基于石墨烯的电化学传感器的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以石墨烯为电极修饰材料,研究了其在电化学传感与其对亚铁血红素类蛋白质过氧化氢酶、血红蛋白的直接电化学影响,并成功的构建了NO的电化学传感器和氧化还原蛋白质/石墨烯修饰电极。实现了对一些生物分子如过氧化氢、葡萄糖等的生物传感。
     全文共分为四章:(1)首先对石墨烯的结构、性质、制备方法与应用作了介绍,并对电化学传感器的分类与发展等方面做了综述,最后提出了论文设想。(2)用电化学还原的方法制备出了还原石墨烯修饰电极,并对NO有良好的电催化氧化响应,线性范围是7.20×10~(-7)~7.84×10~(-5) mol/L,相关系数为0.9986。当电极上修饰一层Nafion膜后,能实现对NO的选择性测定。(3)制备了壳聚糖(Cs)分散的化学还原的石墨烯(GR)修饰电极,然后经过浸泡,使过氧化氢酶吸附于Cs-GR修饰电极表面,利用电化学方法研究了过氧化氢酶的直接电子传递和对H_2O_2、葡萄糖的电催化还原性能。实验结果显示, H2O2浓度在1~39μmol/L范围内呈线性,检测限0.2μM;葡萄糖在2.0×10~(-6)~2.06×10~(-4)mol/L内呈线性,检测限2.7μM。
     (4)将Cs-GR修饰电极浸泡于血红蛋白(Hb)溶液中,制备出了Hb/Cs-GR修饰电极,并研究了Hb的直接电化学行为,并发现其对NO有较好的电催化性能。
In this thesis, graphene was modified on the surface of substrate electrodes. Then we studied the application of graphene in electrochemical sensing. The biomolecules such as catalase, hemoglobin, were adsorbed on graphene modified electrode surface and their electrochemical characteristics were also investigated. NO electrochemical sensor and the redox protein/graphene modified electrodes were constructed. Thus, bio-sensing of a number of biological molecules such as hydrogen peroxide, glucose were achieved.
     The thesis consisted of four chapters: (1) First, the structure, properties, preparation methods and applications of graphene are introduced. The classification and development of electrochemical sensors had been described. Then, the research proposal for this thesis was presented. (2) Graphene modified electrode was prepared through electrochemically reducing graphene oxide on the surface of glassy carbon electrode. The modified electrode owns strong catalytic activity towards the oxidation of nitric oxide. The linear range is from 7.2×10~(-7) to 7.84×10~(-5)mol/L,with a limit of detection of 2.0×10~(-7)mol/L.With further modification of Nafion, the determination is free from the interference of nitrite. (3) Catalase was adsorbed onto the surface of Cs-GR modified electrode by immersing the Cs-GR modified electrode in catalase’s PBS solution. Then the direct electron transfer between catalase and electrode was observed, and bioelectrocatalysis of catalase for H_2O_2 and glucose were investigated. Experimental results show that the linear range of H2O2 is 1-39μM with a detection limt of 0.2μM, and the glucose is from 2.0×10~(-6) to 2.06×10~(-4) mol/L with a limit detection of 2.7μM. (4) Hb/Cs-GR electrode was fabricated, then the direct electron transfer of Hb and its bioelectrocatalysis to NO was studied.
引文
[1] Chae H K, Siberio - Perez D Y, Kim J , et al.“A route to high surface area, porosity and inclusion of large molecules in crystals”, Nature, 2004, 427(6974): 523 - 527.
    [2]杨永岗,陈成猛,氧化石墨烯及其与聚合物的复合.新型碳材料. 2008, 23 (3):193-220.
    [3] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj,“Graphene : The new two-dimensional nanomaterial”, Angew. Chem. Int. Ed., 2009,48(42):7752-7777.
    [4] Novoselov K S,Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V, Grigorieva I V,Firsov A .“Electric field effect in atomically thin carbon films”, Science,2004,306(5696):666-669.
    [5] Meyer C J, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S,“The structure of suspended graphene sheets. Nature”, 2007, 446:60-63.
    [6] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, De Heer W A,“Electronic confinement and coherence in Patterned epitaxial graphene”, Science, 2006, 312: 1191-1196.
    [7] Lee C, Wei X, Kysar J W, Hone J,“Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, 2008, 321: 385-388.
    [8] Geim A. K and Novoselov K .S.,“The rise of graphene”, Nat. Mater., 2007, 6: 183-191.
    [9] Novoselov K S, Jiang D, Schedin F,“Two-dimensional atomic crystals”, PNAS, 2005, 102: 10451-10453.
    [10]李旭,赵卫峰,陈国华.石墨烯的制备与表征,研究材料导报, 2008, 22: 48-52.
    [11] Li G Q, Cai J, Deng J K, Rocha A R, Sanvito S,“The difference of the transport properties of graphene with corrugation structure and with flat structure”,Appl. Phys. Lett., 2008, 92: 163104.
    [12] Kane C L,“Erasing electron mass”,Nature, 2005, 438: 168-170.
    [13] Heersehe H B, et al,“Bipolar supercurrent in graphene”,Nature, 2007, 446: 56-59.
    [14] Nair R R, Blake P,Grigorenko A N, Novoselov K S, Booth T J, Stauber T, PeresN M. R., Geim A. K.“Fine structure constant defines visual transparency of graphene”,Science, 2008, 320: 1308.
    [15] Li Z Q, Henriksen E A, Jiang Z et al,“Dirac charge dynamics in graphene by infrared spectroscopy”,Nat. Phys., 2008, 4: 534-535.
    [16] Meyer J C , Geim A . K, Kat snelson M. I , et al .,“The st ructure of suspended graphene sheets”, Nature , 2007 , 446 (7131): 60-63.
    [17] Hummers W S, Offeman R E. ,“Synthesis of graphene - based nanosheets via chemical reduction of exfoliated graphite oxide”, J. Am. Chem. Soc, 1958, 6: 1339.
    [18] Staudenmaier L.,“Verfahren zur Darstellung der graphitsaure”,Ber. Dtsch. Chem. Ges. , 1898 , 31: 1481 -1487.
    [19] Li D, MullerM B, Gilje S, et al.,“Processable aqueous dispersions of graphene nanosheets”, Nat. Nanotechnol., 2008, 3: 101 - 105.
    [20] L iu K P, Zhang J J , Yang G H, et al.“Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldim-ethylammonium chloride) functionalized graphene sheets/ room temperature ionic liquid composite film”, Electrochem.Commun, 2010, 12 (3): 402 - 405.
    [21] Fan X. B., Peng W. C., Zhang F B., et al.,“graphite Oxide under Alkaline Conditions:A green Route to graphene Preparation”, Adv. Mater., 2008, 8: 1679-1682.
    [22] Bourlinos A. B., Gournis D., et al.,“Graphite Oxide: Chemical Reduction to graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids”, Langmuir, 2003, 19(15): 6050-6055.
    [23] Kim K, Zhao Y, J ang H , et al.,“Large-scale pattern growth of graphene films for stretchable transparent elect rodes”,Nature , 2009 , 457 : 706-710.
    [24] Dacheng Wei , Yunqi Liu , Hongliang Zhang , et al.,“Scalable synthesis of few-Layer graphene ribbons with cont rolled morphologies by a template method and their applications in nanoelectromechanical switches”, J. Am. Chem. Soc. , 2009 , 131(31) : 11147-11154.
    [25] Kim K S , Zhao Y , J ang H , et al.,“Largescale pattern growth of graphene films for stretchable transparent electrodes,Nature”, 2009 , 457 (7230) : 706-710.
    [26] Reina A, Jia X T, Ho J, et al.“Large area , few-layer graphene films on arbit rary subst rates by chemical vapor deposition”,Nano Lett , 2009 , 9 (1) : 30-35.
    [27] Chen , et al., Preprint at ( arxiv . org/ ftp / arxiv/ papers, 2009, 1136: 0901-0901.
    [28] Balasubramanian K, FriedrichM, J iang C Y, et al.,“Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes”, Adv. Mater. 2003, 15: 1515 - 1518.
    [29] Guo H L, Wang X F, Qian Q Y, et al.,“A green approach to the synthesis of graphene nanosheets”, ACS. Nano., 2009, 3 (9): 2653 - 2659.
    [30] Wang Z J , Zhou X Z, Zhang J, et al.,“Direct Electrochemical Reduction of Single - Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase”,J. Phys. Chem. C., 2009, 113: 14071-14075.
    [31] Zhang Y B , Tan Y W , Stormer H L , et al.,“Experimental observation of the quantum hall effect and berry’s phase in graphene”,Nature , 2005 , 438 (7065) : 201-204.
    [32] Lee C , Wei X D , Kysar J. W., et al.,“Measurement of t he elasticproperties and int rinsic st rengt h of monolayer graphene”,Science , 2008 , 321 (5887) : 385-388.
    [33] Y Wang, Z Shi, Y Huang, Y Ma, C Wang,M Chen,Y Chen,“Supercapacitor Devices Based on Graphene Materials”, J. Phys. Chem. C, 2009, 113(30): 13103-13107.
    [34] T. Y. Kim, H. W. Lee, M. Stoller, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, K S. Suh,“High-performance supercapacitors basedon poly(ionic liquid)-modified graphene electrodes”, ACS. Nano, 2011, 5 (1): 436-442
    [35] Qing Lu, Xiaochen Dong, Lain-Jong Li, Xiao Hu,“Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet-enzyme composite film”, Talanta, 2010, 82(14) : 1344-1348.
    [36]Ke-Jing Huang, De-Jun Niu, Jun-Yong Sun, Cong-Hui Han, Zhi-Wei Wu, Yan-Li Li, Xiao-Qin Xiong,“Novel electrochemical sensor based on functionalized GRaphene for simultaneous determination of adenine and guanine in DNA”,Colloids and Surfaces B: Biointerfaces, 2011, 82(2) : 543-549.
    [37]Xinhuang Kang, Jun Wang, Hong Wu, Ilhan A. Aksay, Jun Liu, Yuehe Lin,“Glucose Oxidase-Graphene–chitosan modified electrode for direct electrochemistry and glucose sensing”, Biosensors and Bioelectronics, 2009, 25(4): 901-905.
    [38]Cheng Xiang Lim, Hui Ying Hoh, Priscilla Kailian Ang, Kian Ping Loh,“Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects”, Anal. Chem., 2010, 82(17): 7387-7393.
    [39] Ramendra Sundar Dey, C. Retna Raj,“Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material”, J. Phys. Chem. C., 2010, 114(49): 21427-21433
    [40] Changsheng Shan, Huafeng Yang, Jiangfeng Song, Dongxue Han, Ari Ivaska, Li Niu,“Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”, Anal. Chem., 2009, 81(6): 2378-2382.
    [41] Novoselov K S, Geim A K, Morozov SV, et al.,“Electric field effect in atomically thin carbon films”, Science, 2004, 306: 666 - 669.
    [42] Echtermeyer T J, LemmeM C, Bolten J, et al.,“Graphene field-effect devices”, Eur. Phys. J. Special Topics, 2007, 148: 19-26.
    [43] Gyubong Kim, Seung-Hoon Jhi, Ca-Decorated“Graphene-based three-dimensional structures for high-capacity hydrogen storage”, J. Phys. Chem. C., 2009, 113(47): 20499-20503.
    [44]刘长春,崔大付,电化学传感器及其在芯片实验室中的应用.传感器技术,2003,22(7): l-6
    [45]赵长文,电化学传感器及其临床应用的进展[M].国外医学:药学分册,1993,20(l): 11-15
    [46] Riegel J, Neumann H, Wiedenmann H. M.“Exhaust gas sensors for automotive emission control”,Solid State Ionics, 2002, 9(152-153): 783-800.
    [47] Severinghaus, J. W, Bradley, AF.,“Electrodes for blood Po2 and Pco2 determination”. J. Appl. Physiol., 1958, 13: 515-520.
    [48] Ramamoorthy, R., P. K. Dutta, and S. A. Akbar,“Oxygen sensors: materials, methods, designs and applications”, J. Mater. Sci., 2003, 38:4271-4282.
    [49] Chang,S., Stetter,J.,“Electrochemical NO2 gas sensor: model and mechanism for the electroreduction NO2”, Electroanalysis, 1990, 2: 359-365.
    [50] RenéKnake, Peter C. Hauser,“Portable instrument for electrochemical gas sensing." Anal. Chim. Acta., 2003, 500: 145-153.
    [51]易惠中,离子传感器用敏感材料.仪表材料. 1990,21(2): 111-117.
    [52]司士辉,生物传感器[M].北京:化学工业出版社,2003, 1-3.
    [53] Killard A. J, Smyth M. R.“Separation-free electrochemical immunosenso strategies”, Analytical letters, 2000, 33(8): 1451-1465.
    [54] L. Murphy,“Biosensors and bioelectrochemistry”, Current Opinion in Chemical Biology, 2006, 10(2): 177-184.
    [55] Drummond T. G, Hill M. G., Barton J. K.“Electrochemical DNA sensors”, Nature Biotechnology, 2003, 21(10): 1192-1199.
    [56] Kerman K, Kobayashi M, Tamiya E.,“Recent trends in electrochemical DNAbiosensor technology”, Meas. Sci. Technol, 2004, 15: R1-R11.
    [57] Yang Bo, Huiyan Yang, Ying Hu, Tianming Yao, Shasheng Huang,“A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires”, Electrochimica Acta, 2011, 56(6): 2676-2681.
    [58]陈宁,焦国嵩,牟宇翔等.BOD微生物传感器和BOD智能生物检测仪的研究,中国环境监测, 2002, 18(2): 48-50
    [59] Freire R S, Thongngamdee S, Duran N, et. a1.,“Mixed enzyme (laccase/tyrosinase)-based remote electrochemical biosensor for monitoring phenolic compounds”,Analyst, 2002, 127(2): 258-26l.
    [60] Chen X, Cheng G. J, Dong S. J.,“Amperomtric tyrosinase biosensor based on a sol-gel-derived titanium oxide-copolymer composite matrix for detection of phenolic compounds”, Analyst, 2001, 126(10): 1728-1732.
    [61] Damgaard L R, Larsen L H, Revsbech N P.,“Microscale biosensors for environmental monitoring”, TrAC, 1995, 14(7): 300-303.
    [62]刘小兵,蒋柏泉,刘海.生物传感器应用于环境监测的新进展[J].环境科学与技术,2004, 27(4): 111-113.
    [63]曹焕生,徐明芳,生物传感器在渔业监测中的研究进展,海洋环境科学, 2002, 21(1): 75-80.
    [64] Normura Y, Ikebukuro K, Yokoyama K, et al.,“A novel microbial sensor for anionic surfactant determination”, Anal. Lett., 1994, 27(15): 3095.
    [65] VolPe E,CapPelliG,GrassiM,et al.,“Gene expression profiling of human macroPhages at late time of infection with Mycobacterium tuberculosis”, Immunology, 2006, 118(4): 449-460.
    [66]蔡定域,郭鼎力,方闻一,吕太平,张艳,吴桂仙,“谷氨酸生物传感器的研制及谷氨酸发酵液中谷氨酸含量的测定”,化学传感器,1989,9(1):20-25.
    [67] J. A. Munoz Leyva, J. L. Hidalgo Hidalgo de Cisneros, D. Garcia Gomez de Barreda,“A coated piezoelectric crystal sensor for acetic acid vapour determination“, Talanta, 1993, 40(11) : 1725-1729.
    [68] Yu Bai, Weiwei Yang, Ying Sun, Changqing Sun,“Enzyme-free glucose sensor based on a three-dimensional gold film electrode”, Sensors and Actuators B: Chemical, 2008, 134(2):471-476.
    [69]彭承林,生物医学传感器原理及应用.高等教育出版社, 2000.
    [70]彭图治,程琼, TPD修饰电化学生物传感器测定DNA片段序列.化学学报, 2001, 59(7): 1125.
    [71] L.Charpentier, N.E.L. Murr.,“Amperometric determination of cholesterol in serum with use a renewable surface peroxidase electrode”, Anal. Chim. Acta., 1995, 18: 89-93.
    [72] Pastorino L, Caneva S. F, Giacomini M, et al.,“Development of a piezoelectric immunosensor for the measurement of paclitaxel”, Journal of Immunological Methods, 2006, 313(1): 191-198.
    [73] SuzukiT.M., [J].Chem. Sens., 1991, 7: 57-71.
    [1] Des R. Richardson , Hiu Chuen Lok,“The nitric oxide–iron interplay in mammalian cells: Transport and storage of dinitrosyl iron complexes”, Biochimica et Biophysica Acta (BBA) - General Subjects , 2008, 1780 (4): 638-651.
    [2]Borys W. Hrinczenko, Abdu I. Alayash, David A. Wink, Mark T. Gladwin, Griffin P. Rodgers, Alan N. Schechter,“Effect of nitric oxide and nitric oxide donors on red blood cell oxygen transport”,British Journal of Haematology, 2000, 100(2): 412-419.
    [3] H.F. Galley, N.R. Webster,“Nitric oxide in a nutshell: genetics, physiology and pathology”, Current Anaesthesia and Critical Care, 1998 , 9(4): 209-213.
    [4] Kenny K. K. Chung , Karen K. David,“Emerging roles of nitric oxide in neurodegeneration”, Nitric Oxide, 2010, 22(4): 290-295.
    [5] Ebru Karpuzoglu, S. Ansar Ahmed,“Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis”, Nitric Oxide, 2006, 15(3): 177-186.
    [6] Michael A. Titheradge,“Nitric oxide in septic shock”, Biochimica et Biophysica Acta , 1999, 1411: 437-455.
    [7]Li Zhang, Yonghong Ni, Xinghong Wang, Guangchao Zhao,“Directelectrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based onα-Fe2O3 nanoparticles-chitosan composite”, Talanta, 2010, 82(1): 196-201.
    [8] Yun-Chun Liu, Shi-Qiang Cui, Jun Zhao, Zhou-Sheng Yang,“Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide”, Bioelectrochemistry, 2007, 70(2) : 416-420.
    [9] Yanxia Xu, ChengguoHu, ShengshuiHu,“A reagentless nitric oxide biosensor based on the direct electrochemistry of hemoglobin adsorbed on the gold colloids modified carbon paste electrode”, Sensors and Actuators B, 2010, 148(1): 253–258.
    [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.Grigorieva, A. A. Firsov,“Electric Field Effect in Atomically Thin Carbon Films”, Science, 2004, 306(5696): 666-669.
    [11]D. W. Boukhvalov, M. I. Katsnelson,“Chemical Functionalization of graphene with Defects”, Nano Lett., 2008, 8 (12): 4373-4379.
    [12] X. L. Li, X. R. Wang, L. Zhang, S. Lee, H. J. Dai,“Chemically Derived, Ultrasmooth graphene Nanoribbon Semiconductors”Science, 2008, 319(5867): 1229-1232.
    [13]Hui-Lin Guo, Xian-Fei Wang, Qing-Yun Qian, eng-Bin Wang, Xing-Hua Xia,“A green approach to the synthesis of graphene nanosheets”, ACS. Nano., 2009, 3 (9): 2653-2659.
    [14] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth,“The structure of suspended graphene sheets”,Nature , 2007, 446: 60-63.
    [15]Moussy F, Jakeway S, Harrlson D. J, Rajottet R. V.,“In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing”, Anal. Chem., 1994, 66(22): 3882-3888.
    [16]Moussy F, Harrison D .J.,“Prevention of the Rapid Degradation of Subcutaneously Implanted Ag/AgCl Reference Electrodes Using Polymer Coatings”, Anal. Chem., 1994, 66(15): 74-679.
    [17]鲜仲跃,应向阳,张文,罗敏,金利通,高等学校化学学报,1998,19(16):886.
    [1] F. A. Armstrong, G. S. Wilson,“Recent developments in faradaic bioelectrochemistry electrochima”, Acta , 2000, 45(15-16): 2623-2645.
    [2] D. M. Sun, C. X. Cai, X. G. Li, W. Xing, T. H. Lu,“Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon”, J. Electroanal.Chem., 2004, 566(2): 415-421.
    [3] Y. D. Zhao, W. D. Zhang, H. Chen, Q. M. Luo,“Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode“, Sens. Actuator. B, 2002, 87(1): 168-172.
    [4]Y. T. Kong, M. N. Boopathi, Y. B. Shim,“Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode”, Biosens. Bioelectron, 2003, 19(3): 227-232.
    [5]S. S. Razola, B. L. Ruiz, N. M. Diez, H. B. Mark Jr., J. M. Kauffmann,“Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode”, Biosens. Bioelectron, 2002, 17(11-12): 921-928.
    [6]E. E. Ferapontova, L. Gorton,“Effect of proton donors on direct electron transfer in the system gold electrode–horseradish peroxidase”, Electrochem. Commun, 2001, 3(12): 767-774.
    [7]J. F. Rusling,“Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films”,Acc. Chem. Res, 1998, 31(6): 363-369.
    [8]P. Nicholls, G. R. Schonbaum,“The Enzymes“, Academic Press, 1963, 158-159.
    [9]M. R. Murthy, T. J. Reid, A. Sicignano, N. Tanaka, M. G. Rossmann,“Structure of beef liver catalase”, J. Mol. Biol, 1981, 152(2): 465-499.
    [10]Hui-JunJiang, HuiYang, D. L. Akins,“Direct electrochemistry and electrocatalysis of catalase immobilized on a SWNT-nanocomposite film”, Journal of Electroanalytical Chemistry, 2008, 623(2) : 181-186.
    [11] Abdollah Salimi, Ensiyeh Sharifi , Abdollah Noorbakhsh, Saied Soltanian,“Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide”, Biophysical Chemistry, 2007, 125(2-3): 540-548.
    [12]Parvaneh Rahimi, Hossain-Ali Rafiee-Pour, Hedayatollah Ghourchian,Parviz Norouzi, Mohammad Reza Ganjali,“Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry”, Biosensors and Bioelectronics, 2010, 25(6): 1301–1306.
    [13]Rong Zhijiang, Tian Yanni,山西大学学报(自然科学版) 2005, 28(4): 383- 387.
    [14]Ke-Jing Huang,De-Jun Niu,Xue Liu,Zhi-Wei Wu,Yang Fan,Ya-Fang Chang,Ying-Ying Wu,“Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor”, Electrochimica Acta, 2011,56(7):2947-2953.
    [15] W. S. Hummers, R E., Offeman,“Preparation of Graphitic Oxide”, J. Am. Chem. Soc, 1958, 80(6): 1339.
    [16]Chen X, H.Xie, J. Kong, J. Deng,“Characterization for didodecyl dimethyl ammonium bromide liquid crystal film entrapping catalase with enhanced direct electron transfer rate”, Biosens Bioelectron, 2001,16(1-2):115-120.
    [17]Zhang Z, S. Chouchane, R. S. Magliozzo, J. F. Rusiling.,“Direct voltammetry and catalysis with mycobacterium tuberculosis catalase?peroxidase, peroxidases, and catalase in lipid films”, Anal. Chem., 2002, 74(1): 163-170.
    [18] M. R. Murthy, T. J. Reid, A. Sicignano, N. Tanaka, M. G. Rossmann,“Structure of beef liver catalase”J. Mol. Biol, 1981, 152(2): 465-499.
    [19]R.W. Murray,“Chemically modified electrodes”, Electroanalytical Chemistry, 1984, 13:191-368.
    [20] Bard A. J., Faulkner L. R.,“Electrochemical Methods”, 1980:54-55.
    [21] E. Laviron,“Voltammetric methods for the study of adsorbed species”,Electroanalytical Chemistry, 1982, 12:53-157.
    [22] L. Meites, Polarograhoic Techniques. 1965.
    [23] A. M. Bond,“Modern polarograhoic methods”analytical chemistry, 1980, 27-45.
    [24] Wang Yu,Huang Junhua, Zhang Chunguang, et. al.,“Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles Co-modified carbon fiber microelectrode”, Electroanalysis, 1998, 10(11): 776-778.
    [25] Rodrigo R, Rivera G.,“Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine”, Free Radical .Biol. Med., 2002, 33(3): 409-422.
    [26] Eugenii Katz, Vered Heleg-Shabtai, Bilha Willner, Itamar Willner, Andreas F. Bückmann,“Electrical contact of redox enzymes with electrodes: novel approaches for amperometric biosensors”, Bioelectrochem. Bioenerg, 1997, 42(1): 95-104.
    [27] H. Y. Gu, A. M.Yu, H. Y. Chen,“Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode”,J. Electroanal. Chem., 2001, 516(1-2):119-126.
    [28] Alayash A. I, Ryan B .A, Eich R. F, Olson J. S, Cashon R. E.,“Reactions of sperm whale myoglobin with hydrogen peroxide: effects of distal pocket mutations on the formation and stability of the ferryl intermediate”, J. Biolc. Chem., 1999, 274: 2029-2037.
    [29] Anthony P. F. Turner, John C. Pickup,“Diabetes -mellitus-biosensors for research and management”, Biosensors, 1985, 1(1): 85-115.
    [30] Updike S. J., Hicks G. P.,“The Enzyme Electrode”, Nature,1967,214: 986-988.
    [1] Ching-Hsuan Tsai, Chien Ho,“Recombinant hemoglobins with low oxygen affinity and high cooperativity”, Biophysical Chemistry, 2002, 98, (1-2): 15-25.
    [2] Parak F. G, Nienhaus G .U.,“A paradigm in the study of prote in dynamics”, Chemphyschem Myoglobin, 2002, 3: 249-254.
    [3] Cao W. X., Christian J. F, Champion P. M, et. al.,“Water penetration and binding to ferric myoglobin”, Biochemistry, 2001, 40: 5728-5737.
    [4]T opoglidis E., Astuti Y., Duriaux F., Gratzel M., Durrant J.R.,“Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes”,Langmuir, 2003, 19(17): 6894-6900.
    [5] Hong-Yuan Chen, Huang-Xian Ju, Yi-Gang Xun ,“Methylene Blue/Perfluorosulfonated Ionomer Modified Microcylinder Carbon Fiber Electrode and Its Application for the Determination of Hemoglobin”,Anal. Chem. 1994, 66(24): 4538-4542.
    [6] Chunhai Fan, Genxi Li,Yi Zhuang,Jianquin Zhu, Dexu Zhu,“Iodide modified silver electrode and its application to the electroanalysis of hemoglobin”, Electroanalysis, 2000, 12(3): 205-208.
    [7] Trevin S., Bedioui F., Devynck J.,“New electropolymerized nickle porphyrin films.Application to the detection of nitric oxide in aqueous solution”, Electroanal. Chem., 1996, 408 :261-265.
    [8] Zhao Q, Zhang D, Ma H, Zhang M, Zhao Y, Jing P, Zhu Z, Wan X, Zhuang Q,“Frontiers in bioscience:a journal and virtual library”, 2005, 10: 326.
    [9] Chenxin Cai, Jing Chen,“Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode”, Analytical Biochemistry, 2004, 325(2): 285-292.
    [10] Lavrion E,“General expression of the linear potenial sweep voltammogram in the case of diffusionless electrochemical systems”, J. Electroanal. Chem., 1979, 101: 19-28.
    [11] L. Meites, Polarograhoic Techniques. 1965.
    [12]A. M. Bond,“Modern Polarograhoic Methods”, Analytical Chemistry, 1980, 27-45.
    [13] Han X. J., Huang W. M., Jia J. B., Dong S. J.,“Direct electrochemistry of hemoglobin egg-phosphatidylcholine films and its catalysis to H2O2”, Biosens .Bioelctron., 2002, 17: 741-746.
    [14] Mimica, D., Zagal, J. H., Bedioui, F.,“Electrocatalysis of nitric oxide reduction by hemoglobin entrapped in surfactant films”, Electrochem. Commun., 2001, 3: 435-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700