单壁碳纳米管电极的制作、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文较系统、深入地研究了单壁碳纳米管(SCNT)修饰电极的制作方法和电化学特性,以细胞色素c为代表,研究了血红素类蛋白质在SCNT上的固定及直接电化学性能;研究了SCNT上基于氧化酶的生物电化学传感器的制作及性能。主要内容如下:
     1.研究了SCNT修饰玻碳(SCNT/GC)电极的制备方法。用扫描电镜、拉曼光谱、红外光谱等技术对SCNT进行了表征,考察了SCNT/GC电极的交流阻抗特性。实验结果表明,与裸GC电极相比,SCNT/GC电极的电化学反应电阻显著降低,表明SCNT/GC修饰电极表面的电子转移速率较快。
     2.研究了细胞色素c(Cyto c)在SCNT表面的固定及直接电化学。运用吸附方法将Cyto c固定在SCNT表面;红外光谱(IR)显示被固定的Cyto c能保持原有的空间结构,没有发生变性;循环伏安测试表明,Cyto c在SCNT表面能发生稳定的直接电子转移,其i~E曲线上出现一对良好的、几乎对称的氧化还原峰;式量电位E~(0')基本不随扫速的增加而变化(在20~120mV/s的扫速范围内,E~(0')平均值为0.165±0.001V)。进一步的实验结果表明,吸附在SCNT表面的Cyto c仍能保持其对H_2O_2电化学还原的生物电催化活性。
     3.研究了SCNT上基于葡萄糖氧化酶(GOx)生物电化学传感器的制作及性能。用Nafion将GOx固定在SCNT表面形成Nafion-GOx-SCNT/GC酶电极,用AFM和红外光谱对GOx在SCNT表面的状态进行了表征;考查了Nafion-GOx-SCNT/GC电极对β-D(+)-葡萄糖的生物电催化活性。实验结果表明,吸附在SCNT表面上的GOx没有发生变性,仍保持其对葡萄糖氧化良好的生物电催化活性。在pH=8和313K时GOx具有最佳的催化氧化效果。进一步实验结果表明Nafion-GOx-SCNT/GC电极可用来作为葡萄糖氧化酶的生物传感器,在0.5mmol/L~5.5mmol/L范围内,催化电流随浓度呈线性。
This thesis investigated the fabrication and characterization of singled-walled carbon nanotube modified electrode (SCNT/GC) electrode. Extensive studies were made on the applications of the electrodes to immobilization and direct electrochemistry of heme-contained protein (Cyto c) on the surface of SCNT. The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins. The electrochemical biosensor based on immobilization of oxidase (glucose oxidase, GOx) on SCNT was fabrication and its performances were also characterized. The main results of this research were expressed as follows:
    1. A single-walled carbon nanotube modified electrode (SCNT/GC) was fabricated and characterized by techniques of scan electron microscopy (SEM), Raman spectrum, FT-IR spectroscopy and Electrochemical impedance spectroscopy (EIS). The results showed that the electrochemical reaction resistance of SCNT/GC electrode was much lower than that of bare GC electrode (in the systen of 5 mmol/L Fe(CN)_6~(3-/4-) + 0.1 mol/L KCl), indicating that the rate of the electrochemical reaction of Fe(CN)_6~(3-/4-) was rapid at SCNT in comparison with that at bare GC electrode.
    2. Cytochrome c (Cyto c) was immobilized on the surface of the single-wall carbon nanotube (SCNT) by the method of adsorption. Infrared spectroscopy indicated that Cyto c remained in its original structure and did not undergo structural change after its immobilization on the SCNT. The direct electrochemistry of Cyto c, which was adsorbed on the surface of the SCNT, was studied by cyclic voltammetry. The voltammetric results from demonstrated that the SCNT had promotional effects on the direct electron transfer of Cyto c and also indicated that the immobilized Cyto c retained its bioelectrocatalytic activity to the reduction of H_2O_2. This modified electrode might be used in development of new biosensors and the biofuel cells.
引文
[1] J. D. Newman, A. P. F. Tumer, Home blood glucose biosensors: a commercial perspective, Biosens. Bioelectr, 2005, 20(12), 2435-2453.
    [2] G. W. J. Harwood, C. W. Pouton, Amperometric enzyme biosensors for the analysis of drugs and metabolites, Adv. Drug Deliv. Rev, 1996, 18(2), 163-191.
    [3] J. Wang, Amperometric biosensors for clinical and therapeutic drug monitoring: a review, J. Pharm. Biomed. Anal, 1999, 19(1), 47-53.
    [4] G. S. Wilson, Y. Hu, Enzyme-Based Biosensors for in Vivo Measurements, Chem. Rev, 2000, 100, 2693-2704.
    [5] S. Sole, S. Alegret, Environmental toxicity monitoring using electrochemical biosensing systems, Environmental Science and Pollution Research International, 2001, 8, 256-264.
    [6] M. I. Prodromidis, M. I. Karayannis, Enzyme based amperometric Biosensors for food analysis, Electroanalysis, 2002, 14, 241-261.
    [7] M. S. Alaejos, F. J. G. Montelongo, Application of Amperometric Biosensors to the Determination of Vitamins and α-Amino Acids, Chem. Rev, 2004(7), 104, 3239-3265.
    [8] G. De Oliveira Neto, L. Rover Junior, L. T. Kubota, Electrochemical Biosensors For Salycilate And Its Derivatives Determination In Clinical And Pharmaceutical Samples, Electroanalysis, 1999, 11, 527-533.
    [9] A. Fersht Enzyme Structure and Mechanism; W. H. Freeman and Co.: San Francisco, 1977.[10] M. Dequaire, B. Limoges, J. Moiroux, J.-M. Saveant, Mediated Electrochemistry of Horseradish Peroxidase. Catalysis and Inhibition, J. Am. Chem. Soc, 2002, 124(2), 240-253.
    [11] W. J. Albery, A. R. Hillman, Transport and kinetics in modified electrodes, J. Electroanal. Chem., Interfac. Chem, 1984, 170, 27-49.
    [12] P. N. Bartlett, K. F. E. Pratt, Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes Part I: Redox mediator entrapped within the film, J. Electroanal. Chem, 1995, 397, 61-78.
    [13] L. D. Mell, J. T. Maloy, Model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system, Anal. Chem, 1975, 47 (2), 299-307
    [14] J. K. Leypoldt, D. A. Gough, Model of a two-substrate enzyme electrode for glucose, Anal. Chem, 1984, 56 (14), 2896-2904.
    [15] K. Yokoyama, Y. Kayanuma, Cyclic Voltammetric Simulation for Electrochemically Mediated Enzyme Reaction and Determination of Enzyme Kinetic Constants, Anal. Chem, 1998,70 (16), 3368-3376.
    [16] M. Rudolph, D. P. Reddy, S. W. Feldberg, A Simulator for cyclic voltammetric response, Anal. Chem, 1994, 66, 589A-600A.
    [17] R. Antiochia, I. Lavagnini, F. Magno, Application to the Diaphorase-Nicotinamide Adenine Dinucleotide Sytem with p-Methylaminophenosulfate as an Electron Carrier Autor, Electroanalysis, 2001, 13, 582-586.
    [18] C. Bourdillon, C. Demaille, J. Moiroux, J. M. Saveant, New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates, J. Am. Chem. Soc, 1993, 115(1), 1-10.
    [19] C. Bourdillon, C. Demaille, J. Moiroux, J.-M. Saveant, From Homogeneous Electroenzymatic Kinetics to Antigen-Antibody Construction and Characterization of Spatially Ordered Catalytic Enzyme Assemblies on Electrodes, Acc. Chem. Res, 1996, 29,529-535.
    [20] B. Limoges, J. Moiroux, J.-M. Saveant, Kinetic control by the substrate and/or the cosubstrate in electrochemically monitored redox enzymatic homogeneous systems, J.??Electroanal. Chem, 2002, 521, 1-7.
    [21] C. Bourdillon, C. Demaille, J. Gueris, J. Moiroux, J. M. Saveant, A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment, J. Am .Chem .Soc, 1993, 115 (26), 12264-12269.
    [22] B. Limoges, J. Moiroux, J.-M., Saveant, Kinetic control by the substrate and the cosubstrate in electrochemically monitored redox enzymatic immobilized systems, J. Electroanal. Chem, 2002, 521, 8-15.
    [23] C. Bourdillon, C. Demaille, J. Moiroux, J.-M. Saveant, Step-by-Step Immunological Construction of a Fully Active Multilayer Enzyme Electrode, J. Am. Chem. Soc, 1994, 116 (22), 10328-10329.
    [24] W. J. Albery, P. N. Bartlett, Amperometric enzyme electrodes. Part 1. Theory., J. Electroanal. Chem., Interfac. Chem, 1985, 194, 211-222.
    [25] M. J. Eddowes in Biosensors A Practical Approach; Oxford University Press: Oxford, 1990, 221-263.
    [26] M. J. Eddowes, H. A. O. Hill, Synthesis of meso- Substituted Porphyrins, J. Chem. Soc, Chem. Commun, 1977, 771-772.
    [27] P. Yeh, T. Kuwana, Reversible electrode reaction of Cytochrome c, Chemistry Letters, 1977, 1145-1148.
    [28] H. A. Heering, J. Hirst, F. A. Armstrong, Interpreting the Catalytic Voltammetry of Electroactive Enzymes Adsorbed on Electrodes, J. Phys. Chem B, 1998, 102 (35),6889-6902.
    [29] W. M. Clark The Oxidation-Reduction Potentials of Organic Systems; The Williams and Wilkins Company: Baltimore, 1960.
    [30] M. L. Meckstroth, B. J. Norris, W. R. Heineman, Mediator-Titrants for Thin-Layer Spectroelectrochemical Measurement of Biocomponent U. o'. and. n Values, Bioelectrochem. Bioenerg, 1981,8,63-70.
    [31] M. L. Fultz, R. A. Durst, Mediator Compounds for the Electrochemical Study of Biological Redox Systems, Anal. Chim. Acta, 1982, 140, 1-18.
    [32] B. A. Gregg, A. Heller, Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications, Anal. Chem, 1990, 62 (3), 258-263.
    [33] L. H. Guo, H. A. O. Hill, D. J. Hopper, G. A. Lawrance, G. S. Sanghera, Direct voltammetry of The Chromatium vinosum enzyme, sulfide: cytochrome C oxidoreductase(flavocytochrome c552), J. Biol. Chem, 1990,265, 1958-1963.
    [34] L. Avila, M. Wirtz, R. A. Bunce, M. Rivera, An electrochemical study of the factors responsible for the modulating the. reduction potential of putidaredoxin, J. Biol. Inorg. Chem, 1999, 4, 664-674.
    [35] F. A. Armstrong, H. A. O. Hill, B. N. Oliver, N. J. Walton, Direct electrochemistry of redox proteins at pyrolytic graphite electrodes, J. Am. Chem. Soc, 1984, 106, 921-923.
    [36] P. M. Allen, H. A. O. Hill, N. J. Walton, Surface modifiers for the promotions of direct electrochemistry of cytochrome, J. Electroanal. Chem., Interfac. Chem., 1984, 178, 69-86.
    [37] F. A. Armstrong, H. A. O. Hill, B. N. Oliver, Surface selectivity in the direct electrochemistry of redox proteins contrasting behaviour at edge and basal planes of graphite, J. Chem. Soc, Chem. Commun, 1984, 976-977.
    [38] J. Wang, Carbon-nanotube Based Electrochemical Biosensors, Electroanalysis, 2005, 17, 7-14.
    [39] D. Shan, C. Mousty, S. Cosnier, S. Mu, A composite poly azure B-clay-enzyme sensor for the mediated electrochemical determination of phenols, J. Electroanal. Chem, 2002, 537, 103-109.
    [40] Y. Zhou, N. Hu, Y. Zeng, J. F. Rusling, Heme Protein-Clay Films: Direct Electrochemistry and Electrochemical Catalysis, Langmuir, 2002, 18 (1), 211-219.
    [41] Z. Li, N. Hu, Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles, J. Electroanal. Chem, 2003, 558, 155-165.
    [42] E. Lojou, M. T. Giudici-Orticoni, P. Bianco, Direct electrochemistry and enzymatic activity of bacterial polyhemic cytochrome c_3, incorporated in clay films, J. Electroanal. Chem, 2005, 579, 199-213.
    [43] J. F. Rusling, Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films, Acc. Chem. Res., 1998,31,363-369.
    [44] M. Borsari, M. Cannio, G. Gavioli, A. Ranieri, Curr. Top., S-containing molecules films: characterization and use in direct electrochemistry of redox proteins, Electrochem, 2001, 8, 57-65.
    [45] E. Lojou, P. Bianco, Membrane electrodes for protein and enzyme electrochemistry Electroanalysis, 2004, 16, 1113-1121.
    [46] K. Narasimhan, L. B. Wingard, Enhanced direct electron transport with glucose oxidase immobilized on(aminophenyl)boronic acid modified glassy carbon electrode, J. Anal. Chem., 1986, 58, 2984-2987.
    [47] Odom T., Huang J., Kim P., Lieber C., Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62.
    [48] Wildoer J. W. G., Venama L. C., Rinzleer A. G., Smalley R. E., Dekker C., Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391, 59.
    [49] Saito R., Fujita M., Dresselhaus G., Dresselhars M. S., Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 1992, 60, 2204.
    [50] 杨全红,郑经堂,王茂章,张碧江,微孔炭的纳米孔结构和表面微结构,材料研究学报,2000,13(2),112.
    [51] Wang Q. Y., Johnson J. K., Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores, J. Chem. Phys., 1999, 110, 577.
    [52] Davis J. J., Green M. L. H., Hill H. A. O.; Leung Y. C., Sadler P. J., Sloan J., The immobilisation of proteins in carbon nanotubes, Inorganica Chimica Acta, 1998, 272, 261.
    [53] Ago H., Kugler T., Cacialli F., Salaneck W. R., Shaffer M. S. P., Windle A.H., Friend R. H., Work Fenction and Surface Functional Groups of Multiwall Carbon Nanotube, J. Phys Chem. B, 1999, 103, 8116.
    [54] Lago R. M., Tsang S. C., Lu K. L., Chen Y. K., Green M. L. H., Filling Carbon Nanotubes with small Palladium Metal Crystallites: the Effect of Surface Acid Group, J. Chem. Soc. Chem. Commun, 1995, 1355.
    [55] Rao C. N. R. Govindaraj A., Satishkumar B. C., Functionalised Carbon Nanotubes from Solutions, J. Chem. Soc. Chem. Commun, 1996, 1525.
    [56] Sumanasekera G. U., Allen J. L., Fang S. L., Loper A. L., Rao A. M. Eklund P. C., Electrochemical Oxidation of Single-wall Carbon Nanotube Bundles in Sulfuric Acid, J. Phys. Chem. B, 1999, 103, 4292.
    [57] Sano M., Kamino A., Kamura J. O., Shinkai S., Carbon Nanotubes Close the Loop, Science, 2001, 293, 1299.[58] Barisci J. N., Wallace G. G., Baughman R. H., Electrochemical Characteriztion of Single-Wall Carbon Nanotube Electrodes, J. Electrochem. Soc, 2000,147,4580.
    [59] Wang J., Li M, Shi Z., Li N., Gu Z., Direct Electrochemistry of Cytochrome c at Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes, Anal. Chem, 2002, 74, 1993.
    [60] Luo H., Shi Z., Li N., Gu Z., Zhuang Q., Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube film ona Glassy Carbon Electrode, Anal. Chem., 2001,73,915.
    [61] D. L. Williams, A. R. Doig, Jr., A. Korosi, Electrochemical-enzymatic analysis of blood glucose and lactate, Anal. Chem., 1970,42,118-121.
    [62] A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, A. P. F. Turner, Kinetic analysis of enzyme electrode response, Anal. Chem., 1984, 56 (4), 667-671.
    [63] L. D. Mell, J. T. Maloy, Amperometric response enhancement of the immobilized glucose oxidase enzyme electrode, Anal. Chem., 1976, 48 (11), 1597-1601.
    [64] P. N. Bartlett, K. F. E. Pratt, A study of the kinetics of the reaction between ferrocene monocarboxylic acid and glucose oxidase using the rotating-disc electrode, J. Electroanal.Chem., 1995,397, 53-60.
    [65] C. Bourdillon, C. Demaille, J. Moiroux, J.-M. Saveant, Catalysis and Mass Transport in Spatially Ordered Enzyme Assemblies on Electrodes, J. Am .Chem Soc, 1995, 117 (46), 11499-11506.
    
    [66] R. Hille, The Mononuclear Molybdenum Enzymes, Chem. Rev., 1996, 96 (7), 2757-2816.
    [67] J. Dias, M. Than, A. Humm, G. P. Bourenkov, H. D. Bartunik, S. Bursakov, J. Calvete, J. Caldeira, C. Carneiro, J. J. Moura, I. Moura, M. J. Romao, Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods, Structure, 1999, 7 (1), 65-79.
    [68] M. G. Bertero, R. A. Rothery, M. Palak, C. Hou, D. Lim, F. Blasco, J. H. Weiner, N. C. J. Strynadka, Insights into the respiratory electron transfer pathway from the. structure of nitrate reductase A, Nature Structural Biology, 2003,10,681-687.
    
    [69] M. Jormakka, D. Richardson, B. Byrne, S. Iwata, Architecture of NarGH Reveals a StructuralClassification of Mo-bis MGD Enzymes, Structure, 2004,12 (1), 95-104.
    [70] M. G. Bertero, R. A. Rothery, N. Boroumand, M. Palak, F. Blasco, N. Ginet, J. H. Weiner, N. C. J. Strynadka, Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase AJ, J. Biol. Chem, 2005, 280, 14836-14843.
    [71] L. J. Anderson, D. J. Richardson, J. N. Butt, Using Direct electrochemistry to probe rate limiting events during Nitrate reductase turnover, Faraday Discuss., 2000, 116, 155-169.
    [72] L. J. Anderson, D. J. Richardson, J. N. Butt, Catalytic protein film voltammetry from a. respiratory nitrate reductase provides evidence for complex electrochemical, Biochemistry, 2001,40,11294-11307.
    [73] S. J. Elliott, K. R. Hoke, K. Heffron, M. Palak, R. A. Rothery, J. H. Weiner, F. A. Armstrong, Voltammetric Studies of the Catalytic Mechanism of the Respiratory Nitrate Reductase from Escherichia coli: How Nitrate Reduction and Inhibition Depen, Biochemistry, 2004, 43, 799-807.
    [74] B. Frangioni, P. Arnoux, M. Sabaty, D. Pignol, P. Bertrand, B. Guigliarelli, C. Leger, In Rhodobacter sphaeroides Respiratory Nitrate Reductase, the Kinetics of Substrate Binding Favors Intramolecular Electron Transfer, J. Am. Chem. Soc, 2004, 126 (5), 1328-1329.
    [75] T. Ferri, A. Poscia, R. Santucci, Direct electrochemistry of membrane-entrapped horseradish peroxidase. Part I. A voltammetric and spectroscopic study, Bioelectrochem. Bioenerg., 1998,44, 177-181.
    [76] H. Liu, N. Hu, Heme Protein-Gluten Films: Voltammetric Studies and Their Electrocatalytic Properties, Anal. Chim. Acta, 2003,481, 91-99.
    [77] H.-H. Liu, Z.-Q. Tian, Z.-X. Lu, Z.-L. Zhang, M. Zhang, D.-W. Pang, Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films, Biosens. Bioelectr., 2004, 20,294-304.
    [78] G. Kenausis, Q. Chen, A. Heller, Electrochemical Glucose and Lactate Sensors Based on "Wired" Thermostable Soybean Peroxidase Operating Continuously and Stably at 37°C, Anal. Chem, 1997, 69(6), 1054-1060.
    [79] T. Ferri, S. Maida, A. Poscia, R. Santucci, A glucose biosensor based on electro-enzyme catalyzed oxidation of glucoseusing a HRP-GOD layered assembly, Electroanalysis, 2001, 13, 1198-1202.
    [80] A. E. G. Cass, Ed. Biosensors: A Practical Approach; Oxford University Press: Oxford, 1990.
    
    [81] B. R. Eggins Biosensors. An Introduction; Wiley: Chicheser, 1996.
    
    [82] L. Gorton, Editor Comprehensive Analytical Chemistry Volume XLIV: Biosensors and Modern Biospecific Analytical Techniques, 2005.
    [83] A. P. F. Turner, I. Karube, G. S. Wilson Biosensors. Fundamentals and Applications; Oxford University Press: Oxford, 1987.
    [84] L. Gorton, A. Lindgren, T. Larsson, F. D. Munteanu, T. Ruzgas, I. Gazaryan, Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors, Anal. Chim. Acta, 1999, 400, 91-108.
    [85] G. S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements, Biosens. Bioelectr., 2005,20 (12) ,2388-2403.
    [86] A. Heller, Integrated medical feedback systems for drug delivery, AIChE J., 2005, 51, 1054-1066.
    [87] E. Csoeregi, C. P. Quinn, D. W. Schmidtke, S.-E. Lindquist, M. V. Pishko, L. Ye, I. Katakis, J. A. Hubbell, A. Heller, Design, Characterization, and One-Point in vivo Calibration of a Subcutaneously Implanted Glucose Electrode, Anal. Chem., 1994,66, 3131-3138.
    [88] L. I. Netchiporouk, N. F. Shram, N. Jaffrezic-Renault, C. Martelet, R. Cespuglio, In Vivo Brain Glucose Measurements: Differential Normal Pulse Voltammetry with Enzyme-Modified Carbon Fiber Microelectrodes, Anal. Chem, 1996, 68,4358-4364.
    [89] D. W. Schmidtke, A. Heller, Accuracy of the One-Point in Vivo Calibration of "Wired" Glucose Oxidase Electrodes Implanted in Jugular Veins of Rats in Periods of Rapid Rise and Decline of the Glucose Concentration,Anal. Chem., 1998, 70,2149-2155.
    [90] T. Chen, K. A. Friedman, I. Lei, A. Heller, In Situ Assembled Mass-Transport Controlling Micromembranes and Their Application in Implanted Amperometric Glucose Sensors, Anal. Chem., 2000, 72, 3757-3763.
    [91] F.-F. Zhang, Q. Wan, X.-L. Wang, Z.-D. Sun, Z.-Q. Zhu, Y.-Z. Xian, L.-T. Jin, K. Yamamoto, Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis, J. Electroanal. Chem., 2004, 571, 133-138.
    
    [92] O. Niwa, Y. Xu, H. B. Halsall, W. R. Heineman, Small-volume voltammetric detection of4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay, Anal. Chem., 1993, 65, 1559-1563.
    [93] G. Volpe, R. Draisci, G. Palleschi, D. Compagnone, 3,3', 5,5' - Tetramethylbenzidine as new electrochemical substrate for horseradish peroxidase based enzyme immunoassays, Analyst, 1998, 123,1303-1307.
    [84] S. Zhang, K. Jiao, H. Chen, M. Wang , Detection of ferritin in human serum with a MAP-H_2O_2-HRP voltammetric enzyme-linked immunoassay system, Talanta, 1999, 50, 95-101.
    [95] W. Sun, K. Jiao, S. Zhang, C. Zhang, Z. Zhang, Electrochemical detection for horseradish peroxidase-based enzyme immunoassay using p-aminophenol as substrate and its application in detection of plant virus, Anal. Chim. Acta, 2001,434, 43-50.
    [96] Z. P. Aguilar, W. R. I. V. Vandaveer, I. Fritsch , Self-Contained Microelectrochemical Immunoassay for Small Volumes Using Mouse IgG as a Model System, Anal. Chem., 2002, 74,3321-3329.
    [97] M. P. Kreuzer, R. McCarthy, M. Pravda, G. G. Guilbault, Development of electrochemical immunosensor for progestrone analysis in milk, Anal. Lett., 2004, 37,943-956.
    [98] C. Fernandez-Sanchez, A. Costa-Garcia, Competitive enzyme immunosensor developed on a renewable carbon paste electrode support, Anal Chim. Acta, 1999,402, 119-127.
    [99] M. J. Bengoechea Alvarez, M. T. Fernandez Abedul, A. Costa Garcia, Flow amperometric detection of indigo for enzyme-linked immunosorbent assays with use of screen-printed electrodes, Anal. Chim. Acta, 2002,462, 31-37.
    [100] M. Castano-Alvarez, M. T. Fernandez-Abedul, A. Costa-Garcia, Gold electrodes for detection of enzyme assays with. 3-indoxylphosphate as substrate, Electroanalysis, 2004, 16, 1487-1496.
    [101] P. Fanjul-Bolado, M. B. Gonzalez-Garcia, A. Costa-Garcia, Voltammetric determination of alkaline phosphatase and horseradish peroxidase activity using 3-indoxyl phosphate as substrate: Application to enzyme immunoassay, Talanta, 2004, 64,452-457.
    [102] M. Diaz-Gonzalez, D. Hernandez-Santos, M. B. Gonzalez-Garcia, A. Costa-Garcia, Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes, Talanta, 2005, 65, 565-573.
    [103] H. X. Ju, G. F. Yan, F. Chen, H. G. Chen, Chemical Modification of Xylanase from Trichosporon-Cutaneum Shows the Presence of Carboxyl Groups and Cysteine, Electroanalysis, 1999, 11, 124-128.
    [104] K. Jiao, W. Sun, S. s. Zhang, G. Sun, Application of p-phenylenediamine as an electrochemical substrate in peroxidase-mediated voltammetric enzyme immunoassay, Anal. Chim. Acta, 2000,413, 71-78.
    [105] Y.-n. He, H.-y. Chen, J.-j. Zheng, G.-y. Zhang, Z.-L. Chen, Differential pulse voltammetric enzyme-linked immunoassay for the determination of Helicobacter pylori specific immunoglobulin G (IgG) antibody, Talanta, 1997,44, 823-830.
    [106] J. C. Pyun, H. H. Lee, C. S. Lee, Application of an amperometric detector to the conventional enzyme-immunoassay (EIA), Sens. Actuators B, 2001, B78,232-236.
    [107] K. Jiao, S. Zhang, L. Wei, C. Liu, C. Zhang, Z. Zhang, J. Liu, P. Wei, Detection of TMV with ODA-H_2O_2-HRP voltammetric enzyme-linked immunoassay system, Talanta, 1998, 47, 1129-1137.
    [108] H. Yu, F. Yan, Z. Dai, H. Ju, A disposable amperometric immunosensor for α-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode, Anal. Biochem., 2004,331,98-105.
    [109] Z. Dai, F. Yan, J. Chen, H. Ju, Reagentless Amperometric Immunosensors Based on Direct Electrochemistry of Horseradish Peroxidase for Determination of Carcinoma Antigen-125, Anal. Chem., 2003, 75 (20), 5429-5434.
    [110] Y. Zhang, A. Heller, Reduction of the Nonspecific Binding of a Target Antibody and of Its Enzyme-Labeled Detection Probe Enabling Electrochemical Immunoassay of an Antibody through the 7 pg/mL-100 ng/mL (40 fM-400 pM) Range, Anal. Chem., 2005, 77 (23),7758-7762.
    [111] B. Limoges, J.-M. Saveant, D. Yazidi, Quantitative Analysis of Catalysis and Inhibition at Horseradish Peroxidase Monolayers Immobilized on an Electrode Surface, J. Am. Chem. Soc, 2003, 125,9192-9203.
    [112] D. J. Caruana, A. Heller, Enzyme-Amplified Amperometric Detection of Hybridization and of a Single Base Pair Mutation in an 18-Base Oligonucleotide on a 7-(?)m-Diameter Microelectrode, J. Am. Chem. Soc, 1999, 121,769-774.
    [113] T. De Lumley-Woodyear, C. N. Campbell, E. Freeman, A. Freeman, G. Georgiou, A. Heller, Rapid Amperometric Verification of PCR Amplification of DNA, Anal Chem, 1999, 71(3), 535-538.
    [114] F. Azek, C. Grossiord, M. Joannes, B. Limoges, P. Brossier, Hybridization Assay at a Disposable Electrochemical Biosensor for the Attomole Detection of Amplified Human Cytomegalovirus DNA, Anal Biochem., 2000, 284, 107-113.
    [115] C. N. Campbell, D. Gal, N. Cristler, C. Banditrat, A. Heller, Enzyme-Amplified Amperometric Sandwich Test for RNA and DNA, Anal. Chem., 2002, 74(1), 158-162.
    [116] Y. Zhang, H.-H. Kim, A. Heller, Enzyme-Amplified Amperometric Detection of 3000 Copies of DNA in a 10-(?)L Droplet at 0.5 fM Concentration, Anal. Chem., 2003, 75(13), 3267-3269.
    [117] Y. Zhang, A. Pothukuchy, W. Shin, Y. Kim, A. Heller, Detection of~10~3 Copies of DNA by an Electrochemical Enzyme-Amplified Sandwich Assay with Ambient O_2 as the Substrate, Anal. Chem., 2004, 76(14), 4093-4097.
    [118] D. Xu, K. Huang, Z. Liu, Y. Liu, L. Ma, Microfabricated Disposable DNA Sensors Based on Enzymatic Amplification Electrochemical Detection, Electroanalysis, 2001, 13, 882-887.
    [119] E. Palecek, R. Kizek, L. Havran, S. Billova, M. Fojta, Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor, Anal. Chim. Acta, 2002, 469, 73-83.
    [120] J. Wang, D. Xu, A. Erdem, R. Polsky, M. A. Salazar, Genomagnetic electrochemical assays of DNA hybridization, Talanta, 2002, 56, 931-938.
    [121] E. Kim, K. Kim, H. Yang, Y. T. Kim, J. Kwak, Enzyme-Amplified Electrochemical Detection of DNA Using Electrocatalysis of Ferrocenyl-Tethered Dendrimer, Anal Chem., 2003, 75(21), 5665-5672.
    [122] G. Carpini, F. Lucarelli, G. Marrazza, M. Mascini, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids, Biosens. Bioelectr., 2004, 20(2), 167-175.
    [123] E. Nebling, T. Grunwald, J. Albers, P. Schaefer, R. Hintsche, Electrical Detection of Viral DNA Using Ultramicroelectrode Arrays, Anal. Chem., 2004, 76(3), 689-696.
    [124] P. Abad-Valle, M. T. Femandez-Abedul, A. Costa-Garcia, Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence, Biosens. Bioelectr., 2005, 20,??2251-2260.
    [125] H. Xie, C. Zhang, Z. Gao, Amperometric Detection of Nucleic Acid at Femtomolar Levels with a Nucleic Acid/Electrochemical Activator Bilayer on Gold Electrode, Anal. Chem., 2004, 76(6), 1611-1617.
    [126] Frew J. E., Hill H. A. O., Direct and indirect electron transfer between electrodes and redox proteins, Eur. J. Biochem, 1988, 172, 261.
    [127] Santucci R., Picciau A., Campanella L., Brunori M., Electrochemistry of metalloproteins, Curr. Top. Electrochem, 1994, 3, 313.
    [128] Armstrong F. A., Hill H. A. O., Walton N. J., Direct electrochemistry of redox proteins, Acc. Chem. Res., 1998, 21, 407.
    [129] Gorton L., Lindgren A., Larsson T., Munteanu F. D., Ruzgas T., Gazaryan I., Direct electron transfer between heme-containing enzymes and electrode as basis for third generation biosensors, Anal. Chim. Acta, 1999, 400: 91.
    [130] Elliott S. J., McElhaney A. E., Feng C., Enemark J. H., Armstrong F. A., A voltammetric study of interdomain electron transfer within sulfite oxidase, J. Am. Chem. Soc., 2002, 124, 11612.
    [131] Armstrong F. A., Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions, J. Chem. Soc. Dalton Trans., 2002, 661.
    [132] Armstrong F. A., Wilson G. S., Recent developments in Faradaic bioelectro-chemistry, Electrochim. Acta., 2000, 45, 2623.
    [133] Aguey-Zinsou K. F., Bemhardt P. V., De Voss J. J., Slessor K. E., Electro-chemistry of P450cin: New insights into P450 electron transfer, Chem. Commun, 2003, 418.
    [134] Aguey-Zinsou K. F., Bernhardt P. V., Kappler, A. G McEwan, Direct electro-chemistry of a bacterial sul. te dehydrogenase, J. Am. Chem. Soc., 2003, 125, 530.
    [135] 蔡称心,陈静,包建春,陆天虹,碳纳米管在分析化学中的应用,分析化学,2004,32,381.[1] Odom T., Huang J., Kim P., Lieber C., Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62.
    [2] Wildoer J. W. G., Venama L. C., Rinzleer A. G., Smalley R. E., Dekker C., Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391, 59.
    [3] Saito R., Fujita M., Dresselhaus G., Dresselhars M. S., Electronic structure of chiral graphene tubules, Appl. Phys. Lett., 1992, 60, 2204.
    [4] Pennisi E., Simple recipe yields fullerene tubules, Sci. News, 1992, 142, 36.
    [5] Davis J. J., Green M. L. H., Hill H. A. O.; Leung Y. C., Sadler P. J., Sloan J., The immobilisation of proteins in carbon nanotubes, Inorganica Chimica Acta, 1998, 272, 261.
    [6] Chen J., Hamon M. A., Hu H., et al., Solution properties of single-walled carbon nanotubes, Science, 1998, 282, 95.
    [7] Belin T, Epron F., Characterization methods of carbon nanotubes: A review., Materials Science and Engineering B, 2005, 119, 105-118.
    [8] Lv X, Du F, Ma Y, Wu Q, Chen Y., Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds, Carbon, 2005, 43, 2020-2022.
    [9] Lefrant S, Buisson JP, Schreiber J, Chauvet O, Baibarac M, Baltog I., Study of interactions in carbon nanotubes systems by using Raman and SERS spectroscopy, Synthetic Metals, 2003, 139, 783-785.
    [10] Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A., Molecular design strong single-wall carbon nanotube/polyelectrolyte multiplayer comsposites, Nat Mater, 2002, 1, 190-194.
    [11] Dresselhaus M, Dresselhaus G, Jorion A, Souza-Filho AG, Saito R., Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 2002, 40, 2043-2061.
    [12] Wang M, Shen Y, Liu Y, Wang T, Zhao F, Liu B, et al., Direct electrochemistry of??microperxidase 11 using carbon nanotube modified electrodes, J Electroanal Chem, 2005, 578, 121-127.
    [13] Liu CY, Bard AJ, Wudl F, Weitz I, Heath JR., Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors, Electrochem & Solid State Lett, 1999, 2, 577-578.[1] Yu JH, Liu SQ, Ju HX., Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method, Biosen. Bioelectron, 2003, 19, 509-514.
    [2] Barton SC, Gallaway J, Atanassov P., Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev, 2004, 104, 4867-4886.
    [3] Cai Chen-xin(蔡称心), Chen Jing(陈静), Lu Tian-hong(陆天虹)., Direct electron transfer of glucose oxidase at carbon nanotube modified electrode, Sci. in China(Ser. B), 2003, 33, 511-518.
    [4] Sun Dong-mei(孙冬梅), Cai Chen-xin(蔡称心), Xing Wei(邢巍), et al., Immobilization and direct electrochemistry of Cu-contalned oxidase on the surface of active carbon powder, Chinese Sci. Bull, 2004, 17, 1722-1724.
    [5] Hess CR, Juda GA, Dooley DM, et al. Gold electrodes wired for coupling with the deeply buried active site of Arthrobacter globiformis amine oxidase, J. Am. Chem. Soc, 2003, 125, 7156-7157.
    [6] Cai CX, Chen J., Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, Anal Biochem, 2004, 325, 285-292.
    [7] Aguey-Zinsou KF, Bernhardt PV, Kappler U, et al., Direct electrochemistry of a bacterial sulfite dehydrogenase, J. Am. "Chem. Soc, 2003, 125, 530-535.
    [8] Dong Shao-jun(董绍俊), Che Guang-li(车广礼), Xie Yuan-wu(谢远武)., Chemically Modified Electrode(2nd.). Beijing: Science Press, 2003, 456-570.
    [9] Vincent KA, Armstrong FA., Investigating metalloenzyme reaction using electrochemical sweeps and steps: Fine control and measurements with reactants ranging from ions to gases, Inorg. Chem, 2005, 44, 798-809.
    [10] Leger C, Elliott SJ, Hoke KR, et al., Enzyme electokinetics: Using protein film voltammetry to investigate redox enzyme and their mechanism, Biochem, 2003, 42, 8653-8662.[11] Shumyantseva V V, Ivanov Y D, Bistolas N, et al., Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles, Anal. Chem, 2004, 76, 6046-6052.
    [12] Fantuzzi A, Fairhead M, Gilard G, Direct electrochemistry of immobilized human cytochrome P450 2E1, J. Am. Chem. Soc, 2004, 126, 5040-5041.
    [13] Cai Chen-xin (蔡称心), Chen Jing (陈静)., Direct electron transfer of redox proteins and enzymes promoted by carbon nanotube, Electrochemistry, 2004, 10, 159-167.
    [14] Cai C X., The direct electrochemistry of cytochrome c at a gold microband electrode modified with 4,6-dimethyl-2-mercaptopyrimidine, J. Electroanal. Chem, 1995, 393, 119-122.
    [15] Wang J X, Li M X, Shi Z J, et al., Direct electrochemistry of cytochrome c at a glassy electrode modified with single-wall carbon nanotubes, Anal. Chem, 2002,74,1933-1997.
    [16] Cheng F L, Du S, Jin B K., Electrochemical studies of cytochrome c on electrodes modified by single-wall carbon nanotubes, Chin. J. Chem, 2003,21,436-441.
    [17] Lojou E, Bianco P., Membrane electrodes can modulate the electrochemical response of redox proteins-direct electrochemistry of cytochrome c, J. Electroanal. Chem, 2000, 485, 71-80.
    [18] Lojou E, Giudici-Orticoni M T, Bianco P., Direct electrochemistry and enzymatic activity of bacterial polyhemic cytochrome c_3 incorporated in clay films, J. Electroanal. Chem, 2005, 579, 199-213.
    [19] Wang J, Musameh M, Lin Y H., Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc, 2003,125,2408-2409.
    [20] Chen J, Bao J, Cai C X, et al., Electrocatalytic oxidation of NADH at an ordered carbon ' nanotubes modified glassy carbon electrode, Anal. Chim. Acta, 2004, 516, 29-34.
    [21] Chen J, Cai C X., Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode, Chin. J. Chem, 2004, 22, 167-171.
    [22] Musameh M, Wang J, Merkoci A, et al., Low-potential stable NADH detection at carbon-nanotube- modified glassy carbon electrodes, Electrochem. Commun, 2002, 4, 743- 746.
    
    [23] Britto P J, Santhanam K S V, Ajayan P M., Carbon nanotube electrode for oxidation ofdopamine, Bioelectrochem. Bioenerg, 1996, 41, 121-125.
    [24] Chen J, Bao J, Cai CX., Fabrication, characterization and electro catalysis of an ordered carbon nanotube electrode, Chin. J. Chem, 2003, 21, 665-669.
    [25] Wang M, Shen Y, Liu Y, et al., Direct electrochemistry of microperxidase 11 using carbon nanotube modified electrodes, J. Electroanal. Chem, 2005, 578, 121-127.
    [26] Yan Y, Zheng W, Zhang M, et al., Bioelectrochemistry functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradie response, Langmuir, 2005, 21, 6560-6566.
    [27] Cai Chen-xin(蔡称心), Chen Jing(陈静)., Direct electrochemistry of horseradish peroxidase at a carbonnanotube electrode, Acta Chimica Sinica, 2004, 62, 335-340.
    [28] Patolsky F, Weizmann Y, Willner Ⅰ., Long-range electrical contacting of redox enzymes by SWCNT connectors, Angew. Chem. Int. Ed, 2004, 43, 2113-2117.
    [29] Cai Chen-xin(蔡称心), Chen Jing(陈静), Bao Jian-Chun(包建春), et al., Allications of carbon nanotubes in analytical chemistry, Chinese J. Anal. Chem, 2004, 32, 381-387.
    [30] Sun DM, Cai CX, Li XG, et al., Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon[, J. Electroanal. Chem, 2004, 566, 415-421.
    [31] Li YM, Liu HH, Pang DW., Direct electrochemistry and catalysis of heme-proteins entrapped in methyl cellulose films, J. Electroanal. Chem, 2004, 574, 23-31.
    [32] Wang M, Shen Y, Liu Y, Wang T, Zhao F, Liu B, et al., Direct electrochemistry of microperxidase 11 using carbon nanotube modified electrodes, J Electroanal Chem, 2005, 578, 121-127.
    [33] Liu CY, Bard AJ, Wudl F, Weitz I, Heath JR., Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors, Electrochem & Solid State Lett, 1999, 2, 577-578.
    [34] Zhao GC, Yin ZZ, Zhang L, et al., Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2, Electrochem. Commun, 2005, 7, 256-260.
    [35] Hawkridge FM, Kuwana T., Indirect coulometric titration of biological electron transport components, Anal Chem, 1973, 45, 1021-1027.[36] Sagara T, Niwa K, Sone A, Hinnen C, Niki K., Redox reaction mechanism of cytochrome cat modified gold electrodes, Langmuir, 1990, 6, 254-262.
    [37] Rivas L, Murgida DH, Hildebrant P., Conformational and redox equilibria and dynamics of cytochrome cimmobilized on electrodes via hydrophobic interactions, J Phys Chem B, 2002, 106, 4823-4830.
    [38] Abass AK, Hart JP., Direct electrochemistry of cytochrome c at plain and membrane modified screen-printed carbon electrodes, Electrochim Acta, 2001, 46, 829-836.[1] Dekker, C., Carbon nanotubes as molecular quantum wires, Phys, Today, 1999, 52, 22-28.
    [2] McEuen, P. L.; Fuhrer, M. S. Park, H., Single-walled carbon, nanotube electronics, IEEE Trans. Nanotechnol., 2002, 1, 78-85.
    [3] Trans, S. J.; Verschueren, A. R. M.; Dekker, C., Room-temperature transistor based on a single carbon nanotube., Nature, 1998, 393, 49-52.
    [4] Kong J., Franklin N. R., Zhou C. W., Chapline M. G., Peng S., Cho K. J., Dai H. J., Nanotube Molecular Wires as Chemical Sensors, Science, 2000, 287, 622.
    [5] Collins P. G., Bradley K., Ishigami M., Zettl A., Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science, 2000, 287, 1801.
    [6] Wong, S. S.; Schultz, E.; Wolley, A. T.; Cheung, C.L.;Lieber, C. M.,Covalently functionalized nanotubes as probes in chemistry and biology, Nature, 1998, 394, 52-55.
    [7] Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. Angew. Chem., Int. Ed. Engl., 1999, 38, 1921.
    [8] Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H., Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization, J. Am. Chem. Soc., 2001, 123, 3838-3839.
    [9] Erlanger, B. F.; Chen, B.-X.; Zhu, M.; Brus, L., Binding of an Anti-Fullerene IgG Monoclonal. Antibody to Single Wall Carbon Nanotubes, Nano Lett., 2001, 1, 465.
    [10] Shim, M.; Wong Shi Kam, N.; Chen, R. J.; Li, Y.; Dai, H., Functionalization of Carbon??Nanotubes for Biocompatibility and Biomolecular Recognition, Nano Lett, 2002,2,285.
    [11] Williames, K. A.; Veenhuizen, P. T. M.; de la Torre, B. G; Eritja,R.; Dekker, C, Nanotechnology: Carbon nanotubes with DNA recognition. Brief communication, Nature, 2002,420,761.
    [12] Hecht H. J., Kalisz H. M., Hendle J., Schmid R. D., Schomburg D., Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A reslution, J. Mol. Biol, 1993, 229, 153.
    [13] Chen X. Y., Hu Y. B., Wilson, G. S., Glucose microbiosensor based on alumina sol-gel matrix/electropolymerized composite membrane, Biosens. Bioelectron, 2002, 17, 1005.
    [14] Zhu L. D., Li Y. X., Tian F. M., Xu B., Zhu G Y, Electrochemiluminescent determination of glucose with a sol-gel derived ceramic-carbon composite electrode as a renewable opticalfiber biosensor, Sens. Actuat. B: Chem., 2002, 84, 265.
    [15] Reiter S., Habermuller K., Schuhmann W., A reagentless glucose biosensor based on glucose oxidase entrapped into osmium-complex modified polypyrrole films, Sens. Actuat. B: Chem.,2001,79,150.
    [16] Piro B., Dang L. A., Pham, M. C, Fabiano S., Tran-Minh C, A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly(3,4-ethylenedioxythiophene) (PEDT), J. Electroanal. Chem, 2001, 512, 101.
    [17] Garjonyte R., Malinauskas A., Amperometric glucose biosensors based on Prussian blue- and polyaniline-glucose oxidase modified electrodes, Biosens. Bioelectron, 2000,15,445.
    [18] Xiao Y, Patolsky F., Katz E., Hainfeld J. F., Willner I., "Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle, Science, 2003, 299,1877.
    [19] Ban K., Ueki T., Tamada Y, et al., Electrical communication between glucose oxidase and electrodes mediated by phenothiazine-labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface, Anal. Chem., 2003, 75, 910.
    [20] Savitri D., Mitra C. K., Electrochemistry of reconstituted glucose oxidase on carbon paste electrodes, Bioelectrochem. Bioenerg., 1998,47, 67.
    [21] Jiang L., McNeil C. J., Jonathan M. C, Direct electron transfer reactions of glucose oxidase immobilized at a self-assembled monolayer, Chem. Commun, 1995, 1293.
    [22] Guiseppi-Elie A., Lei C. H., Baughman R. H., Direct electron trabsfer of glucose oxidase oncarbon nanotubes, Nanotechnology, 2002,13, 559.
    [23] Azamian B. R., Davis J. J., Coleman K. S., Bagshaw C. B, Cooper J. M., Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc, 2002,124, 12664.
    [24] Wang J., Musameh M, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Anal. Chem., 2003, 75, 2075.
    [25] Li Y M, Liu H H, Pang D W., Direct electrochemistry and catalysis of heme-proteins entrapped in methyl cellulose films, J. Electroanal. Chem, 2004, 574, 23-31.
    [26] Wang M, Shen Y, Liu Y, Wang T, Zhao F, Liu B, et al., Direct electrochemistry of microperxidase 11 using carbon nanotube modified electrodes, J Electroanal Chem, 2005, 578, 121-127.
    [27] Kamin R. A., Wilson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal. Chem, 1980, 52,1198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700