磁性纳米材料的合成及其在分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,Fe_3O_4磁性纳米粒子由于其具有较高的超顺磁性、小尺寸效应、高的比表面积、生物安全性、生物兼容性、易于合成和功能化等优点而被广泛研究和应用。Fe_3O_4磁性纳米粒子的研究是当前生物分析化学和电分析化学十分活跃的研究领域,其中包括:酶的固定、电化学传感、废水处理和蛋白质的分离与富集。本论文主要集中研究了Fe_3O_4磁性纳米粒子的合成、表征、构建直接电子传递的电化学传感以及在废水处理方面的应用。
     一基于血红素功能Fe_3O_4/SiO_2核壳磁性复合材料构建氧气和过氧化氢传感器的研究血红素(hemin),是血红素类蛋白质的活性中心,通过共价直接将血红素分子嫁接到氨基功能化的Fe_3O_4/SiO_2核壳磁性复合材料表面。通过TEM、IR和UV-vis等技术对所合成的Fe_3O_4/a-SiO_2/hemin复合磁性材料进行了表征。将其滴涂到玻碳电极的表面构建电化学传感器。该电极对氧气和过氧化氢有良好的催化特性,可用于过氧化氢和水中溶解氧的测定。
     二基于Fe_3O_4/a-SiO_2/Au磁性复合材料构建葡萄糖传感器的研究首先采用溶剂热法合成单分散的Fe_3O_4磁性纳米粒子,通过溶胶凝胶等技术制备核壳结构的Fe_3O_4/ SiO_2,然后在Fe_3O_4/a-SiO_2组装Au纳米粒子得到Fe_3O_4/a-SiO_2/Au复合磁性复合材料,将其用于固定葡萄糖氧化酶(GOD)构建葡萄糖生物传感器。磁性材料的晶型、形貌和结构分别用X射线衍射光谱(XRD)、透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)和紫外可见光谱(UV-vis)进行表征。采用该材料可以提高GOD固载量,其表面平均吸附量高达3.92×10?9 mol·cm-2,同时,所固定的GOD表现出较高的生物活性。该葡萄糖传感器具有线性范围宽、检测限低、灵敏度高的特点。该方法可用于葡萄糖的测定。
     三单分散Fe_3O_4磁性纳米粒子快速磁吸附除去水中污染物的研究首先采用溶剂热法合成单分散的Fe_3O_4磁性纳米粒子,其晶型、形貌和结构分别用X射线衍射光谱(XRD)、透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)和紫外可见光谱(UV-vis)进行表征。该Fe_3O_4磁性纳米粒子可用作废水处理的吸附剂。实验详细考查了磁性材料从水溶液中利用磁性快速吸附除去有机染料(铍试剂Ⅱ)的条件,如吸附时间、染色剂浓度、磁性材料的浓度、温度和pH等影响因素。吸附数据用Langmuir和Freundlich吸附等温方程进行拟合。实验结果表明能够和Freundlich等温模式很好的拟合。Fe_3O_4磁性纳米粒子可以快速、有效的除去水中的有机污染物。
In recent years, Fe_3O_4 magnetic nanoparticles have been extensively studied and applied due to such notable properties as superparamagnetism, small-size effect, the high surface area to volume ratios, biosafety, biocompatibility, the ease of synthesis and subsequent coating and functionalization. The study of Fe_3O_4 magnetic nanoparticles is an active field of analytical chemistry and electroanalytical chemistry presently, involves relevant applications include: enzyme immobilization, electrochemical biosensors, wastewater treatment, protein separation and enrichment. In this thesis, we developed our work focusing on synthesis characterization, constructing electrochemical sensor based on direct electron transfer of Fe_3O_4 magnetic nanoparticles and its application in wastewater treatment field.
     1. The study of constructing oxygen and hydrogen peroxide sensor based on hemin grafted onto functionalized core-shell Fe_3O_4/SiO_2 magnetic composite materials
     Hemin that serves as is the active center of heme protein was directly grafted onto amino functionalized core-shell Fe_3O_4/SiO_2 magnetic composite materials by covalent bond. The synthesized Fe_3O_4/a-SiO_2/hemin composite magnetic materials was characterized by transmission electron microscopy (TEM)、infrared (IR) and ultraviolet -visible (UV-vis )absorption spectroscopy. The resultant particles were deposited onto the glassy carbon electrode for constructing electrochemical sensor. This modified electrode had a good catalytic properties] towards oxygen and hydrogen peroxide and could be used as the determination of hydrogen peroxide and dissolved oxygen in water.
     2. The study of constructing glucose sensor based on Fe_3O_4/SiO_2/Au magnetic composite materials with core-shell structures
     First, monodisperse Fe_3O_4 nanoparticles were synthesized by solvothermal method and Fe_3O_4/SiO_2 with core-shell structures were prepared by sol-gel method. Then Au nanoparticles were assembled onto the surface of Fe_3O_4/a-SiO_2 to form Fe_3O_4/a-SiO_2/Au magnetic composite materials. This composite materials employed to immobilize glucose oxidase (GOD) to construct glucose biosensor. The crystallization, morphology, structure, and electrochemistry of the magnetic materials were characterized by X-ray diffraction (XRD), transmission electron microscope(TEM), FT-IR (Fourier transform infrared) and (ultraviolet -visible ) UV–vis spectra, respectively. This materials could increase the amount of the immobilized material and its high surface average concentration was up to 3.92×10?9 mol·cm-2. In addition, the immobilized GOD retained its high bioactivity. The glucose biosensor showed wide linear range, low detection limit high sensitivity. The proposed method could be used for determination of glucose.
     3. The study of quickly magnetic absorption to remove pollutants from water based on monodisperse magnetic Fe_3O_4 Nanoparticles
     First, monodisperse Fe_3O_4 nanoparticles were synthesized by solvothermal method. The crystallization, morphology and structure were characterized by X-ray diffraction spectrum (XRD), transmission electron microscope (TEM) , Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV–vis), respectively. Fe_3O_4 magnetic NPs were used as adsorbent in wastewater treatment. Experiments examined in detail magnetic material remove to remove organic dye (BeryllonⅡ) by magnetic quickly adsorption under different conditions such as adsorption time, initial dye concentration, magnetic material concentration, temperature and solution pH. Adsorption data was made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Freundlich equation. The results indicated that Fe_3O_4 magnetic nanoparticles could remove magnetically quickly organic pollutants in water.
引文
[1] M. Han, X. Gao, J. Z. Su et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J] . Nat Biotech, 2001, 19(7): 631-635.
    [2] H. Ju, S. Liu, B. Ge, et al. Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity [J] . Electroanalysis, 2002, 14(2): 141-147.
    [3] W. Y. Cai, Q. Xu, X. N. Zhao et al. Porous gold-nanoparticle-CaCO3 hybrid material: preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry [J] . Chem. Mater, 2005, 18(2): 279-284.
    [4] J. D. Qiu, H. P. Peng, R. P. Liang et al. Facile preparation of magnetic core–shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry [J] . Biosens. Bioelectron, 2010, 25(6): 1447-1453.
    [5] M. Pal, V. Ganesan. Electrochemical determination of nitrite using silver nanoparticles modified electrode[J] . Analyst, 2010, 135(10): 2711-2716.
    [6] J. Wang, M. Li, Z. Shi et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J] . Anal. Chem, 2002, 74(9): 1993-1997.
    [7] R. Zhang, X. Wang, K. K. Shiu. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly [J] . J. Colloid Interface Sci, 2007, 316(2): 517-522.
    [8] S. B. Lee, D. T. Mitchell, L. Trofin et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations [J] . Science, 2002, 296(5576): 2198-2200.
    [9] Y. Cai, G. Jiang, J. Liu et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-Nonylphenol, and 4-tert-octylphenol [J] . Anal. Chem, 2003, 75(10): 2517-2521.
    [10] P. G. Collins, K. Bradley, M. Ishigami et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J] . Science, 2000, 287(5459): 1801-1804.
    [11] S. Peng, K. Cho. Ab initio study of doped carbon nanotube sensors [J] . Nano Letters, 2003, 3(4): 513-517.
    [12] D. L. Leslie-Pelecky, R. D. Rieke. Magnetic properties of nanostructured materials [J] . Chem. Mater, 1996, 8(8): 1770-1783.
    [13]张立德,牟季美.纳米材料和纳米结构[M] .北京:科学出版社, 2002: 74-79.
    [14]廖鹏飞,夏金兰,聂珍嫒等.磁性微球的制备及在生物分离应用中的研究进展[J] .生物磁学.2005,5(4): 47-51.
    [15] T. Zhu, F. M. Wang, X. D. Wang. Development and application of nanomaterial technology[M] . Beijing : Chemical Industry Press, 2002: 96-104.
    [16] A. M. G. C. Dias, A. Hussain, A. S. Marcos et al. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides [J] . Biotechnol. Adv, 2011,29(1): 142-155.
    [17] T. Sugimoto, E. Matijevic. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels [J] . J. Colloid Interface Sci, 1980, 74(1): 227-243.
    [18] K. Woo, J. Hong, S. Choi et al. Easy synthesis and magnetic properties of iron oxide nanoparticles [J] . Chem. Mater, 2004, 16(14): 2814-2818.
    [19] Q. W. Chen, Y. T. Qian, Z. Y. Chen, et al. Hydrothermal deposition of magnetite (Fe3O4) thin films [J] . Mater. Lett, 1995, 24(1-3): 85-87.
    [20] P. Hu, L. Yu, A. Zuo et al. Fabrication of monodisperse magnetite hollow spheres [J] . J. Phys. Chem. C, 2008, 113(3): 900-906.
    [21] Q. Peng, Y. Dong, Y. Li. ZnSe semiconductor hollow microspheres [J] , Angew. Chem. Int. Ed, 2003, 42(26): 3027-3030.
    [22]王群.用sol-gel方法制备半金属磁性材料Fe3O4纳米薄膜及其物性研究[D] .上海:中国科学院上海硅酸盐研究所, 2001.
    [23] L. T. Chao, M. Wei, J. L. MacManus-Driscoll. Synthesis and characterisation of nanocrystalline iron oxides via ultrasonic spray assisted chemical vapour deposition [J] . J. Phys.: Conf. Ser, 2006, 26(1): 304-307.
    [24] H. D. Kurland, J. Grabow, G. Staupendahl et al. Magnetic iron oxide nanopowders produced by CO2 laser evaporation--'in situ' coating and particle embedding in a ceramic matrix [J] . J. Magn. Magn. Mater, 2009, 321(10): 1381-1385.
    [25] Y. k. Sun, M. Ma, Y. Zhang et al. Synthesis of nanometer-size maghemite particles from magnetite [J] . Colloids Surf., A , 2004. 245(1-3): p. 15-19.
    [26] N. Fauconnier, J. N. Pons, J. Roger et al. Thiolation of maghemite nanoparticles by dimercaptosuccinic acid [J] . J. Colloid Interface Sci, 1997, 194(2): 427-433.
    [27] S. H. Sun, H. Zeng, D. B. Robinson et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles [J] . J. Amer. Chem. Soc, 2004, 126(1): 273-279.
    [28] Y. Wang, J. F. Wong, X. Teng et al.“Pulling”nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions ofα-cyclodextrin [J] . Nano. Letters, 2003, 3(11): 1555-1559.
    [29] C. C. Berry, S. Wells, S. Charles et al. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro [J] . Biomaterials, 2003, 24(25): 4551-4557.
    [30] D. K. Kim, M. Mikhaylova, F. H. Wang et al. Starch-coated superparamagnetic nanoparticles as MRcontrast agents [J] . Chem. Mater, 2003, 15(23): 4343-4351.
    [31] M. Mikhaylova, D. K. Kim, N. Bobrysheva et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification [J] . Langmuir, 2004, 20(6): 2472-2477.
    [32] S. Xuan, Y. X. J. Wang, J. C. Yu et al. Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites [J] . Langmuir, 2009, 25(19): 11835-11843.
    [33] H. Zhang, X. Zhong, J. J. Xu et al. Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties [J] . Langmuir, 2008, 24(23): 13748-13752.
    [34] S. A. Gómez-Lopera, R. C. Plaza, A. V. Delgado. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles [J] . J. Colloid Interface Sci, 2001, 240(1): 40-47.
    [35] H. Y. Xie, R. Zhen, B. Wang et al. Fe3O4/Au core/shell nanoparticles modified with Ni2+-nitrilotriacetic acid specific to histidine-tagged proteins [J] . J. Phys. Chem.C, 2010, 114(11): 4825-4830.
    [36] J. Zhang, S. Xu, E. Kumacheva. Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles [J] . J. Amer. Chem. Soc, 2004, 126(25): 7908-7914.
    [37] J. H. Maeng D. H. Lee, K. H. Jung et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer [J] . Biomaterials, 2010, 31(18): 4995-5006.
    [38] A. Otani, N. Nouchi, T. Nozawa. Magnetic properties and domain structures of FeNiMo/FeCoV double-layer films [J] . J. Magn. Magn. Mater, 2004, 277(1-2): 106-117.
    [39] Y. Pu, X. Tao, X. Zeng et al. Synthesis of Co-Cu-Zn doped Fe3O4 nanoparticles with tunable morphology and magnetic properties [J] . J. Magn. Magn. Mater, 2010, 322(14): 1985-1990.
    [40] M. Ghidini, A. Lodi Rizzini, C. Pernechele et al. Growth rate dependence of the extrinsic magnetic properties of electrodeposited CoPt films[J] . J. Magn. Magn. Mater, 2010, 322(9-12): 1576-1580.
    [41] P. Tartaj, T. González-Carre?o, C. J. Serna. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties [J] . Adv. Mater, 2001, 13(21): 1620-1624.
    [42] P. Tartaj, C. J. Serna. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites [J] . J. Amer. Chem. Soc, 2003, 125(51): 15754-15755.
    [43] W. St?ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range [J] . J. Colloid Interface Sci, 1968, 26(1): 62-69.
    [44] H. Fang, C. Y. Ma, T. l. Wan et al. Fabrication of monodisperse magnetic Fe3O4-SiO2 nanocomposites with core-shell structures [J] . J. Phys. Chem.C, 2006, 111(3): 1065.
    [45] F. G. Aliev. Correa-Duarte Miguel A. Mamedov Arif Aliev et al. Layer-by-layer assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magneticproperties [J] . Adv. Mater, 1999, 11(12): 1006-1010.
    [46] P. Wu, J. Zhu, Z. Xu. Template-assisted synthesis of mesoporous magnetic nanocomposite particles [J] . Adv. Funct. Mater, 2004, 14(4): 345-351.
    [47] M. Ma, Y. Zhang, W. Yu et al. Preparation and characterization of magnetite nanoparticles coated by amino silane[J] . Colloids Surf. A, 2003. 212(2-3): 219-226.
    [48] L. Wang, K. G. Neoh, E. T. Kang et al. Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells [J] . Biomaterials, 2011, 32(8): p. 2166-2173.
    [49] G. Y. Shen, H. wang, G. L. Shen et al. Au nanoparticle network-type thin films formed via mixed assembling and cross-linking route for biosensor application: Quartz crystal microbalance study [J] . Anal. Biochem, 2007, 365(1): 1-6.
    [50] A. P. Fan, C. Lau, J. Lu. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label [J] . Anal. Chem, 2005, 77(10): 3238-3242.
    [51] T. T. Hien Pham, C. Cao, S. J. Sim. Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations [J] . J. Magn. Magn. Mater, 2008, 320(15): 2049-2055.
    [52] H. Min, Y. H. Qu, X. H. Li et al. Au-doped Fe3O4 nanoparticle immobilized acetylcholinesterase sensor for the detection of organophosphorus pesticide [J] . Acta Chim. Sin, 2007. 65( 20): p. 2303–2308.
    [53] G. K. Kouassi, J. Irudayaraj. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor [J] . Anal. Chem, 2006, 78(10): 3234-3241.
    [54] J. D. Qiu, M. Xiong, R. P. Liang et al. Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application [J] . Biosens. Bioelectron, 2009, 24(8): 2649-2653.
    [55] J. B. Haun, T. J. Yoon, H. Lee et al. Magnetic nanoparticle biosensors[J] . Nanomed Nanobiotechnol, 2010, 2(3): 291-304.
    [56] A. Kaushik, R. Khan, P. R. Solanki et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor [J] . Biosens. Bioelectron, 2008, 24(4): 676-683.
    [57] N. Zheng, X. Zhou, W. Yang et al. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film [J] . Talanta, 2009, 79(3): 780-786.
    [58] A. Kaushik, P. R. Solanki, A. A. Ansari et al., Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection [J] . Biochem. Eng. J, 2009, 46(2): 132-140.
    [59] H. L. Lin, Q. Z. Lu, S. T. Ge et al. Detection of pathogen escherichia coli O157:H7 with a wireless magnetoelastic-sensing device amplified by using chitosan-modified magnetic Fe3O4 nanoparticles [J] . Sens Actuators B, 2010, 147(1): 343-349.
    [60] C. Kaittanis, S. Santra, J. M. Perez. Manuel. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis [J] . Adv Drug Deliv Rev, 2010, 62(4-5): 408-423.
    [61] P. J. Manuel, S. F. Joseph, S. Yoshinaga et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media [J] . J. Amer. Chem. Soc, 2003, 125(34): 10192-10193.
    [62] R. L. Edelstein, C. R. Tamanaha, P. E. Sheehan et al. The BARC biosensor applied to the detection of biological warfare agents [J] . Biosens. Bioelectron, 2000, 14(10-11): 805-813.
    [63] I. Safarik, M. Safarikova. Magnetically modified microbial cells: a new type of magneticadsorbents [J] . China Particuol, 2007, 5(1-2): 19-25.
    [64] Q. Q. Peng, Y. G. Liu, G. M. Zeng et al. Biosorption of coppe(rII) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution [J] . J. Hazard. Mater, 2010, 177(1-3): 676-682.
    [65] S. S. Banerjee, D. H. Chen. Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent [J] . J. Hazard. Mater, 2007, 147(3): 792-799.
    [66] D. Mohan, J. C. U. Pittman. Arsenic removal from water/wastewater using adsorbents-a critical review [J] . J. Hazard. Mater, 2007, 142(1-2): 1-53.
    [67] A. I. Zouboulis, I. A. Katsoyiannis. Katsoyiannis, Arsenic removal using iron oxide loaded alginate beads [J] . Ind. Eng. Chem. Res, 2002, 41(24): 6149-6155.
    [68] P. Cohen. The origins of protein phosphorylation [J] . Nat Cell Biol, 2002, 4(5): E127-E130.
    [69] J. V. Olsen, B. Blagoev, F. Gnad et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks [J] . Cell, 2006, 127(3): 635-648.
    [70] J. Lee, Y. D. Xu, Y. Chen et al. Mitochondrial phosphoproteome revealed by an improved IMAC method and MS/MS/MS [J] . Mol. Cell. Proteomics, 2007, 6(4): 669-676.
    [71] T. S. Nühse, A. Stensballe, O. N. Jensen et al. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry [J] . Mol. Cell. Proteomics, 2003, 2(11): 1234-1243.
    [72] F. Tan, Y. J. Zhang, W. Mi et al. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver [J] . J. Proteome Res, 2008, 7(3): 1078-1087.
    [73] J. J. Feng, A. J. Wang, P. Hildebrandt. Electron. transfer of proteins at nano-biointerfaces, in: ashok S. Kumar, S. Thiagarajan, S.F.Wang. (Eds.), biocompatible nanomaterials: synthesis, characterization and applications[M] . New York: Nova Science Publishers, 2010: ASAP.
    [74] P. Hildebrandt, J. J. Feng, A. Kranich et al. Electron transfer of proteins at membrane models at surface enhancement of raman spectroscopy, in: schlücker, S. (Ed.), surface enhanced raman spectroscopy: analytical, biophysical and life science applications[M] . Hoboken NJ: Wiley Publisher, 2011: ASAP.
    [75] J. A. Laszlo, D. L. Compton. Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids [J] . J. Mol. Catal. B:Enzym, 2002, 18(1-3): 109-120.
    [76] T. L?tzbeyer, W. Schuhmann, H.L. Schmidt et al. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes [J] . Bioelectrochem. Bioenergy, 1997, 42(1): 1-6.
    [77] J. J. Feng, Y. H. Lu, U. Gernert et al. Electrosynthesis of SER-active silver nanopillar electrode arrays [J] . J. Phys. Chem. C 2010, 114(16): 7280-7284.
    [78] R. F. Martin, D. G. Davis. Electrode kinetics of cyanide hemichrome [J] . Biochemistry, 1968, 7(11): 3906-3912.
    [79] M. Duca, S. Khamseh, S. C. S. Lai et al. The influence of solution-phase HNO2 decomposition on the electrocatalytic nitrite reduction at a hemin-pyrolitic graphite electrode [J] . Langmuir, 2010, 26(14): 12418-12424.
    [80] B. Z. Wang, X. Y. Du, M. Q. Wang et al. A Facile preparation of H2O2 sensors using layer-by-layer deposited thin films composed of poly(ethyleneimine) and carboxymethyl cellulose as matrices for immobilizing hemin [J] . Electroanalysis, 2008, 20(9): 1028-1031.
    [81] A. García de la Rosa, E. Castro-Quezada, S. Gutiérrez Granados et al. Stable hemin embedded in nafion? films for the catalytic reduction of trichloroacetic acid under hydrodynamic conditions [J] . Electrochem. Commun, 2005, 7(8): 853-856.
    [82] D. H. Murgida, P. Hildebrandt. Disentangling interfacial redox processes of proteins by SERR spectroscopy [J] . Chem. Soc. Rev, 2008, 37(5): 937-945.
    [83] S. Guo, E. Wang. Simple electrochemical route to nanofiber junctions and dendrites of conducting polyme r[J] . Langmuir, 2008, 24(5): 2128-2132.
    [84] Y. Xiao, H. Ju, H. Chen. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode [J] . Anal. Biochem, 2000, 278(1): 22-28.
    [85] L. Wu, X. Zhang, H. Ju. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential [J] . Anal. Chem, 2006, 79(2): 453-458.
    [86] Y. Y. Song, W. Z. Jia, C. Yang et al. Template-synthesized protein macroporous biofilms: Conformational related direct electron transfer [J] . Adv. Funct. Mater, 2007, 17(14): 2377-2384.
    [87] M. Konerack, P. Kopcansk, M. Antalík et al. Immobilization of proteins and enzymes to fine magnetic particles [J] . J. Magn. Magn. Mater, 1999, 201(1-3): 427-430.
    [88] D. H. Chen, M. H. Liao. Preparation and characterization of YADH-bound magnetic nanoparticles [J] . J. Mol. Catal. B: Enzym, 2002, 16(5-6): 283-291.
    [89] V. Salgueiri?o Maceira, M. Correa Duarte, M. Spasova et al. Composite Silica Spheres with Magnetic and Luminescent Functionalities [J] . Adv. Funct. Mater, 2006, 16(4): 509-514.
    [90] J. D. Qiu, H. P. Peng, R. P. Liang et al. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry [J] . Biosens. Bioelectron, 2010, 25(6):1447-1453.
    [91] S. Guo, S. Dong, E. Wang. A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures [J] . Chem. Eur. J, 2009, 15(10): 2416-2424.
    [92]Y. X. Cheng, Y. J. Liu, J. J. Huang et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms [J] . Electrochim. Acta, 2009, 54(9): 2588-2594.
    [93] J. P. Li, X. P. Wei, T. H. Yuan. Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor [J] . Sens. Actuators, B : Chemical, 2009, 139(2): 400-406.
    [94] C. Zou, Y. Fu, Q. Xie et al. High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites [J] . Biosens. Bioelectron, 2010, 25(6): 1277-1282.
    [95] X. C. Tan, J. L. Zhang, S. W. Tan et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode. electroanalysis [J] , 2009, 21(13): 1514-1520.
    [96] T. T. Baby, S. Ramaprabhu. SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor [J] . Talanta, 2010, 80(5): 2016-2022.
    [97] A. Ulman. Formation and structure of self-assembled monolayers [J] . Chem. Rev, 1996, 96(4): 1533-1554.
    [98] F. H. Chen, Q. Gao, J. Z. Ni. The grafting and release behavior of doxorubincin from Fe 3 O 4 @ SiO 2 core-hell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology [J] , 2008, 19(16): 165103.
    [99] H. Deng, X. Li, Q. Peng et al. Monodisperse magnetic single-crystal ferrite microspheres [J] . Angew. Chem., Int. Ed, 2005, 44(18): 2782-2785.
    [100] Z. O. Araci, A. F. Runge, W. J. Doherty et al. Correlating molecular orientation distributions and electrochemical kinetics in subpopulations of an immobilized protein film [J] . J. Am. Chem. Soc., 2008, 130(5): 1572-1573.
    [101] L. Wang, J. Bai, Y. Li et al, Multifunctional nanoparticles displaying magnetization and near-IR absorption [J] . Angew. Chem, 2008, 120(13): 2473-2476.
    [102] L. Wang, J.W Ba, J. W Li et al. Multifunctional nanoparticles displaying magnetization and near-IR absorption [J] . Angew Chem Int Ed, 2008, 47(13): 2439-2442.
    [103] D. K. Das, C. Bhattaray, O. K. Medhi. Electrochemical behaviour of (protoporphyrinato IX)iron(III)encapsulated in aqueous surfactant micelles [J] . J. Chem. Soc, Dalton Trans, 1997: 4713 - 4717.
    [104] S. F. Wang, T. Chen, Z. L. Zhang et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J] . Langmuir, 2005, 21(20): 9260-9266.
    [105] R. Yan, F. Q. Zhao, J. W. Li et al. Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films [J] . Electrochim. Acta , 2007, 52(26): 7425-7431.
    [106] X. B. Lu, J. Q. Hu, X. Yao et al. Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin [J] . Biomacromolecules, 2006, 7(3): 975-980.
    [107] Q. Lu, T. Zhou, S. S. Hu. Direct electrochemistry of hemoglobin in PHEA and its catalysis to H2O2 [J] . Biosens. Bioelectron, 2007, 22(6): 899-904.
    [108] A. M. Bond. Modern Polarographic Methods in Analytical Chemistry[M] . New York : Marcel Dekker, 1980.
    [109] Z. H. Dai, S. Q. Liu, H. G. Ju et al. et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J] . Biosens. Bioelectron, 2004, 19(8): 861-867. 110] L. Y. Zhao, H. Y. Liu, N. F. Hu. Assembly of layer-by-layer films of heme proteins and single-walled carbon nanotubes: electrochemistry and electrocatalysis [J] . Anal. Bioanal. Chem, 2006, 384(2): 414-422.
    [111] E. Laviron. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J] . J. Electroanal. Chem, 1979, 100(1-2): 263-270.
    [112] T. L?tzbeyer, W. Schuhmann, H. L. Schmidt. Direct electrocatalytical H2O2 reduction with hemin covalently immobilized at a monolayer-modified gold electrode [J] . J. Electroanal. Chem, 1995395(1-2): 341-344.
    [113] E. Laviron. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J] . J. Electroanal. Chem, 1979, 101(1): 19-28.
    [114] J. S. Ye, Y. Wen, W. D. Zhang et al. et al. Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution [J] . J. Electroanal. Chem, 2004, 562(2): 241-246.
    [115] Q. Ma, S.Y. Ai, H.S. Yin et al. Towards the conception of an amperometric sensor of l-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode [J] . Electrochim. Acta, 2010, 55(22): 6687-6694.
    [116] G. L. Turdean, I. C. Popescu, A. Curulli et al. Iron(III) protoporphyrin IX--single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection [J] . Electrochim. Acta 2006, 51(28): 6435-6441.
    [117] J. J. Feng, J. J. Xu, H. G. Chen.Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide [J] . Electrochem. Commun, 2006, 8(1): 77-82.
    [118] J. J. Feng, J. T. Zhu, J. J. Xu et al. Enhanced biosensing performance of mesoporous SnO2 multilayer film in interfacing hemoglobin [J] . J Nanosci Nanotechnol, 2009, 9( 4): 2290-2296.
    [119] Z. Q. Feng, T. Sagara, K. Niki. Application of potential-modulated UV-visible reflectancespectroscopy to electron transfer rate measurements for adsorbed species on electrode surfaces [J] . Anal. Chem, 1995, 67(19): 3564-3570.
    [120] T. Sagara, S. Takagi, K. Niki. Electroreflectance study of hemin adsorbed on a pyrolytic graphite electrode surface and its coadsorption with methylene blue [J] . J. Electroanal. Chem, 1993, 349(1-2): 159-171.
    [121] R. A. Kamin, G. S. Wilson. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J] . Anal. Chem, 1980, 52(8): 1198-1205.
    [122] G. C. Zhao, Z. Z. Yin, L. Zhang et al. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 [J] . Electrochem. Commun, 2005, 7(3): 256-260. 123] Y. G. Liu Yuge, C. L. Lu, W. H. Hou et al. Direct electron transfer of hemoglobin in layered [alpha] -zirconium phosphate with a high thermal stability [J] . Anal. Biochem, 2008, 375(1): 27-34.
    [124] J. J. Yu, T. Zhao, F. Q. Zhao et al. Direct electron transfer of hemoglobin immobilized in a mesocellular siliceous foams supported room temperature ionic liquid matrix and the electrocatalytic reduction of H2O2 [J] . Electrochim. Acta , 2008, 53(19): 5760-5765.
    [125] Y. Liu, H. Y. Liu, N. F. Hu. Core-shell nanocluster films of hemoglobin and clay nanoparticle: Direct electrochemistry and electrocatalysis [J] . Biophys. Chem, 2005, 117(1): 27-37.
    [126] L. Y. Zhao, H. Y. Liu, N. F. Hu. Electroactive films of heme protein-coated multiwalled carbon nanotubes [J] . J. Colloid Interface Sci, 2006, 296(1): 204-211.
    [127] Y. L. Zhou, J. F. Zhi, Y. S. Zou et al. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode [J] . Anal. Chem, 2008, 80(11): 4141-4146.
    [128] S. George, H. K. Lee. Direct electrochemistry and electrocatalysis of hemoglobin in nafion/carbon nanochip film on glassy carbon electrode [J] . J. Phys. Chem. B, 2009, 113(47): 15445-15454.
    [129] A. Liu, M. Wei, I. Honmaet al.et al. Direct electrochemistry of myoglobin in titanate nanotubes film [J] . Anal. Chem, 2005, 77(24): 8068-8074.
    [130] J. Li, S. N. Tan, H. Ge. Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide [J] . Anal. Chim. Acta, 1996, 335(1-2): 137-145.
    [131] F. Bellezza, A. Cipiciani. Costantino Umberto et al. Catalytic activity of myoglobin immobilized on zirconium phosphonates [J] . Langmuir, 2004, 20(12): 5019-5025.
    [132] H. Y. Liu, N. F. Hu. Comparative bioelectrochemical study of core-shell nanocluster films with ordinary layer-by-layer films containing heme proteins and CaCO3 nanoparticles [J] . J. Phys. Chem. B, 2005, 109(20): 10464-10473.
    [133] S. G. Peng, Q. M. Gao, Q. G. Wang et al. Layered structural heme protein magadiite nanocomposites with high enzyme-like peroxidase activity [J] . Chem. Mater, 2004, 16(13): 2675-2684.
    [134] D. Shan, E. Han, H. Xue et al. Self-assembled films of hemoglobin/laponite/chitosan: application forthe direct electrochemistry and catalysis to hydrogen peroxide [J] . Biomacromolecules, 2007, 8(10): 3041-3046.
    [135] Z. Zhang, S. Chouchane, R. S. Magliozzo et al. Direct voltammetry and catalysis with mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid films [J] . Anal. Chem, 2001, 74(1): 163-170.
    [136] Y. X. Huang, W. J. Zhang, H. Xiao et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode [J] . Biosens. Bioelectron, 2005, 21(5): 817-821.
    [137] X. J. Zhao, Z. B. Mai, X. H. Kang et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite [J] . Biosens. Bioelectron, 2008, 23(7): 1032-1038.
    [138] X. H. Kang, J. Wang, H. Wu et al. Glucose Oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing [J] . Biosens. Bioelectron, 2009, 25(4): 901-905.
    [139] Z. H. Dai, G. J. Shao, J.M.Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor [J] . Biosens. Bioelectron, 2009, 24(5): 1286-1291.
    [140] R. F. Gao, J. B. Zheng. Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase [J] . Electrochem. Commun, 2009, 11(3): 608-611.
    [141] Y. H. Wu, S. S. Hu. Direct electrochemistry of glucose oxidase in a colloid Au-dihexadecylphosphate composite film and its application to develop a glucose biosensor [J] . Bioelectrochemistry, 2007, 70(2): 335-341.
    [142] S. Zhao, K. Zhang, Y. Bai et al. Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis [J] . Bioelectrochemistry, 2006, 69(2): 158-163.
    [143] J. M. Pingarrón, P. Yá?ez Sede?o, A. González Cortés. Gold nanoparticle-based electrochemical biosensors [J] . Electrochim. Acta, 2008, 53(19): 5848-5866.
    [144] R. V. Mehta, R. V. Upadhyay, S. W. Charles et al. Direct binding of protein to magnetic particles [J] . Biotechnol. Tech, 1997, 11(7): 493-496.
    [145] I. Willner, E. Katz. Magnetic control of electrocatalytic and bioelectrocatalytic processes [J] . Angew. Chem. Int. Ed, 2003, 42(38): 4576-4588.
    [146] V. Salgueiri?o Maceira, M. Correa Duarte, M. Spasova et al.Composite silica spheres with magnetic and luminescent functionalities [J] . Adv. Funct. Mater, 2006, 16(4): 509-514.
    [147] Y. H. Deng, D. W. Qi, C. H. Deng et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J] . J. Am. Chem. Soc, 2007, 130(1): 28-29.
    [148] X. H. Xuan, W. Q. Jiang, X. L. Gong et al. Magnetically separable Fe3O4/TiO2 hollow spheres:fabrication and photocatalytic activity [J] . J. Phys. Chem. C, 2008, 113(2): 553-558.
    [149] W.Y. Chen, P. J. Tsai, K.Y. Chien et al. Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis [J] . J. Proteome Res, 2006, 6(1): 316-325.
    [150] W. Wei, Q. G. He, H. Chen et al. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles [J] . Nanotechnology, 2007, 18(14): 145609. 151] J. J. Feng, P. Hildebrandt, D. H. Murgida. Silver nanocoral structures on electrodes: a suitable platform for protein-based bioelectronic devices [J] . Langmuir, 2008, 24(5): 1583-1586. 152] J. J. Feng, U. Gernert, P. Hildebrandt et al.Induced SER-activity in nanostructured Ag–silica–Au supports via long-range plasmon coupling [J] . Adv. Funct. Mater, 2010, 20(12): 1954-1961. 153] Q. Peng, T. J. Dong, Y. L. Li. ZnSe semiconductor hollow microspheres [J] . Angew. Chem, 2003, 115(26): 3135 -3138. 154] D. P. Tang, R. Yuan, Y. Q. Chai. Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon pasteinterface for studies of carcinoembryonic antigen in clinical immunoassay [J] . J. Phys. Chem B, 2006, 110(24): 11640-11646.
    [155] K. R. Brown, D. G.Walter, M. J. Natan. Seeding of colloidal Au nanoparticle solutions. 2. improved control of particle size and shape [J] . Chem. Mater, 2000, 12(2): 306-313.
    [156] J. L. Lyon, D. A. Fleming, M. B. Stone et al. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding [J] . Nano Letters, 2004, 4(4): 719-723.
    [157] E. Katz, I. Willner. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors [J] . Electroanalysis, 2003, 15(11): 913-947.
    [158] Q. Liu, X. B. Lu, J. Li et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J] . Biosens. Bioelectron, 2007, 22(12): 3203-3209.
    [159] Y. Liu, M. K.Wang, F. Zhao et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J] . Biosens. Bioelectron, 2005, 21(6): 984-988.
    [160] A. P. Periasamy, Y. J. Chang, S. M. Chen. Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode [J] . Bioelectrochemistry, 2011, 80(2): 114-120.
    [161] C. Y. Deng, J. H. Chen, X. L. Chen et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode [J] . Biosens. Bioelectron, 2008, 23(8): 1272-1277.
    [162] S. Q. Liu Songqin, H. X. Ju. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J] . Biosens.Bioelectron, 2003, 19(3): 177-183.
    [163] D. Wen, Y. Liu, G. Yang et al. Electrochemistry of glucose oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte [J] . Electrochim. Acta, 2007, 52(16): 5312-5317.
    [164] C. Shan, H. Yang, J. Song et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene [J] . Anal. Chem, 2009, 81(6): 2378-2382.
    [165] J. Z. Xu, J. J. Zhu, Q. Wu et al. Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes [J] . Chin. J. Chem , 2003, 21(8): 1088-1091.
    [166] C. Deng, J. Chen, Z. Nie et al. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode [J] . Biosens. Bioelectron, 2010, 26(1): 213-219.
    [167] Y. Xiao, F. Patolsky, E. Katz et al. "Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle[J] . Science, 2003, 299(5614): 1877-1881. 168] K. Q. Wang, H. Yang, L. Zhu et al. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15 [J] . Electrochim. Acta, 2009, 54(20): 4626-4630.
    [169] J. Yang, R. Y. Zhang, Y. Xu et al. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose [J] . Electrochem. Commun, 2008, 10(12): 1889-1892.
    [170] S. Zuo, Y. Teng, H. Yuan et al. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film [J] . Sens. Actuators, B: Chemical, 2008, 133(2): 555-560.
    [171] M. Dogan, M. Alkan, ?. Demirbas et al. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions [J] . Chem. Eng. J, 2006, 124(1-3): 89-101.
    [172] K. Mohanty, J. T. Naidu, B. C. Meikap et al. Removal of crystal violet from wastewater by activated carbons prepared from rice husk [J] . Ind. Eng. Chem. Res. 2006, 45(14): 5165-5171.
    [173] T. Akar, T. A. Demir, I. Kiranet al. Biosorption potential of neurospora crassa cells for decolorization of acid red 57 (AR57) dye [J] . J. Chem. Technol. Biotechnol, 2006, 81(7): 1100-1106.
    [174] G. Crini. Non-conventional low-cost adsorbents for dye removal: areview [J] . Bioresour. Technol, 2006, 97(9): 1061-1085.
    [175] A. N. Fernandes, C. A. P. Almeida, C. T. B. Menezes et al. Removal of methylene blue from aqueous solution by peat [J] . J. Hazard. Mater, 2007, 144(1-2): 412-419.
    [176] S. Preethi, A. Sivasamy, S. Sivanesan et al. Removal of safranin basic dye from aqueous solutions by adsorption onto corncob activated carbon [J] . Ind. Eng. Chem. Res, 2006, 45(22): 7627-7632.
    [177] C. A. P. Almeida, C. Machado, N. A. Debacher. Adsorption of methylene blue as a model for the use of barro branco as an alternative adsorbent for color removal, in surface and colloid science[M] Springer Berlin / Heidelberg: F. Galembeck, Editor, 2004: 241-251.
    [178] V. K. Gupta, A. Mittal, L. Kurup et al.Adsorption of a hazardous dye, erythrosine, over hen feathers [J] . J. Colloid Interface Sci,2006, 304(1): 52-57.
    [179] J. Wang, S. Zheng, Y. Shao et al. Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal [J] . J. Colloid Interface Sci, 2010, 349(1): 293-299.
    [180] S. Shin, J. Jang. Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions [J] . Chem. Commun, 2007, (41): 4230-4232.
    [181] M. Konerack, P. Kopcansk, M. Antalík et al. Immobilization of proteins and enzymes to fine magnetic particles [J] . J. Magn. Magn. Mater, 1999, 201(1-3): 427-430.
    [182] Z. Bouberka, A. Khenifi, N. Benderdouche et al. Removal of supranol yellow 4GL by adsorption onto Cr-intercalated montmorillonite [J] . J. Hazard. Mater, 2006, 133(1-3): 154-161.
    [183] Y. S. Ho, G. McKay. Sorption of dye from aqueous solution by peat [J] . Chem. Eng. J, 1998, 70(2): 115-124.
    [184] H. M. F. Freundlich. ber die adsorption in l sungen [J] . Z. Phys. Chem, 1906, 57(A): 385– 471.
    [185] I. Salame, T. J. Bandosz. Role of surface chemistry in adsorption of phenol on activated carbons [J] . J. Colloid Interface Sci, 2003, 264(2): 307-312.
    [186] R. Gündogan, B. Acemioglu, M. H. Alma. Copper (II) adsorption from aqueous solution by herbaceous peat [J] . J. Colloid Interface Sci, 2004, 269(2): 303-309.
    [187] A. S. ?zcan, B. Erdem, A. ?zcan. Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite [J] . Colloids Surf. A, 2005, 266(1-3): 73-81.
    [188] Y. Seki, K. Yurdako?. Adsorption of promethazine hydrochloride with KSF montmorillonite[J] . Adsorption, 2006, 12(1): 89-100.
    [189] S. Chandrasekhar, P. Pramada. Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature [J] . Adsorption, 2006, 12(1): 27-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700