J. Jimenez-Jimenez, et al. Catalysts based on Ru/mesoporous phosphate heterostructures (PPH) for hydrotreating of aromatic hydrocarbons. J. Mol. Catal. A:Chem.,2006,255(1-2):41-48.
    [110]M. Ai, K. Ohdan. Oxidation by iron phosphate catalyst. J. Mol. Catal. A:Chem., 2000,159(1):19-24.
    [111]M. Ai, K. Ohdan. Oxidative dehydrogenation of lactic acid to pyruvic acid over iron phosphate catalyst. Appl. Catal., A 1997,150(1):13-20.
    [112]M. Ai, K. Ohdan. Oxidative dehydrogenation of glycolic acid to glyoxylic acid over Fe-P-Ocatalyst. Stud. Surf. Sci. Catal.,1997,110:527-534.
    [113]M. Ai, K. Ohdan. Formation of pyruvaldehyde (2-oxopropanal) by oxidative dehydrogenation of hydroxyacetone. Bull. Chem. Soc. Jpn.,1999,72(9):2143-2148.
    [114]M. Ai. Oxidation of propane to acrulic acide. Catal. Today,1992,13(4):679-684.
    [115]E. Muneyama, A. Kunishige, K. Ohdan, et al. Reduction and reoxidation of iron phosphate and its catalytic activity for oxidative dehydrogenation of isobutyric acid. J. Catal.,1996,158(2):378-384.
    [116]X. F. Guo, W. P. Ding, H. Chen, et al. Prepartion and characterization of nanosized Fe-P-O catalyst.燃料化学学报,2000,28(5):385-387.
    [117]R. L. McCormick, G. O. Alptrkin, D. L. Williamson, et al. Methane partial oxidation by silica-supported iron phosphate catalysts influence of iron phosphate content on selectivity and catalyst structure. Topics in Catalysis,2000,10(1-2):115-122.
    [118]Y. Wang, Q. Yuan, Q. Zhang, et al. Characterizations of unsupported and supported rhodium-iron phosphate catalysts effective for oxidative carbonylation of methane. J. Phys. Chem. C,2007,111(5):2044-2053.
    [119]D. Yu, C. Wu, Y. Kong, et al. Structural and catalytic investigation of mesoporous iron phosphate. J. Phys. Chem. C,2007,111(39):14394-14399.
    [120]C. Srilakshmi, N. Lingaiah, I. Suryanarayana, et al. In situ synthesis of ammonium salt of 12-molybdophosphoric acid on iron phosphate and the ammoxidation functionality of the catalyst in the transformation of 2-methylpyrazine to 2-cyanopyrazine. Appl. Catal. A:General,2005,296(1):54-62.
    [121]Y. Baba, S. Okada, J. Yamaki. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics,2002,148(3-4):311-316.
    [122]J. Jiang, J. R. Dahn. Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2. Electrochim. Acta,2004,49(16):2661-2666.
    [123]S. S. Zhang, K. Xu, T. R. Jow. Study of the charging process of a LiCoO2-based Li-ion battery. J. Power Sources,2006,160(2):1349-1354.
    [124]H. Gabrisch, R. Yazami, B. Fultz. A transmission electron microscopy study of cycled LiCoO2. J. Power Sources,2003,119-121(1-2):674-679.
    [125]R. Yazami, Y. Ozawa, H. Gabrisch, et al. Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochim. Acta,2004,50(2-3):385-390.
    [126]S. Laubach, P. C. Schmidt, D. Ensling, et al. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys.,2009,11(17):3278-3289.
    [127]A. Yamada, Y. Kudo, K. Liu. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0≤x≤1). J. Electrochem. Soc.,2001,148(7):A747-A754.
    [128]王冠.锂离子电池正极材料LiFePO4制备及其性能研究:[博士论文].上海:复旦大学,2006.
    [129]S. Patoux, C. Wurm, M. Morcrette, et al. A comparative structural and electrochemical study of monoclinic Li3Fe(PO4)3 and Li3V2(PO4)3. J. Power sources, 2003,119-121:278-284.
    [130]A. S. Andersson, B. Kalska, P. Eyob, et al. Lithium insertion into the rhombohedral Li3Fe(PO4)3. Solid state Ionics,2001,140(1-2):63-70.
    [131]J. Gaubicher, C. Wurm, G. Go ward, et al. Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem. Mater.,2000,12(11):3240-3242.
    [132]H. Huang, S. C. Yin, L. F. Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett.,2001,4(10): A170-A172.
    [133]C. Delacourt, P. Poizot, M. Morcrette, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater.,2004,16(1): 93-99.
    [134]S. Okada, S. Sawa, M. Egashira, et al. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J. Power Sources,2001,97-98(1-2): 430-432.
    [135]P. Deniard, A. M. Dulac, X. Rocqpefelte, et al. High potential positive materials for lithium ion batteries:transition mental phosphates. J. Phys. Chem. Solid,2004, 65(2-3):229-233.
    [136]J. Barker, R. K. B. Gover, P. Burns, et al. A symmeterial lithium-ion cell based on lithium vanadium fluorophosphates LiVPO4F. Electrochem. Soild-State Lett.,2005, 8(6):A285-A287.
    [137]J. Barker, M. Y. Saidi, J. L. Swoyer. Electrochemical insertion peroperties of the novel lithium vanadium fluorophosphates LiVPO4F. J. Electrochem. Soc.,2003, 150(10):A1394-A1398.
    [138]J. Barker, R. K. B. Gover, P. Burns, et al. A lithium-ion cell based on Li4/3Ti5/3O4 and LiVPO4F. Electrochem. Solid-State. Lett.,2007,10(5):A130-A133.
    [139]M. S. Whittingham, Y. N. Song, S. Lutta, et al. Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries. J. Mater. Chem.,2005,15(33): 3362-3379.
    [140]Y. N. Song, P. Y. Zavalij, M. S. Whittingham. VOPO4:electroehemical synthesis and enhanced cathode behavior. J. Electrochem. Soc.,2005,152(4):A721-A728.
    [141]J. B. Goodenough, Y. Kim. Challenges for rechargeable Li batteries. Chem. Mater., 2010,22(3):587-603.
    [142]A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphate. J. Electrochem. Soc.,1997,144(5): 1609-1613.
    [143]S.-Y. Chung, J. T. Bloking, Y.-M. Chiang. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater.,2002,1(2):123-128.
    [144]R. Dominko, M. Gaberscek, J. Drofenik, et al. The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources,2003,119-121(1-2):770-773.
    [145]M. M. Doeff, Y. Hu, F. McLarnon, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid-State Lett.,2003,6(10): A207-A209.
    [146]H. Liu, Q. Cao, L. J. Fu, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun.,2006,8(10):1553-1557.
    [147]Y. Wang, J. Wang, J. Yang, et al. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4-4H2O. Adv. Funct. Mater.,2006,16(16):2135-2140.
    [148]J. D. Wilcox, M. M. Doeff, M. Marcinek, et al. Factors influencing the quality of carbon coating on LiFePO4. J. Electrochem. Soc.,2007,154(5):A389-A395.
    [149]D.-H. Kim, J. Kim. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett.,2006,9(9):A439-A442.
    [150]C. Delacourt, P. Poizot, S. Levasseur, et al. Size effects on carbon-free LiFePO4 powders. Electrochem. Solid-State Lett.,2006,9(7):A352-A355.
    [151]J.-C. Zheng, X.-H. Li, Z.-X. Wang, et al. LiFePO4 with enhanced performance" synthesized by a novel synthetic route. J. Power Sources,2008,184(2):574-577.
    [152]B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging. Nature, 2009,458(7235):190-193.
    [153]M.-H. Lee, J.-Y. Kim, H.-K. Song. A hollow sphere secondary structure of LiFePO4 nanoparticles. Chem. Commun.,2010,46(36):6795-6797.
    [154]K.-F. Hsu, S.-Y. Tsay, B.-J. Hwang. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater. Chem.,2004,14(17):2690-2695.
    [155]C. R. Sides, F. Croce, V. Y. Young, et al. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett.,2005,8(9):A484-A487.
    [156]X. Huang, S. Yan, H. Zhao, et al. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater. Charact,2010,61(7):720-725.
    [157]A. V. Murugan, T. Muraliganth, A. Manthiram. Rapid micro wave-so lvo thermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries. Electrochem. Commun.,2008,10(6):903-906.
    [158]H. Liu, H. Yang, J. Li. A novel method for preparing LiFePO4 nanorods as a cathode material for lithium-ion power batteries. Electrochim. Acta,2010,55(5):1626-1629.
    [159]Y. Wang, Y. Wang, E. Hosono, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem.,2008,47(40):7571-7575.
    [160]S. W. Kim, J. Ryu, C. B. Park, et al. Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chem. Commun.,2010,46(39): 7409-7411.
    [161]P. P. Prosini, M. Lisi, S. Scaccia, et al. Synthesis and characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries. J. Electrochem. Soc.,2002,149(3):A297-A301.
    [162]Y. J. Lee, H. Yi, W. J. Kim, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science,2009,324(5930): 1051-1055.
    [163]Y. J. Lee, A. M. Belcher. Nanostructure design of amorphous FePO4 facilitated by a virus for 3V lithium ion battery cathodes. J. Mater.chem.,2011,21(4):1033-1039.
    [164]F. Croce, A. D'Epifanio, P. Reale, et al. Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells. J. Electrochem. Soc.,2003,150(5):A576-A581.
    [165]J. Ryu, S. W. Kim, K. Kang, et al. Mineralization of self-assembled peptide nanofibers for rechargeable lithium ion batteries. Adv. Mater.,2010,22(48): 5537-5541.
    [166]M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon:a review of grapheme. Chem. Rev.,2010,110(1):132-145.
    [167]S. Park, R. S. Ruoff. Chemical methods for the production of graphenes. Nat. Nanotechnol.,2009,4(4):217-224.
    [168]Z. Wang, H. Zhang, N. Li, et al. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res.,2010,3(10):748-756.
    [169]H. Kim, S. W. Kim, Y. U. Park, et al. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res.,2010,3(11):813-821.
    [170]D. Wang, D. Choi, J. Li, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano.,2009,3(4):907-914.
    [171]H. Kim, D. H. Seo, S. W. Kim, et al. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon,2011,49(1):326-332.
    [172]H. Kim, S. W. Kim, J. Hong, et al. Graphene-based hybrid electrode material for high-power lithium-ion batteries. J. Electrochem. Soc.,2011,158(8):A930-A935
    [173]D. Son, E. Kim, T. G. Kim, et al. Nanoparticle iron-phosphate anode material for Li-ion battery. Appl. Phys. Lett.,2004,85(24):5875-5877.
    [174]H. C. Liu, W. H. Ho, C. F. Li, et al. Electrochemical synthesis of FePO4 for anodes in rechargeable lithium batteries. J. Electrochem. Soc.,2008,155(12):E178-E182.
    [175]E. Katz, I. Willner, J. Wang. Electroanalytical and bioelectroanalytical systems based on metal and semiconductive nanoparticles. Electroanalysis,2004,16(1-2):19-44.
    [176]M. Labib, A. S. Zamay, D. Muharemagic, et al. Aptamer-based viability impedimetric sensor for viruses. Anal. Chem.,2012,84(4):1813-1816.
    [177]A. N. Sekretaryova, D. V. Vokhmyanina, T. O. Chunlanova, et al. Reagentless biosensor based on glucose oxidase wired by the mediator freely diffusing in enzyme containing membrane. Anal. Chem.,2012,84(3):1220-1223.
    [178]B.-Y Wu, S.-H. Hou, F. Yin, et al. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens. Bioelectron.,2007,22(6): 838-844.
    [179]J.-J. Feng, J.-J. Xu, H.-Y. Chen. Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode. J. Electroanal.Chem.,2005,585(1):44-50.
    [180]Y. Liu, C. Lu, W. Hou, et al. Direct electron transfer of hemoglobin in layered a-zirconium phosphate with a high thermal stability. Anal. Biochem.,2008,375(1): 27-34.
    [181]L. Meng, L. Yang, B. Zhou, et al. Cerium phosphate nanotubes:synthesis, characterization and biosensing. Nanotechnology,2009,20:035502 (8pp).
    [182]H. Zhang, J.-J. Xu, H.-Y. Chen. Electrochemically deposited 2D nanowalls of calcium phosphate-PDDA on a glassy carbon electrode and their applications in biosensing. J. Phys. Chem. C,2007,111(44):16564-16570.
    [183]H. Zhang, J.-J. Xu, H.-Y. Chen. One-step biomimetic coprecipitation method to form calcium phosphate and hemoglobin composite nanoparticles for biosensing application. J. Electroanal. Chem.,2008,624(1):79-83.
    [184]C. Li, H. Zhang, P. Wu, et al. Electrochemical detection of extracellular hydrogen peroxide released from RAW 264.7 murine macrophage cells based on horseradish peroxidase-hydroxyapatite nanohybrids. Analyst,2011,136(6):1116-1123.
    [185]B. Elisa, T. Paola, G. Massimo, et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials,2006,27(25):4428-4433.
    [186]K. Takashi, M. Akira, T. Kunio, et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials,2005,26(1):73-79.
    [187]A. Sousa, K. C. Souza, E. M. Sousa. Mesoporous silica/apatite nanocomposite: special synthesis route to control local drug delivery. Acta Biomater.,2008,4(3): 671-679.
    [188]S. Zhang, Y. Wang, K. Wei, et al. Template-assisted synthesis of lamellar mesostructured hydroxyapatites. Mater. Lett.,2007,61(6):1341-1345.
    [189]Y. Kakizawa, S. Furukawa, A. Ishii, et al. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J. Control Release,2006,111(3):368-370
    [190]A. J. Strain, A. H. Wyllie. The uptake and stability of simianvirus-40 DNA after calcium phosphate transfection of CV-1 cells. Biochem. J.,1984,218(2):475-482.
    [191]F. Meiser, C. Cortez, F. Caruso. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem. Int. Ed.,2004,43(44): 5954-5957;
    [192]K. Kompe, H. Borchert, J. Storz, et al. Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed., 2003,42(44):5513-5516.
    [193]S. Heer, O. Lehmann, M. Haase, et al. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed.,2003,42(27):3179-3182.
    [194]J. W. Stouwdam, F. C. J. M. van Veggel. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir,2004,20(26):11763-11771.
    [195]Z. G. Yan, C. H. Yan. Controlled synthesis of rare earth nanostructures. J. Mater. Chem.,2008,18(42):5046-5049.
    [196]A. L. Gacoin, T. Boilot, J. Pierre. Functionalized sol-gel coatings for optical applications. Acc. Chem. Res.,2007,40(9):895-902.
    [197]L. D. Carlos, R. A. S. Ferreira, V. D. Z. Bermudez, et al. Lanthanide-containing light-emitting organic-inorganic hybrids:a bet on the future. Adv. Mater.,2009,21(5): 509-534.
    [198]J. C. Biinzli. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev.,2010,110(5):2729-2755.
    [199]V. Mahalingam, F. Vetrone, R. Naccache, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals:multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater.,2009,21(40):4025-4028.
    [200]M. H. Lee, S. G. Oh, S. C. Yi, et al. Characterization of Eu-doped Y2O3 nanoparticles prepared in nonionic reverse microemulsions in relation to their application for field emission display. J. Electrochem. Soc.,2000,147(8):3139-3142.
    [201]Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, et al. A nanotube-based field-emission falt panel display. Appl. Phys. Lett.,1998,72(22):2912-2913.
    [202]B. Sun, H. Sirringhaus. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett.,2005,5(12):2408-2413.
    [203]D. V. Talapin, C. B. Murray. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science,2005,310(5725):86-89.
    [204]Y. Huang, C. M. Lieber. Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires. Pure Appl. Chem.,2004,76(12):2051-2068.
    [205]L. Wang, C. Y. Yang, W. H. Tan. Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett.,2005,5(1):37-43.
    [206]M. Law, L. E. Greene, J. C. Johnson, et al. Nanowire dye-sensitized solar cells. Nat. Mater.,2005,4(6):455-459.
    [207]A. Shalav, B. S. Richards, T. Trupke, et al. Carrier trapping and efficient recombination of electrophosphorescent device with stepwise doping profile. Appl. Phys. Lett.,2005,86(13):13505-13507;
    [208]H. J. Choi, J. C. Johnson, R. R. He, et al. Self-organized GaN quantun wire UV laser. J. Phys. Chem. B,2003,107(34):8721-8725.
    [209]J. C. Johnson, H. J. Choi, K. P. Knutsen, et al. Single gallium nitride nanowire lasers. Nat. Mater.,2002,1(2):106-110.
    [210]杨丽格,周泊,陆天虹,等.稀土磷酸盐纳米发光材料的研究进展.应用化学,2009,26(1),1-6.
    [211]Z. Xu, Y. Cao, C. Li, et al. Urchin-like GdPO4and GdPO4:Eu3+ hollow spheres-hydrothermal synthesis, luminescence and drug-delivery properties. J. Mater. Chem., 2011,21(11):3686-3694.
    [212]H. N. Ng, C. Calvo. Refinement of the Crystal Structure of the Low-quartz Modification of Ferric Phosphate. Can. J. Chem.,1975,53(14):2064-2067.
    [213]N. Kinomura, M. Shimada, M. Koizumi. Synthesis of a hingh pressure phase of FePO4. Mater. Res. Bull.,1976,11(5):457-460.
    [214]M. P. Pasternak, G. K. Rozenberg, A. P. Milner, et al. Pressure-induced concurrent transformation to an amorphous and crystalline phase in berlinite-type FePO4. Phys. Rev. Lett.,1997,79(22):4409-4412.
    [215]A. S. Andersson, B. Kalska, L. Haggstrom, et al. Lithtium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics, 2000,130(1-2):41-52.
    [216]S. Yang, Y. Song, P. Zavalij, et al. Reactvity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun.,2002,4(3):239-244.
    [217]P. D. Battle, T. C. Gibb, G. Hu, et al. The magnetic properties of the high pressure phase of ferric phosphate, FePO4-Ⅱ. Solid State Chem.,1986,65(3):343-350.
    [218]Y. Song, P. Y. Zavalij, M. Suzuki, et al. New iron(Ⅲ) phosphate phases:crystal structure and electrochemical and magnetic properties. Inorg. Chem.,2002,41(22): 5778-5786.
    [219]P. Reale, B. Scrosati, C. Delacourt, et al. Synthesis and thermal behavior of crystalline hydrated iron(Ⅲ) phosphates of interest as positive electrodes in Li batteries. Chem. Mater.,2003,15(26):5051-5058.
    [220]F. Croce, A. D'Epifanio, P. Reale, et al. Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells. J. Electrochem. Soc.,2003,150 (5):A576-A581.
    [221]S. Okada, T. Yamamoto, Y. Okazaki, et al. Cathode properties of amorphous and crystalline FePO4. J. Power Sources,2005,146(1-2):570-574.
    [222]K. Zaghib, C. M. Julien. Structure and electrochemistry of FePO4-2H2O hydrate. J. Power Sources,2005,142(1-2):279-284.
    [223]Y. Song, S. Yang, P. Y. Zavalij, et al. Temperature-dependent properties of FePO4 cathode materials. Mater. Res. Bull.,2002,37(7):1249-1257.
    [224]X. F. Guo, W. P. Ding, X. G. Wang, et al. Synthesis of a novel mesoporous iron phosphate. Chem. Commun.,2001, (8):709-710.
    [225]Y Xu, Y. Lu, P. Yin, et al. A versatile method for preparing FePO4 and study on its electrode performance in lithium ion batteries. J. Mater, process. Technol.,2008, 204(1-3):513-519.
    [226]S. Scaccia, M. Carewska, P. P. Prosini. Thermoanalytical study of iron(Ⅲ) phosphate obtained by homogeneous precipitation from different media. Thermochim. Acta,2004,413(1-2):81-86.
    [227]H. Liu. Synthesis of nanorods FePO4 via a facile rount. J. Nanopart. Res.,2010, 12(6):2003-2006.
    [228]A. Kahoul, A. Hammouche. Electrochemical performances of FePO4-positive active mass prepared through a new sol-gel method. Ionics,2010,16(2):105-109.
    [229]郭学锋.纳米及介孔材料的制备、表征和催化性能研究:[博士学位论文].南京:南京大学,2000.
    [230]M. Templin, A. Franck, A. D. Chesne, et al. Organically modified Aluminosilicate mesostructures from block copolymer phases. Science,1997,278(5344):1795-1798.
    [231]C. G. Goltner, S. Henke, M. C.Weissenbegrer, et al. Mesoporous silica from lyotropic liquid crystal polymer templates. Angew. Chem. Int. Ed.,1998,37(5):613-616.
    [232]P. T. Tanev, Y. Liang, T. J. Pinnavaia. Assembly of mesoporous lamellar silicas with hierarchical particle architectures. J. Am. Chem. Soc.,1997,119(37):8616-8624.
    [233]M. Li, H. Schnablegger, S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature,1999,402: 393-395.
    [234]Z. Shi, Y. Li, W. Ye, et al. Mesoporous FePO4 with enhanced electrochemical performance as cathode materials of rechargeable lithium batteries. Electrochem. Solid-State Lett.,2005,8(8):A396-A399.
    [235]W.-J. Cui, H.-J. Liu, C.-X. Wang, et al. Highly ordered three-dimensional macroporous FePO4 as cathode materials for lithium-ion batteries. Electrochem. Commun.,2008,10(10):1587-1589.
    [236]S. Jesus, S. Patrick, O. A. Carlos, et al. Electrochemical properties of mesoporous iron phosphate in lithium batteries. J. Solid State Electrochem.,2006,10(1):1-9.
    [237]D. Yu, J. Qin, N. Xu, et al. Mesoporous nanotubes of iron phosphate:synthesis, characterization, and catalytic property. Langmuir,2007,23(2):382-386.
    [238]W. Zhou, W. He, X. Zhang, et al. Biosynthesis and characterization of mesoporous organic-inorganic hybrid iron phosphate. Mater. Chem. Phys.,2009,116(2-3): 319-322.
    [239]S. J. Doktycz, K. S. Suslick. Interparticle collisions driven by ultrasound. Science, 1990,247(4946):1067-1069.
    [240]M. M. Mdleleni, T. Hyeon, K. S. Suslick. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc.,1998,120(24):6189-6190.
    [241]A. Gedanken. Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem.,2004,11(2):47-55.
    [242]K. Okitsu, A. Yue, S. Tanabe, et al. Sonolytic control of rate of gold(Ⅲ) reduction and size of formed gold nanoparticles:relation between reduction rates and sizes of formed nanoparticles. Chem. Soc. Japan.,2002,75(10):2289-2296.
    [243]H. Okawa, J. Yabuki, Y. Kawamura, et al. Synthesis of FePO4 cathode material for lithium ion batteries by a sonochemical method. Mater. Res. Bull.,2008,43(5): 1203-1208.
    [244]N. Marx, L. Croguennec, D. Carlier, et al. Structural and electrochemical study of a new crystalline hydrated iron(Ⅲ) phosphate FePO4·H2O obtained from LiFePO4(OH) by ion exchange. Chem. Mater,2010,22(5):1854-1861.
    [245]X. X. Wang, Y. Wang, Q. H. Tang, et al. MCM-41 supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. J. Catal.,2003,217(2):457-467.
    [246]D. Klissurski, V. Rives, N. AbadzhJieva, et al. High performance of iron(Ⅲ) phosphate for selective oxidation of methanol. J. Chem. Soc., Chem. Commun.,1993: 1606-1607.
    [247]Y. Wang, K. Otsuka. Catalytic oxidation of methane to methanol with H2-O2 gas mixture at atmospheric pressure. J. Catal.,1995,155(2):256-267.
    [248]Y. Wang, K. Otsuka. Partial oxidation of ethane by reductively actived oxygen over iron phosphate catalst. J. Catal.,1997,171(1):106-114.
    [249]C. Chen, W. Chen, J. Lu, et al. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem. Int. Ed.,2009,48(1): 1-6.
    [250]M. Sertkol, Y. Koseoglu, A. Baykal, et al. Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater.,2010,322(7):866-871.
    [251]K. J. Rao, B. Vaidhyanathan, M. Ganguli, et al. Synthesis of inorganic solids using microwaves. Chem. Mater.,1999,11(4):882-895.
    [252]P. Du, S. N. Liu, P. Wu, et al. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim. Acta. 2007,52(23):6534-6547.
    [253]T. Ono, H. Conjeaud, H. Gleiter, et al. Effect of preillumination on the P-680+ reduction kinetics in chloride-free photosystem Ⅱ membranes. Biochim. Biophys. Acta,1986,203(2):215-219.
    [254]L. Zhang, X. F. Cao, Y. L. Ma, et al. Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres. Cryst. Eng. Commun., 2010,12(1):207-210.
    [255]Z. C. Shi, A. Attia, W. L. Ye, et al. Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries. Electrochim. Acta,2008,53(6):2665-2673.
    [256]N. K. Mal, A. Bhaumik, M. Matsukata, et al. Synthesis of mesoporous hybrid iron oxophenyl phosphate, iron oxophosphate, and sulfonated oxophenyl phosphate. Ind. Eng. Chem. Res.,2006,45(23):7748-7751.
    [257]Q. Yuan, Q. Zhang, Y. Wang. Direct conversion of methane to methyl acetate with nitrous oxide and carbon monoxide over heterogenetous catalysts containing both rhodium and iron phosphate. J. Catal.,2005,233(1):221-233.
    [258]P. Nagaraju, N. Lingaiah, M. Balaraju, et al. Studies on vanadium-doped iron phosphate catalysts for the ammoxidation of methylpyrazine. Appl. Catal. A:General, 2008,339(2):99-107.
    [259]R. Dedryvere, M. Maccario, L. Croguennec, et al. X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem. Mater.,2008,20(22): 7164-7170.
    [260]S. L. Wang, H. Xu, L. Q. Qian, et al. CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres. J. Solid State Chem.,2009,182(5): 1088-1093.
    [261]T. Yan, D. Zhang, L. Shi, et al. Reflux synthesis, formation mechanism, and photoluminescence performance of monodisperse Y2O3:Eu3+ nanospheres. Mater. Chem. Phys.,2009,117(1):234-243.
    [262]J. Yang, Z. W. Quan, D. Y. Kong, et al. Y2O3:Eu3+ microspheres:solvothermal synthesis and luminescence properties. Cryst. Growth Des.,2007,7(4):730-735.
    [263]Z. Chi, S. A. Asher. UV resonance Raman determination of protein acid denaturation: selective unfolding of helical segments of horse myoglobin. Biochemistry,1998, 37(9):2865-2872.
    [264]L. Shen, R. Huang, N. Hu. Myoglobin in polyacrylamide hydrogel films:direct electrochemistry and electrochemical catalysis. Talanta,2002,56(6):1131-1139
    [265]N. Hu, J. F. Rusling. Electrochemistry and catalysis with myoglobin in hydrated poly(ester sulfonic acid) ionomer films. Langmuir,1997,13(15):4119-4125.
    [266]Z. Li, N. Hu. Direct electrochemistry of heme proteins in their layer-by layer films with clay nanoparticles. J. Electroanal. Chem.,2003,558(2):155-165.
    [267]Y. F. Lii, Y. J. Yin, P. Wu, et al. Direct electrochemistry and bioelectrocatalysis of myoglobin at carbon nanotube-modified electrode. Acta Phys.-Chim. Sin.,2007, 23(1):5-11.
    [268]C. X. Cai, J. Chen. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem.,2004,325(2):285-292.
    [269]D. Sun, C. X. Cai, X. Li, et al. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon. J. Electroanal. Chem.,2004, 566(2):415-421.
    [270]G. C. Zhao, Z. Z. Yin, L. Zhang, et al. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem. Commun.,2005,7(3):256-260.
    [271]C. X. Cai, J. Chen. Direct electrochemistry of horseradish peroxidase at a carbon-nanotube electrode. Acta Chim. Sin.,2004,62(3):335-340.
    [272]E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem.,1979,101(1): 19-28.
    [273]Y. Qiao, F. Jian, Q. Bai. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry. Biosens. Bioelectron.,2008,23(8): 1244-1249.
    [274]C. Lei, U. Wollenberger, N. Bistolas, et al. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles. Anal. Bioanal. Chem.,2002 372(2):235-239.
    [275]W. Cao, C. Wei, J. Hu, et al. Direct electrochemistry and electrocatalysis of myoglobin immobilized on gold nanoparticles/carbon nanotube nanohybrid film. Electroanalysis,2008,20(17):1925-1931.
    [276]H. Liu, Z. Tian, Z. Lu, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens. Bioelectron.,2004, 20(2):294-304.
    [277]X. Lu, J. Hu, X. Yao, et al. Composite system based on chitosan and room-temperature ionic liquid:direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules,2006,7(3):975-980.
    [278]Z. H. Dai, X. X. Xu, H. X. Ju. Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. Anal. Biochem., 2004,332(1):23-31
    [279]S. Wang, F. Xie, G. Liu. Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes. Talanta,2009,77(4):1343-1350
    [280]L. Zhang, D. B. Tian, J. J. Zhu. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode. Bioelectrochemistry,2008,74 (1):157-163.
    [281]A. H. Liu, M. D. Wei, I. Honma, et al. Direct electrochemistry of myoglobin in titanate nanotubes film. Anal. Chem.,2005,77(24):8068-8074.
    [282]X. Shang, J. Zheng. Direct electron transfer and electrocatalysis of myoglobin based on its direct immobilization on carbon ionic liquid electrode. Electroanalysis,2009, 21(7):881-886.
    [283]W. Guo, H. Y. Lu, N. F. Hu. Comparative bioelectrochemical study of two types of myoglobin layer-by-layer films with alumina:vapor-surface sol-gel Al2O3 films vs Al2O3 nanoparticles films. Electrochim. Acta,2006,52(1):123-132.
    [284]X. J. Zhao, Z. B. Mai, X. H. Kang, et al. Clay-chitosan-gold nanoparticle nanohybrid:preparation and application for assembly and direct electrochemistry of myoglobin. Electrochim. Acta,2008,53(14):4732-4739
    [285]W. Sun, X. Li, Y. Wang, et al. Electrochemistry of myoglobin in Nafion and multi-walled carbon nanotubes modified carbon ionic liquid electrode. Bioelectrochemistry,2009,75 (2):170-175.
    [286]G. C. Zhao, L. Zhang, X. W. Wei. An unmediated H2O2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes. Anal. Biochem.,2004,329(1):160-161.
    [287]F. F. Jian, Y. B. Qiao, H. Q. Yu, et al. Hydrogen peroxide biosensor based on the electrochemistry of the myoglobin-TATP composite fim. Anal. Lett.,2007,40(14): 2664-2672.
    [288]A. B. Moghaddam, M. R. Ganjali, R. Dinarvandb, et al. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry. Biophys. Chem.,2008,134(1-2):25-33.
    [289]A. Jenny, K. Ashok, S. Reinhard. Impairment of cholinergic neurotransmission in adult and aged transgenic Tg2576 mouse brain expressing the Swedish mutation of human beta-amyloid precursor protein. Brain Res.,2002,953(1-2):17-30.
    [290]K. Margrit, A. Jenny, K. Ashok, et al. Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with beta-amyloid plaque pathology. Int. J. Dev. Neurosci.,2003,21(7):357-369.
    [291]J. O. Rinne, T. Myllykyla, P. Lonnberg, et al. A postmortem study of brain nicotinic receptors in Parkinson's and Alzheimer's disease. Brain Res.,1991,547(1):167-170.
    [292]L. Campanella, M. Mascini, G. Palleschi, et al. Determination of choline-containing phospholipids in human bile and serum by a new enzyme sensor. Clin. Chim. Acta, 1985,151(1):71-83.
    [293]L. Campanella, M. Tomassetti, G D. Angelis, et al. A new assay for choline-containing phospholipids in amniotic fluid by an enzyme sensor. Clin. Chim. Acta,1987,169(2-3):175-182.
    [294]Z. X. Zhang, J. Wang, X. L. Wang, et al. A sensitive choline biosensor with supramolecular architecture. Talanta,2010,82(2):483-487.
    [295]Y. H. Bai, Y. Du, J. J. Xu, et al. Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem. Commun., 2007,9(10):2611-2616.
    [296]Y. H. Bai, H. Zhang, J. J. Xu, et al. Relationship between nanostructure and electrochemical/biosensing properties of MnO2 nanomaterials for H2O2/choline. J. Phys. Chem. C,2008,112(48):18984-18990.
    [297]X. Qin, H. C. Wang, X. S. Wang, et al. Amperometric choline biosensors based on multi-wall carbon nanotubes and layer-by-layer assembly of multilayer films composed of Poly(diallyldimethylammonium chloride) and choline oxidase Mater. Sci. Eng., C,2009,29(4):1453-1457.
    [298]X. Qin, H. C. Wang, X. S. Wang, et al. Amperometric biosensors based on gold nanoparticles-decorated multiwalled carbon nanotubes-poly(diallyldimethylammonium chloride) biocomposite for the determination of choline. Sens. Actuators B:Chem.,2010,147(2):593-598.
    [299]S. S. Razola, S. Pochet, K. Grosfils, et al. Amperometric determination of choline released from rat submandibular gland acinar cells using a choline oxidase biosensor. Biosens. Bioelectron.,2003,18(2-3):185-191.
    [300]X. L. Ren, F. Q. Tang, R. Liao, et al. Using gold nanorods to enhance the current response of a choline biosensor. Electrochim. Acta,2009,54(28):7248-7253.
    [301]H. B. Shi, Y. Yang, J. D. Huang, et al. Amperometric choline biosensors prepared by layer-by-layer deposition of choline oxidase on the Prussian blue-modified platinum electrode. Talanta.2006,70(4):852-858.
    [302]T. Shimomura, T. Itoh, T. Sumiya, et al. Amperometric determination of choline with enzyme immobilized in a hybrid mesoporous membrane. Talanta,2009,78(1): 217-220.
    [303]J. Wang, G. D. Liu, Y. H. Lin. Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubes. Analyst,2006,131(4):477-483.
    [304]M. H. Yang, Y. H. Yang, Y. Yang, et al. Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Anal. Biochem.,2004,334(1):127-134.
    [305]N. Carter, V. C. Trenerry. The determination of choline in vitamin preparations, infant formula and selected foods by capillary zone electrophoresis with indirect ultraviolet detection. Electrophoresis,1996,17(10):1622-1626.
    [306]L. Zhang, Y. H. Liu, G. N. Chen. Simultaneous determination of allantoin, choline and L-arginine in rhizoma dioscoreae by capillary electrophoresis. J. Chromatogr. A, 2004,1043(2):317-321.
    [307]Y. Ikarashi, Y. Maruyama. Liquid chromatography with electrochemical detection for quantitation of bound choline liberated by phospholipase D hydrolysis from phospholipids containing choline in rat plasma. J. Chromatogr. B,1993,616(2): 323-326.
    [308]J. K. Fleming, R. H. Gadsden. Assessment of phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin in human serum. Clin. Biochem.,1987, 20(4),249-256.
    [309]I. Sanz-Vicente, J. J. Romero, S. de Marcos, et al. Simultaneous determination of glucose and choline based on the intrinsic fluorescence of the enzymes. J. Fluoresc., 2009,19(4):583-591.
    [310]A. A. Karyakin, E. A. Puganova, I. A. Budashov, et al. Prussian blue based nanoelectrode arrays for H2O2 detection. Anal. Chem.,2004,76(2):474-478.
    [311]A. A. Karyakin, E. E. Karyakina, L. Gorton. Amperometric biosensor for glutamate using prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. Anal. Chem.,2000,72(7):1720-1723.
    [312]A. A. Karyakin, E. A. Kotel'nikova, L. V. Lukachova, et al. Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes:improvement of first-generation biosensors. Anal. Chem.,2002,74(7):1597-1603.
    [313]E. Katz, I. Willner. Integrated nanoparticle-biomolecule hybrid systems:synthesis, properties, and applications. Angew. Chem. Int. Ed.,2004,43(45):6042-6108.
    [314]Y. Ding, G. Gu, X. H. Xia. Electrochemical deposition and mechanism investigation of Prussian blue on graphic carbon paste electrode from an acidic ferricyanide solution. J. Solid State Electrochem.,2008,12(5):553-558.
    [315]J. D. Qiu, M. Xiong, R. P. Liang, et al. In situ synthesis and characterization of multi-walled carbon nanotube/Prussian blue nanocomposite materials and application. J. Nanosci. Nanotechnol.2008,8(9):4453-4460.
    [316]H. Wang, Y. M. Huang. Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2. J. Hazard. Mater.,2011,191(1-3):163-169.
    [317]A. Mamoru. Oxidation activity of iron phosphate and its characters. Catal. Today, 2003,85(2-4):193-198.
    [318]T. Ren, L. Yan, X. M. Zhang, et al. Selective oxidation of benzene to phenol with N2O by unsupported and supported FePO4 catalysts. Appl. Catal. A,2003,244(1): 11-17.
    [319]G. Zhao, J. J. Feng, Q. L. Zhang, et al. Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of H2O2. Chem. Mater.,2005,17(12):3154-3159.
    [320]R. E. Wilde, S. N. Ghosh, B. J. Marshall. Prussian blues. Inorg. Chem.,1970,9(11): 2512-2516.
    [321]L. Y. Cao, Y. L. Liu, B. H. Zhang, et al. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide:facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces,2010, 2(8):2339-2346.
    [322]J. D. Qiu, H. Z. Peng, R. P. Liang, et al. Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles:application to electrocatalytic reduction of H2O2. Langmuir,2007,23(4):2133-2137.
    [323]A. Hekmat, A. A. Saboury, A. Divsalar. Regulation of mGluR potentiation by Pinl peptidyl-prolyl isomerase Aleksandr Milshteyn. Biophys. J.,2009,96(3):582a-582a.
    [324]H. Dai, Y. W. Chi, X. P. Wu, et al. Biocompatible electrochemiluminescent biosensor for choline based on enzyme/titanate nanotubes/chitosan composite modified electrode. Biosens. Bioelectron.,2010,25(6):1414-1419.
    [325]Z. Song, J. D. Huang, B. Y. Wu, et al. Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sens. Actuators B:Chem.,2006,115(2):626-633.
    [326]Z. X. Zhao, H. C. Wang, X. Qin, et al. Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf. B,2009, 71(1):102-106.
    [327]F. L. Qu, M. H. Yang, J. H. Jiang, et al. Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film. Anal. Biochem.,2005,344(1):108-114.
    [328]M. Ohta-Fukuyama, Y. Miyake, S. Emi, et al. Identification and properties of the prosthetic group of choline oxidase from Alcaligenes sp. J. Biochem.,1980,88(1): 197-203.
    [329]H. Gulce, Y S. Akta, A. Giilce, et al. Polyvinylferrocenium immobilized enzyme electrode for choline analysis. Enzyme Microb. Technol.,2003,32(7):895-899.
    [330]D. Moscone, D. D'Ottavi, D. Compagnone, et al. Construction and analytical characterization of Prussian-Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal. Chem.,2001,73(11):2529-2535.
    [331]A. Curulli, F. Valentini, S. Orlanduci, et al. Pt based enzyme electrode probes assembled with Prussian blue and conducting polymer nanostructures. Biosens. Bioelectron.,2004,20(6),1223-1232.
    [332]F. Wu, J. Chen, R. Chen, et al. Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C,2011,115(13):6057-6063.
    [333]M. Armand, J.-M. Tarascon. Building better batteries. Nature,2008,451(7179): 652-657.
    [334]P. G. Bruce, B. Scrosati, J.-M. Tarascon. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed.,2008,47(16):2930-2946.
    [335]D. Lepage, C. Michot, G. Liang, et al. A soft chemistry approach to coating of LiFePO4 with a conducting polymer. Angew. Chem. Int. Ed.,2011,50(30): 6884-6887.
    [336]M. K. Klein, B. W. Jacobs, M. D. Ong, et al. Three-dimensional pore evolution of nanoporous metal particles for energy storage. J. Am. Chem. Soc.,2011,133(24): 9144-9147.
    [337]L. Gu, C. Zhu, H. Li, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J. Am. Chem. Soc.,2011,133(13), 4661-4663.
    [338]A. R. Armstrong, N. Kuganathan, M. S. Islam, et al. Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J. Am. Chem. Soc.,2011, 133(33):13031-13035.
    [339]L.-L. Zhang, G. Liang, A. Ignatov, et al. Effect of vanadium incorporation on electrochemical performance of LiFePO4 for lithium-ion batteries. J. Phys. Chem. C, 2011,115(27):13520-13527.
    [340]C. Zhu, Y. Yu, L. Gu, et al. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Int. Ed.,2011,50(28): 6278-6282;
    [341]J. Zhao, J. He, J. Zhou, et al. Facile Synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries. J. Phys. Chem. C, 2011,115(6):2888-2894.
    [342]F. Croce, A. D. Epifanio, J. Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid State Lett.,2002,5(3): A47-A50.
    [343]K. C. Kil, M. E. Lee, G. Y. Kim, et al. Enhanced electrochemical properties of LiFePO4 electrodes with carboxylated poly(vinyl difluoride) in lithium-ion batteries: experimental and theoretical analysis. J. Phys. Chem. C,2011,115(32): 16242-16246.
    [344]Y. H. Huang, J. B. Goodenough. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater.,2008,20(23): 7237-7241.
    [345]R. Dominko, M. Bele, J. M. Goupil, et al. Wired porous cathode materials:a novel concept for synthesis of LiFePO4. J. Chem. Mater.,2007,19(12):2960-2969.
    [346]J. F. Qian, M. Zhou, Y. L. Cao, et al. Template-free hydrothermal synthesis, of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. J. Phys. Chem. C,2010,114(8):3477-3482.
    [347]M.-H. Lee, T.-H. Kim, Y. S. Kim, et al. Precipitation revisited:shape control of LiFePO4 nanoparticles by combinatorial precipitation. J. Phys. Chem. C,2011, 115(25):12255-12259.
    [348]Y. G. Guo, Y. S. Hu, J. Maier. Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem. Commun.,2006,26(2):2783-2785.
    [349]Y. J. Cho, H. S. Kim, H. Im, et al. Nitrogen-doped graphitic layers deposited on silicon nanowires for efficient lithium-ion battery anodes. J. Phys. Chem. C,2011, 115 (19):9451-9457
    [350]G. D. Khattak, A. Mekki. Structure and electrical properties of SrO-borovanadate (V2O5)0.5(SrO)0.5-y(B2O3)y glasses. J. Phys. Chem. Solids,2009,70 (10):1330-1336.
    [351]X. L. Wu, L. Y. Jiang, F. F. Cao, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices. Adv. Mater.,2009,21 (25-26):2710-2714.
    [352]H. G. Yang, H. C. Zeng. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B,2004,108(11):3492-3495.
    [353]J. Li, H. C. Zeng. Simple and effective 3D recognition of domoic acid using a molecularly imprinted polymer. J. Am. Chem. Soc.,2007,129(44),13626-13632.
    [354]M. Endo, C. Kim, K. Nishimura, et al. Recent development of carbon materials for Li ion batteries. Carbon,2000,38(2):183-197.
    [355]J. S. Gnanaraj, M. D. Levi, E. Levi, et al. Comparison between the. electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J. Electrochem. Soc.,2001,148(6):A525-A536.
    [356]Y. S. Hu, P. Adelhelm, B. M. Smarsley, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv. Funct. Mater.,2007, 17(12):1873-1878.
    [357]K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature,2005,438:197-200.
    [358]A. Fasolino, J. H. Los, M. I. Katsnelson. Intrinsic ripples in graphene. Nat. Mater., 2007,6(11):858-861.
    [359]M. D. Stoller, S. J. Park, Y. W. Zhu, et al. Graphene-based ultracapacitors. Nano Lett.,2008,8(10):3498-3502.
    [360]S. B. Yang, X. L. Feng, L. Wang, et al. Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage. Angew. Chem.,2010,49(45):8408-8411.
    [361]A. A. Balandin, S. Ghosh, W. Z. Bao, et al. Superior thermal conductivity of single-layer graphene. Nano Lett.,2008,8(3):902-907.
    [362]K. S. Novoselov, Z. Jiang, Y. Zhang, et al. Room-temperature quantum hall effect in graphene. Science,2007,315(5817):1379-1379.
    [363]Y. Wang, Y. Huang, Y. Song, et al. Room-temperature ferromagnetism of grapheme. Nano Lett.,2009,9(1):220-224.
    [364]S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al. Graphene-based composite materials. Nature,2006,442:282-286.
    [365]S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, et al. Graphene-based electrochemical supercapacitors. J. Chem. Sci.,2008,120(1):9-13.
    [366]C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites. J. Phys. Chem. C,2008,112(50):19841-19845.
    [367]E. J. Yoo, T. Okata, T. Akita, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett.,2009,9(6):2255-2259.
    [368]Y. M. Li, L. H. Tang, J. H. Li. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites. Electrochem. Commun.,2009, 11(4):846-849.
    [369]R. Kou, Y. Y. Shao, D. H. Wang, et al. Enhanced activity and stability of Pt catalysts on functionalized grapheme sheets for electrocatalytic oxygen reduction. Electrochem. Commun.,2009,11(5):954-957.
    [370]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C,2009,113(19): 7990-7995.
    [371]H. A. Becerril, J. Mao, Z. F. Liu, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano,2008,2(3):463-470.
    [372]Q. Liu, Z. F. Liu, X. Y Zhang, et al. Organic photovoltaic cells based on an acceptor of soluble grapheme. Appl. Phys. Lett.,2008,92(22):223303-223305.
    [373]J. B. Wu, M. Agrawal, H. A. Becerril, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. Appl. Phys. Lett.,2010,4(1): 43-48.
    [374]A. Mastalir, Z. Kiraly, A. Patzko, et al. Synthesis and catalytic application of Pd nanoparticles in graphite oxide. Carbon,2008,46(13):1631-1637.
    [375]G. M. Scheuermann, L. Rumi, P. Steurer, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc.,2009,131(23):8262-8270.
    [376]S. M. Paek, E. Yoo, I. Honma. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett.,2009,9(1):72-75.
    [377]S. B. Yang, G. L. Cui, S. P. Pang, et al. Fabrication of cobalt and cobalt oxide/graphene composites:towards high-performance anode materials for lithium ion batteries. ChemSusChem.,2010,3(2):236-239.
    [378]S. Yang, X. Feng, S. Ivanovici, et al. Fabrication of graphene-encapsulated oxide nanoparticles:towards high-performance anode materials for lithium storage. Angew. Chem.,2010,122(45):8586-8589.
    [379]H. Wang, L.-F. Cui, Y. Yang, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc.,2010,132 (40):13978-13980.
    [380]W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958,80(6):1339-1339.
    [381]Y. Li, X. Lv, J. Lu, et al. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C,2010,114(49): 21770-21774.
    [382]P. Nagaraju, C. Srilakshmi, N. Pasha, et al. Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-P-0 catalysts. Appl. Catal. A,2008,334(1-2): 10-19.
    [383]F. Yu, J. Zhang, Y. Yang, et al. Reaction mechanism and electrochemical performance of LiFePO4/C cathode matericals synthesized by carbothermal method. Electrochim. Acta,2009,54(28):7389-7395.
    [384]D. Luo, G. Zhang, J. Liu, et al. Evaluation criteria for reduced grapheme oxide. J. Phys. Chem. C,2011,115(23):11327-11335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700