碳纳米管的功能化及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了单壁碳纳米管(SWNTs)快速功能化的方法及其应用。研究了1,2-萘醌修饰的SWNTs对β—烟酰胺腺嘌呤二核苷酸(NADH)电化学氧化的催化作用;研究了室温离子液体对SWNTs的修饰作用及室温离子液体/碳纳米管复合体的制备与表征,并将其应用于对血红素类蛋白质/酶直接电化学的研究;分别研究了耐尔蓝和其聚合物对SWNTs修饰及在制作基于脱氢酶传感器方面的应用。主要内容如下:
     1.研究了Nile Blue对SWNTs快速功能化及电催化。将NB分子修饰到SWNTs表面形成NB-SWNTs纳米复合体,谱学结果表明,NB不仅能快速、高效地修饰到SWNTs表面,而且还能有效地改善SWNTs在水溶液中的分散性能。将NB-SWNTs修饰到GC电极表面制备了NB-SWNTs/GC电极,循环伏安结果显示,其伏安曲线上不仅表现出一对良好的、几乎对称的NB单体的氧化还原峰,式量电位E~(0’)几乎不随扫速而变化(其平均值为(-0.422±0.002)V(vs.SCE,pH7.0));而且还显示出NB聚合体分子的氧化还原峰,E~(0’)为-0.191 V(100 mV/s时)。进一步的实验结果表明,NB和SWNTs对NADH的电化学氧化具有协同催化作用,能使其氧化过电位降低多于560 mV;NB-CNT/GC电极还能较好地响应脱氢酶催化底物氧化过程中体系内NADH浓度的变化。
     2.研究了1,2-萘醌修饰的SWNTs对NADH电化学氧化的催化作用。将具有电活性的1,2-萘醌(1,2-naphthoquinone,Nq)分子修饰到SWNTs表面形成Nq-SWNTs纳米复合体,用紫外可见(UV-Vis)和红外光谱等方法对Nq-SWNTs进行了表征,结果表明:Nq不仅能快速、有效地修饰到SWNTs表面,而且还能有效地改善SWNTs在水溶液中的分散性能。循环伏安结果显示,与GC电极相比,SWNTs能显著提高Nq的氧化还原峰电流,其伏安曲线上表现出一对良好的、几乎对称的氧化还原峰,式量电位E~(0’)几乎不随扫速而变化。进一步的实验结果表明,Nq和SWNTs对NADH的电化学氧化具有协同催化作用,与SWNTs或Nq相比,Nq-SWNTs具有较高的电催化活性,能使其氧化过电位降低多于510mV。
     3.研究了室温离子液体对SWNTs的修饰作用,并将室温离子液体/SWNTs复合体应用于对血红素类蛋白质/酶直接电化学的研究。SWNTs分别与[bmim]BF_4和[bmim]PF_6室温离子液体(RTILs)通过研磨的方式形成亲水的[bmim]BF_4-SWNTs和疏水的[bmim]PF_6-SWNTs两种纳米复合体,用X光电子能谱、拉曼光谱、扫描电镜、紫外可见光谱等技术对两种纳米复合体进行了表征;考察了[bmim]BF_4-SWNTs修饰玻碳电极的电化学特性。循环伏安测试表明,表面带正电荷的[bmim]BF_4-SWNTs对非电中性物质的电化学参数有重要的影响。进一步的实验结果表明,血红素类氧化还原蛋白/酶在[bmim]BF_4-SWNTs修饰的玻碳电极上能表现出量化的直接电化学特性,并能保持其对氧气、过氧化氢电化学还原的电催化活性。
     4.研究了耐尔蓝聚合物修饰SWNTs电极的制备和性能以及在制作脱氢酶传感器方面的应用。用电化学聚合方法将Nile Blue(NB)聚合到单壁碳纳米管(SWNTs)表面形成PNb-SWNTs纳米复合体。用扫描电镜、紫外可见光谱、循环伏安法、电化学交流阻抗等方法对PNb-SWNTs纳米复合体了表征。实验结果表明,与裸GC相比,PNb-SWNTs复合物能够在较低的电位下(-80 mV)催化NADH的氧化,并可以将过电位降低多于700 mV。将酒精脱氢酶(ADH)固定到PNb-SWNTs/GC电极表面形成ADH-PNb-SWNTs/GC电化学传感器,该传感器对于乙醇的氧化具有良好的催化特性。
This thesis investigated rapid functionalization of SWNTs and its applications. Extensive studies were made on electrocatalytic activities of 1,2-Naphthoquinone modified carbon nanotube toward the oxidation of NADH, on preparation and characterization of room temperature ionic liquid/single-walled carbon nanotubes nanocomposite and its application in direct electrochemistry of heme-containing proteins/enzymes, on functionalization of single-walled carbon nanotube with poly(nile blue A) and its application to dehydrogenase-based biosensor. The main results of this thesis were expressed in detail as following:
     1. It was reported that SWNTs was functionalized with the electroactive Nile Blue (NB), which was a phenoxazine dye, by a method of adsorption to form a NB-SWNTs nanocomposite. The NB-SWNTs nanocomposite was characterized by several spectroscopic techniques, for example UV-Vis, FTIR, Raman spectroscopy and SEM et al., and the results showed that NB can rapidly and effectively be adsorbed on the surface of SWNTs with high stability without changing the native structure of NB and the structure properties of SWNTs. Moreover, it was shown that the dispersion ability of SWNTs in aqueous solution had a significantly improvement after SWNTs functionalized with NB even at a level of high concentration, for example 5 mg NB-SWNTs per 1 mL H_2O. The NB-SWNTs /GC electrode was fabricated by modifying NB-SWNTs nanocomposite on the GC electrode surface and its electrochemical properties were investigated by cyclic voltammetry. The cyclic voltammetric results indicated that SWNTs could improve the electrochemical behavior of NB and greatly enhance its redox peak currents. While the NB-SWNTs /GC electrode exhibited a pair of well-defined and nearly symmetrical redox peaks with the formal potential of (-0.422±0.002) V (vs. SCE, 0.1 mol/L PBS, pH 7.0), which was almost independent on the scan rates, for electrochemical reaction of NB monomer, the redox peak potential of NB polymer located at about -0.191 V. The experimental results also demonstrated that NB and SWNTs could synergistically catalyze the electrochemically oxidation of NADH and NB- SWNTs exhibited a high performance with lowing the overpotential of more than 560 mV. The NB-SWNTs /GC electrode could effectively sense the concentration of NADH, which was produced during the process of oxidation of substrate (for example ethanol) catalyzed by dehydrogenase (for example alcohol dehydrogenase).
     2. It was reported that SWNTs was functionalized with the electroactive species of Nq by a method of adsorption to form Nq-SWNTs nanocomposite. The Nq-SWNTs was characterized by spectroscopic techniques, for example UV-Vis, FTIR and SEM et al., and the results showed that Nq can rapidly and effectively be adsorbed on the surface of SWNTs with high stability. Moreover, it was shown that the dispersion ability of SWNTs in aqueous solution had a significantly improvement after SWNTs functionalized with Nq. The Nq-SWNTs /GC electrode was fabricated by modifying Nq-SWNTs nanocomposite on the GC electrode surface and its electrochemical properties were investigated by voltammetry, which indicated that SWNTs could improve the electrochemical behavior of Nq and greatly enhanced its redox peak currents. The Nq-SWNTs /GC electrode exhibited a pair of well-defined and nearly symmetrical redox peaks with the formal potential of -87.3±4.5 mV (vs. SCE, 0.1 mol/L PBS, pH 7.0), which was almost independent on the scan rates. The experimental results also demonstrated that Nq and SWNTs could synergistically catalyze the electrochemically oxidation of NADH and Nq-SWNTs exhibited a high performance with lowing the overpotential of more than 510 mV.
     3. This communication describes the formation and possible electrochemical application of a novel nanocomposite based on the SWNTs and RTILs of [bmim]BF_4 and [bmim]PF_6. The nanocomposite ([bmim]BF_4-SWNTs, and [bmim]PF_6-SWNTs) was formed by simply grinding of the SWNTs with the RTILs. The results of the X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy indicated that the nanocomposites were formed by adsorption of imidazolium ion on the surface of SWNTs via the "cation-π" interaction, and scanning electron microscopic (SEM) images showed that the adsorption of imidazolium ion could significantly enhance the dispersed ability of SWNTs in water and [bmim]BF_4-SWNTs (or [bmim]PF_6-SWNTs) composite could uniformly cover on the surface of glassy carbon (GC) electrode forming RTILs-SWNTs/GC modified electrode with a high stability. The modified electrodes were characterized by used to study the electrochemical impedance of two different kinds of redox couple of Fe(CN)_6~(3-)7Fe(CN)_6~(-4) and Ru(NH_3)_6~(3+)/Ru(NH_3)_6~(2+), and also to investigate the cyclic voltammetric responses of two important neutrotransmitters of dopamine (DA) and ascorbic acid (AA). The RTILs-SWNTs composite could be readily used as a matrix to immobilization heme-containing proteins/enzymes (myoglobin, cytochrome c, and horseradish peroxidase), and the UV-Vis spectroscopic results indicated that the proteins/enzymes retained their nature structure in the composites. The voltammetric results showed that heme-containing proteins/enzymes displayed a pair of well-defined, stable redox peak ascribing to their direct electron-transfer reaction. RTILs on the surface of SWNTs couldn't promote the direct electron-transfer of heme-containing proteins/enzymes, but the positive charge possessing by imidazolium ion played an significantly effect on the electrochemical parameters, such as redox peak separation and the value of the formal potentials et al., of the electron-transfer reaction for non-neutral species in the studied solution. The further results demonstrated that the heme-containing proteins/enzymes entrapped in RTILs-SWNTs composites could still retain their bioelectrocatalytic activity to the reduction of oxygen and hydrogen peroxide.
     4. SWNTs were functionalized with poly(nile blue A) and forming a new type of nanocomposites of poly(nile blue A)-SWNTs (PNb-SWNTs) by electropolymerization of Nb monomer on the surface of SWNTs/GC electrode using cyclic voltammetry. The scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), cyclic voltammerty, and electrochemical impedance spectroscopy (EIS) were used to characterize the PNb-SWNTs nanocomposites. The cyclic voltammetric results indicated that PNb-SWNTs nanocomposites could catalyze the electrochemical oxidation of NADH at a very low potential (ca.(?)80 mV) and lead to a substantial decrease in the overpotential by more than 700 mV compared with bare glassy carbon (GC) electrode. A biosensor, ADH-PNb-SWNTs/GC, was developed by immobilization ADH on the PNb-SWNTs/GC electrode surface. The biosensor showed the electrocatalytic activity toward the oxidation of ethanol with a good stability, reproducibility and higher biological affinity. Under an optimal conditions, the biosensor could be used to detection ethanol, representing a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of K_M~(app)~6.30 mM, with a linear range span the concentration of ethanol from 0.1 to 3.0 mM (with correlation coefficient of 0.998), and the detection limit of~50μM (at a signal-to-noise ratio of 3).
引文
[1] S. Iijima, Helical microtubes of graphite carbon, Nature, 1991, 354, 56-58
    [2] S. Iijima, T. Ichihashi, Single-shell-carbon nanotubules of 1-nm diameter, Nature, 1993, 363, 603-605
    [3] N. S. Xu, S. Z. Deng, J. Chen, Nanomaterials for field electron emission: preparation, characterization and application, Ultramicroscopy, 2003, 95, 19-28.
    [4] R.T. Yang, Hydrogen storage by alkali-doped carbon nanotubes-revisitod, Carbon, 2000, 38(4), 623-626.
    [5] Y.P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithiumion batteries, J. Power Sources, 2003, 114(2), 228-236.
    [6] C. Emmenegger, P. Macron, P. Sudan et al, Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials, J. Power.Sources, 2003, 124(1), 321-329.
    [7] B. Vigolo, A. Penicaud, C. Coulon et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 2000, 290, 1331-1334.
    [8] 国立秋,赵铁强,董申,钟照华,碳纳米管原子力显微镜针尖及其在生物学研究中的应用,高技术通讯,2002,4,36.
    [9] C.H. Kiang, M. Endo, P.M. Ajayan, G. Dresselhaus, M.S. Dresselhaus, Size effects in carbon nanotubes, Phys. Rev. Lett, 1998, 81, 1869-1876.
    [10] S. Georg, D. Siegmar, Modification of single-walled carbon nanotubes by hydrothermal, Chem Mater, 2003, 15(17), 3314-3319.
    [11] J. Liu, A. G. Rinzler, H. Dai, et al., Fullerence pipes, Science, 1998, 280, 1253-1256.
    [12] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H.Green, A simple chemical method of opening and filling carbon nanotubes, Nature, 1993, 372, 159-162.
    [13] S.S. Wong, A.T. Woolley, E. Joselevich, C.L. Cbeung, Covalenfly-functonalized single-walled carbon nanotube probe tips for chemical force microscopy, J. Am.Chem.Soc., 1998, 120, 8557-8558.
    [14] 朱宏伟,吴德海,徐才录,碳缴米管,北京机械工业出版社,2003.1
    [15] A.P.M. Jayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide, Nature, 1993, 362, 520-522.
    [16] S.C. Tsang, P.J.F. Harris, M.L.H. Green, A microporous carbon produced by arc-evaporation, Nature, 1993, 362, 522-525.
    [17] L.B. Jeffrey, Y. Jiping, V.K. Dmitry, J.B. Michael, E.S. Richard, M.T. James, Functionalization of carbon nanotubes by electrochemical reduction of ary diazonium salt: a bucky paper electrode, J. Am.Chem.Soc, 2001, 123, 65366542.
    [18] 杨全红,碳纳米管的表面、孔隙及其与储氢性能关系,[博士后工作报告]中科院金属研究所,2001
    [19] K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, L.H.G. Malcom, Optical anisotropy of dispersed carbon nanotubes induced by an electric field, Appl.Phys.Lett., 1997, 71, 1906-1908.
    [20] J. D.Jason, J. Richard, H. Hill, O. Allen, Protein electrochemistry at carbon nanotube electrodes, J. Electroanal.Chem, 1997, 440, 279-282.
    [21] F.A. Armstrong, P.A. Cox, H.A.O. Hill, V.J. Lowe, B.N. Oliver, Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes, Adv.Mater, 1987, 12, 33-37.
    [22] F.A. Armstrong, H.A.O. Hill, B.V. Oliver, Electrocalalytic reduction of hydrogen peroxide at a stationary, pyrolytic graphite electrode surface in the presence of cytochrome c peroxidase: a deseription based on a microelectrode array, Chem.Soc.Chem.Commun, 1994, 25, 976-978.
    [23] F.A. Armstrong, H.A.O. Hill, N.J. Walton, Direct electrochemistry of redox proteins, Acc.Chem.Res, 1988, 21,407-413.
    [24] H.A. Heering, W.R. Hagen, Complex electrochemistry of flavodoxin at carbon-based electrodes: results from a combination of direct electron transfer, flavin-mediated electron transfer and comproportionation, J.Electronanal Chem, 1996, 404, 249-260.
    [25] J.W. Mintmire, B.I. Dunlap, C.T. White, Are fullerene tubules metallic, Phys.Rev.Lett., 1992, 68, 631-634.
    [26] R. Saito, G. Dresselhans, M.S. Dresselhaus, Electronic structure of double-layer graphene tubules, J.Appl.Phys, 1993, 73, 494-500.
    [27] H.J. Dai, Carbon nanotubes: opportunities and challenges, Surface Science, 2002, 500, 218-241.
    [28] O.T. Dora, J.Huang, P. Kim, C. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62-64.
    [29] J.W.O. Wildoer, L.C. Venama, A.G. Rinzleer,R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391, 59-62.
    [30] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of carbon fibers based on C60, Materials Science and Engieering B, 1993, 19, 185-191.
    [31] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Chou, H.J, Dai, Nanotube molecular wires as chemical sensors, Science, 2000, 287, 622-625.
    [32] P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 2000, 287, 1801-1804.
    [33] P. G. Collins, A. Zettl, B. Hiroshi, Nanotube nanodevice, Science, 1997, 278, 100-102.
    [34] G. E. Gadd, M. Blackford, S. Moricca, N. Webb, PJ. Evans, A.M. Smith, G. Jacobsen, S. Leung, A. Day, Q. Hua, The world's smallest gas cylinders, Science, 1997, 277, 933-936.
    [35] G. Stan, M.W. Cole, Low coverage adsorption in cylindrical pores, Surface Science, 1998, 395(2-3), 280-291.
    [36] N. Tagmatarchis, V. Georgakilas, M. Pinto, H. Shinohara, Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition, Chem.Commun, 2002, 18, 2010-2011.
    [37] M. A. Hamon, H. Hui, P. Bhowmik, H.M.E. Itlis, R.C. Haddon, Ester-functionalized soluble singe-walled carbon nanotubes, Appl. Phys, 2002, 74 (3), 333-338.
    [38] F. Pompeo, D.E. Resasco, Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine, Nano Lett, 2002, 2 (4), 369-373.
    [39] M. Hazard, R. Naaman, F. Hennrich, M.M. Kappes, Confocal fluorescence imaging of DNA-functionalized carbon nanotubes, Nano Lett, 2003, 3 (2), 153-155.
    [40] S. E. Kooi, U. Schlecht, M. Burghard, K. Kern, Electrochemical modification of single carbon nanotubes, Angew.Chem.Int. Ed., 2002, 41 (8), 1353-1355.
    [41] J. Chen, M.A. Harem, H. Hu, Y. Chert, A.M. Rao, P.C. Eklund, R.C. Hadon, Solution properties of single-walled carbon nanotubes, Science, 1998, 282, 95-98.
    [42] M. J. O' Connell, P. Boul, L.M. Ericson, C. Huffinan, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem.Phys.Lett., 2001, 342, 265-271.
    [43] J. Wang, M. Musameh, Y. Lin, Solubilization of Carbon Nanotubes by Nation toward the Preparation ofAmperometric Biosensors, J. Am. Chem. Soc, 2003, 125 (9), 2408-2409.
    [44] A. Star, J.F. Stoddart, D. Steuerman, M. Dieh, A. Boukal, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew.Chem. Int. Ed., 2001, 40,1721-1725.
    [45] A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Starched carbon nanotubes, Angew.Chem.Int.Ed., 2002, 41, 2508-2512.
    [46] O. K. Kim, J. Je, J.W. Baldwin, S. Kooi, P.E. Pehrsson, L. Buckley, Solubilization of single-walled carbon nanotubes by supramolecular encapsulation of helical amylose, J. Am. Chem. Soc., 2003, 125 (15), 4426-4427.
    [47] Z. H. Wang, Y.M. Wang, G.A. Luo, A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes, Analyst, 2002, 127, 1353-358.
    [48] S. F. Xiao, Z.H. Wang, Y.M.Wang, G.A.Luo, Voltammetric behavior of aacorbic acid at α-cyclodextrin incorporated carbon nanotubes-coated electrode, Journal of Qingdao University, 2002, 15 (94), 1-6.
    [49] Z. H. Wang, G.A. Luo, S.F. Xiao, G.Y. Wang, Y.M.Wang, α-环糊精复合碳纳米管电极对异构体的电催化行为, Chem. J. Chinese Universities, 2003, 24 (5), 811-813.
    [50] Z. J. Guo, P.J. Sadler, S.C. Tsang, Immobilization and visualization of DNA and proteins on carbon nanotubes, Adv. Mater, 1998, 10 (9), 701-703.
    [51] B. R. Azamian, J.J. Davis, K.S.Coleman, C.B. Bagshaw, M.L.H. Green, Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc., 2002, 124,12664-12665.
    [52] G. R. Dieckmann, A.B. Dalton, P.A. Johnson, J. Razal, J. Chen, G.M. Giordano, E. Munoz, I.H. Musselman, R.H. Baughman, R.K. Draper, Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices, J. Am. Chem. Soc., 2003, 125 (7), 1770-1777.
    [53] V. Lordi, N. Yao, J. Wei, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst, Chem. Mater, 2001, 13 (3),733-737.
    [54] B. R. Azamian, K.s. Coleman, J.J. Dvis, N. Hanson, M.L.H. Green, Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes, Chem.Commun, 2002, 4, 366-367.
    [55] A. V. Ellis, K. Vijayamohanan, R. Goswami, N. Chakrapani, L.S. Ramanathan, P.M. Ajayan, G. Ramanath, Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes, Nano Lett., 2003, 3 (3), 279-282.
    [56] S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan, C.S. Ozkan, Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications, NanoLett, 2003, 3 (4), 447-453.
    [57] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Short, T.R. Lee, D.T. Colbert, R.E. Smalley, Fullerene pipes, Science, 1998, 280,1253-1256.
    [58] C.V. Nguyen, L. Delzeit, A.M. Cassell, J. Li, J. Hart, M. Meyyappan, Preparation of nucleic acid functionalized carbon nanotube arrays, Nano Lett, 2002, 2, 1079-1081.
    [59] J.L. Stevens, A.Y. Huang, H. Peng, I.W. Chian, V. N. Khabashesku, J.L. Margrave, Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines, Nano Lett, 2003, 3 (3), 331-336.
    [60] R.K. Saini, I.W. Chiang, H. Peng, R.E. Smalley, W.E. Billups, R.H. Hauge, J.L. Margrave Covalent sidewall functionalization of single wall carbon nanotubes, J. Am. Chem. Soc, 2003, 125(12), 3617-3621.
    [61] C.A. Dyke, J.M. Tour, Solvent-flee functionalizafion of carbon nanotubes, J. Am. Chem. Soc., 2003, 125 (5), 1156-1157.
    [62] E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L. Margrave, Fluorination of single-wall carbon nanotubes, Chem.Phys.Lett, 1998, 296, 188-194.
    [63] E. Unger, A. Graham, F. Kreup, M. Liebau, W. Hoenlein, Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification, Current Applied Physics, 2002, 2,107-111.
    [64] W.J. Huang, S. Femando, L.F. Allard, Y.P. Sun., Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene Glycol) in different functionalization reactions, Nano Lett., 2003, 3 (4), 565-568.
    [65] E.T. Mickelson, C.B. Chiang, J.L. Margrave et al., Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents, J. Phys, Chem. B, 1999, 103(21), 4318-4322.
    [66] M. Holzinger, O. Vostrowsky, A. Hirsch et al., Side-wall functionalization of carbon nanotubes, J. Angrew. Chem. Int. Ed, 2001, 40(21), 4002-40051.
    [67] R.K. Saini, I.W. Chiang, P.H. Smalley et al., Covalent sidewall functionalization of single wall carbon nanotubes, J. Am. Chem. Soc., 2003, 125(12), 3617-3621.
    [68] P.J. Boul, J. Liu, E.T. Mickelson et.al, Reversible sidewall functionalization of buckytubes, Chem.Phys.Lett, 1999, 310, 367-372. nanotubes, Chem. Phys. Lett, 1998, 296(1-2), 188-194.
    [70] M. Holzinger, J. Steinmetz, D. Samaille et.al, [2+1] cycloaddition for cross-linking SWNTs, Carbon, 2004, 42(5-6), 941-947.
    [71] V.C. Moore, M.S. Strano, E.H. Haroz, et.al, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Lett, 2003, 3 (10), 1379-1382.
    [72] J. Wang, M. Musameh, Y.H. Lin, Solubilization of carbon nanotubes by nation toward the preparation of amperometric biosensors, J. Am. Chem. Soc., 2003, 125 (9), 2408 - 2409.
    [73] D. Li, H. Wang, J. Zhu, et.al, Dispersion of carbon nanotubes in aqueous solutions containing poly (diallyldimethylammonium chloride), J Mater Sci Lett, 2003, 22, 253 - 255.
    [74] J. Zhang, J.K. Lee, Y. Wu, et.al, Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes, Nano. Lett, 2003, 3(3), 403 - 407.
    [75] H. Murakami, T. Nomura, N. Nakashima, Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites, J. Chemical Physics Letters, 2003, 378 (5/6), 481-485.
    [76] R.J. Cben, Y.G. Zhang, D.W. Wang, H. Dai, Noncovalent sidewall ftmctionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 2001, 123, 3838-3839.
    [77] J. Zhang, J.K. Lee, Y. Wu, R.W. Murray, Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes, Nano Lett, 2003, 3 (3), 403-407.
    [78] M. Ue, M. Takeda, T. Takahashi et.al, Interfacing cytochrome e to Au electrodes with humic acid film, Electrochem. Solid. St., 2002, 5 (6), A 119-A 121.
    [79] H. Nakagawa, S. Izuchi, K. Kuwana et al., Liquid and polymer gel electrolytes for lithium batteries composed of room temperature molten salt doped by lithium salts, J. Electrochem.Soc, 2003, 150 (6), A 695-A 700.
    [80] M.A.B.H. Susan, A. Noda, S. Mitsushima et.al, Brnsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors, Chem. Commun, 2003, 938-939.
    [1] P.M. Ajayan, Nanotubes from carbon, Chem. Rev., 1999, 99, 1787-1799.
    [2] H. Dai, Carbon nanotubes: opportunities and challenges, Surf.Sci, 2002, 500, 218-241.
    [3] T. Belin, E Epron, Characterization methods of carbon nanotubes: a review, Materials Science & Engineering B, 2005, 119, 105-118.
    [4] J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing, Electrochim.Acta, 2005, 50, 3049-3060.
    [5] J. Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, 17, 7-14.
    [6] C.X.Cai, J. Chen, J.C. Bao, T.H. Lu, Applications of carbon nanotubes in analytical chemistry, Chin. J. Anal.Chem, 2004, 32, 381-387.(蔡称心,陈静,包建春,陆天虹,分析化学,2004,32,381-387.)
    [7] Z. Wang, G.A. Luo, The progress of carbon nanotube in analytical chemistry, Chin. J.Anal Chem, 2003, 31, 1004-1009.(王宗花,罗国安,分析化学,2003,31,1004-1009.)
    [8] C.X. Cai, J. Chen, Direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode, J. Acta Chim.Sinica, 2004, 62, 335-340.(蔡称心,陈静,化学学报,2004,62,335-340.)
    [9] C.X. Cai, J. Chen, T.H. Lu,碳纳米管修饰电极上葡萄糖氧化酶的直接电子转,Sci in China(Ser. B), 2003, 33, 511-518.(蔡称心,陈静,陆天虹,中国科学,2003,33,51l1-518.)
    [10] J. Chen, C.X. Cai, Direct eleetroehemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode, Chin. J. Chem., 2004, 22, 167-171.
    [11] M.K. Wang, Y. Shen, Y. Liu, T. Wang, F. Zhao, B.F. Liu, S.J. Dong, Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes, J. Electroanal.Chem, 2005, 578, 121-127.
    [12] J.J. Xu, G. Wang, Q. Zhang, D.M. Zhou, H.Y. Chen, Interfacing cytochrome c to Au electrodes with humic acid film, Electrochem.Commun, 2004, 6, 278-283.
    [13] G.C. Zhao, Z.Z. Yin, L. Zhang, X.W. Wei, Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2, Electrochem.Commun, 2005, 7, 256-260.
    
    [14] J.X. Wang; M.X. Li; Z.J. Shi; N.Q. Li; Z.N. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal.Chem, 2002, 74, 1993 -1997.
    [15] C.X. Cai, J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, Anal.Biochem, 2004, 325,285 - 292.
    [16] J.X. Xu, J.J. Zhu, Q. Wu, Z. Hu, H.Y. Chen, Isomerization mechanisms of C_5H_2 on the triplet and singlet potential energy surfaces, Chin. J. Chem., 2003, 21,117-120.
    [17] M.Ouyang, J. L.Huang, C. M.Lieber, Fundamental electronic properties and applications of single-walled carbon nanotubes, Acc. Chem. Res., 2002,35, 1018-1025.
    [18] H.J. Dai, Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res, 2002,35, 1035-1044.
    [19] Y.P. Sun, K. Fu, W. Huang, Functionalized carbon nanotubes: properties and applications, Acc. Chem.Res, 2002, 35, 1096-1104.
    [20] R. Niyogi, M.A. Hamon, R.C. Haddon, Chemistry of single-walled carbon nanotubes, Acc. Chem. Res., 2002, 35, 1105-1113.
    [21] C.A. Dyke, J.M. Tour, Decomposing complex cooperative ligand binding into simple components: connections between microscopic and macroscopic models, J. Phys. Chem. B, 2004, 108,11157-11169.
    
    [22] C.Y. Hong, Y.Z. You, C.Y. Pan, Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT solymerization, Chem.Mater, 2005, 17, 2247-2254.
    
    [23] F.J. Gomez, R.J. Chen, D. Wang, R.M. Waymouth, H. Dai, Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes electronic supplementary information (ESI) available: full experimental details for compounds 2-4, nanotube preparation and microscopy analysis, Chem. Commun, 2003,12,190-191.
    
    
    [24] M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, A. Hirsch, Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes, J.Am. Chem. Soc, 2003, 125, 8566-8580.
    [25] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution properties of single-walled carbon nanotubes, Science, 1998, 282, 95-98.
    
    [26] D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.P. Briand, M. Prato, A. Bianco, Synthesis, Structural Characterization, and Immunological Properties of Carbon Nanotubes Functionalized with Peptides, J.Am. Chem. Soc, 2003, 125, 6160-6164.
    
    [27] G.R. Dieckmann, A.B. Dalton, P.A. Johnson, J. Razal, J. Chen, G.M. Giordano, E. Munoz, I. H. Musselman, R.H. Baughman, R.K. Draper, Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices, J. Am.Chem.Soc, 2003, 125, 1770-1777.
    [28] Y. Georgalilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.P. Briand, M. Prato, Amino acid functionalisation of water soluble carbon nanotubes, Chem. Commun, 2002, 54,3050-3051.
    [29] B.R. Azamian, J.J. Davis, Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem. Soc, 2002,124,12664-12665.
    [30] M. Shim, N.W. Kam, H.J. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition, Nano.Lett, 2002,2, 285-288.
    
    [31] S.E. Baker, W. Cai, Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization, Nano Lett, 2002,2,1413-1417.
    [32] J.M. Haremza, M.A. Kahn, Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes, Nano.Lett, 2002,2, 1253-1258.
    [33] R.L.D. Whitby, W.K. Hsu, D. Collison, Multiwalled carbon nanotubes coated with tungsten disulfide, Chem. Meter, 2002, 14, 2209-2217.
    
    [34] J.J. Stephenson, J.L. Hudson, S. Azad, J.M. Tour, Individualized single walled carbon nanotubes from bulk material using 96% sulfuric acid as solvent, Chem. Mater, 2006, 18, 374-377.
    [35] Y. Wang, Z. Iqbal, S. Mitra, Rapidly functionalized, water-dispersed carbon nanotubes at high concentration, J. Am. Chem. Soc, 2006, 128, 95-99.
    [36] E.T. Mickelson, Fluorination of single-wall carbon nanotubes, Chem. Phys. Lett, 1998, 296, 188-194.
    
    [37] S. Banerjee, S.S. Wong, Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis, J. Phys.Chem.B, 2002, 106,12144-12151.
    [38] R.J. Chen, Y. Zhang, D. Wang, H.J. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am.Chem.Soc, 2001, 123, 3838 -3839.
    
    [39] A. Star, J.F. Stoddart D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew.Chem. Int. Ed., 2001,40,1721-1725.
    
    [40] Y.M.Yan, M.N. Zhang, K.P. Gong, L. Su, Z.X. Guo, L.Q. Mao, Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite, Chem. Mater, 2005, 17, 3457-3463.
    [41] Q.W. Li, J. Zhang, H. Yan, M.S. He, Z.F. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon, 2004,42, 287-291.
    [42] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am.Chem.Soc, 2003, 125,2408 -2409.
    [43] L. Gorton, Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes, J. Chem. Soc. Faraday Trans.I, 1986, 82,1245-1258.
    
    [44] B.Persson, A chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide based on a phenothiazine derivative, 3-β-naphthoyl-toluidine blue, J. Electroanal.Chem, 1990,287,61-80.
    [45] J.Chen, J.C.Bao, C.X.Cai, T.H.Lu, Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode, Anal.Chim.Acta, 2004, 516, 29-34.
    [46] M.G Zhang, W. Gorski, Electrochemical sensing based on redox mediation at carbon nanotubes, Anal.Chem, 2005, 77,3960-3965.
    [47] M.G Zhang, W. Gorski. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system, J. Am. Chem. Soc, 2005, 127, 2058-2059.
    [48] B. Persson, L. Gorton, A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH, J.Electroanal.Chem, 1990, 292, 115-138.
    
    
    [49] H.X. Ju, L. Dong, H.Y. Chen, The study on the electrochemical behaviour of nile blue A modified carbon fiber microcylinder electrode, Chem. J . Chin . Univ, 1995,16, 1200-1203. (鞠熀先,董灵,陈洪渊,高等学校化学学报,1995,16,1200-1203.)
    [50] C.X. Cai, K.H. Xue, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with an electropolymerized film of nile blue A, Chin. J. Chem, 2000, 18, 182-187.
    [51] A.J. Bard, L.R. Faulkner, Electrochemical methods, fundamental and applications, 2nd ed. New York: John Wiley & Sons Inc, 2001, 594-597.
    [52] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal.Chem, 1979, 101, 19-28.
    [53] C.X. Cai, K.H. Xue, Electrocatalysis of NADH oxidation with electropolymerized films of azure I, J. Electroanal.Chem, 1997, 427, 147-153.
    [1] P.M. Ajayan, Nanotubes from Carbon, Chem Rev., 1999, 99,1787-1799.
    [2] H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., 2002, 500, 218-241.
    [3] T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Materials Science & Engineering B, 2005, 119, 105-118.
    [4] J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing, J. Electrochim Acta, 2005, 50,3049-3060.
    [5] J. Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, 17,7-14.
    [6] C.X.Cai(蔡称心),J.Chen(陈静),J.C.Bao(包建春),T.H.Lu(陆天虹),Applications of carbon nano tubes in analytical, Chinese J. Anal Chem.(分析化学),2004,32,381-387.
    [7] C.X.Cai(蔡称心),J.Chen(陈静),Direct electrochemistry of horseradish peroxidase at a carbo n nanotube, Acta Chimica Sinica.(化学学报),2004,62,335-340.
    [8] C.X.Cai(蔡称心),J.Chen(陈静),T.H.Lu(陆天虹),碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移,Science in China, Ser. B(中国科学,B辑),2003,33,511-518.
    [9] J. Chen, C.X. Cai, Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode, Chinese J. Chem, 2004, 22, 167-171.
    [10] M.K. Wang, Y. Shen, Y. Liu, T. Wang, F. Zhao, B.F. Liu, S.J. Dong, Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes, J. Electroanal Chem, 2005, 578, 121-127.
    [11] J.J. Xu, G. Wang, Q. Zhang, D.M. Zhou, H.Y. Chen, Interfacing cytochrome c to Au electrodes with humic acid film, Electrochem Commun., 2004, 6, 278-283.
    [12] C.X. Cai, Chen Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode, J. Anal Biochem, 2004, 325, 285-292.
    [13] J.X.Xu, J.J.Zhu, Q.Wu, Z.Hu, H.Y.Chen, Isomerization mechanisms of C_5H_2 on the triplet and singlet potential energy surfaces, Chinese J. Chem., 2003, 21, 117-120.
    [14] H.J. Dai, Carbon nanotubes: synthesis, integration, and properties, Acc Chem Res., 2002, 35, 1035-1044.
    [15] Y.P. Sun, K. Fu, W. Huang, Functionalized carbon nanotubes: properties and applications, Acc Chem Res, 2002, 35, 1096-1104.
    [16] C.A. Dyke, J.M. Tour, Decomposing complex cooperative ligand binding into simple components: connections between microscopic and macroscopic models, J. Phys. Chem. B, 2004, 108, 11151-11159.
    [17] C.Y. Hong, Y.Z.You, C.Y. Pan, Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization, Chem Mater, 2005, 17, 2247-2254.
    [18] M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, A.A. Hirsch, Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes, J. Am Chem. Soc, 2003, 125, 8566-8580.
    [19] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution properties of single-walled carbon, nanotubes, Science, 1998, 282, 95-98.
    [20] D. Pantarotto, C.D. Partidos, R.Graff, J. Hoebeke, J.P. Briand, M. Prato, A. Bianco, A synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides, J. Am Chem Soc, 2003, 125, 6160-6164.
    [21] Y. Georgalilas, N. Tagmatarchis, D. Pantarotto, A.Bianco, J.P. Briand, M. Prate, Amino acid functionalisation of water soluble carbon nanotubes, Chem Commun, 2002, 20, 3050-3051.
    [22] B.R. Azamian, J.J. Davis, Bioelectrochemical single-walled carbon nanotubes, J. Am. Chem Soc, 2002, 124, 12664-12665.
    [23] S.E. Baker, W. Cai, Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization, Nano Lett, 2002, 2, 1413-1417.
    [24] J.M. Haremza, M.A. Kahn, Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubos, Nano Lett, 2002, 2, 1253-1258.
    [25] R.L.D. Whitby, W.K. Hsu, D. Collison, Multiwalled carbon nanotubes coated with tungsten disulfide, Chem Meter, 2002, 14, 2209-2217.
    [26] J.J. Stephenson, J.L. Hudson, S. Azad, J.M. Tour, Individualized single-walled carbon nanotubes from bulk material using 96% sulfuric acid as solvent, Chem Mater, 2006, 18, 374-377.
    [27] Y. Wang, Z. Iqbal, S. Mitra, Rapidly functionalized, water-dispersed carbon nanotubes at high concentration, J. Am Chem Soc., 2006, 128, 95-99.
    [28] E.T. Miekelson, Fluorination of single-wall carbon nanotubes, Chem Phys Chem., 1998, 296, 188-194
    [29] S. Banerjee, S.S. Wong, Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis, J. Phys Chem. B, 2002, 106, 12144-12151
    [30] R.J. Chen, Y. Zhang, D. Wang, H.J. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am Chem Soc., 2001, 123, 3838-3839.
    [31] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew Chem Int Ed., 2001, 40, 1721-1725.
    [32] Y.M. Yan, M.N. Zhang, K.P. Gong, L. Su, Z.X. Guo, L.Q. Mao, Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite, Chem Mater, 2005, 17, 3457-3463.
    [33] Q.W. Li, J. Zhang, H. Yan, M.S. He, Z.F. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon, 2004, 42, 287-291.
    [34] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am Chem Soc., 2003, 125, 2408-2409.
    [35] M.G. Zhang, W. Gorski, Electrochemical sensing based on redox mediation at carbon nanotubes, Anal Chem., 2005, 77, 3960-3965.
    [36] M.G. Zhang, W. Gorski, Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system, J. Am Chem Soc, 2005, 127, 2058-2059.
    [37] J. Chen, J.C. Bao, C.X. Cai, T.H. Lu, Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode, Anal Chim Acta, 2004, 516, 29-34.
    [38] H.X.Ju(鞠熀先),W.Ma(马威),C.X.Cai(蔡称心),H.Y.Chen(陈洪渊),The study on the electrochemical behaviour of nile blue A modified carbon fiber microcylinder electrode, Chem J. Chin Univ.(高等学校化学学报),1995,16,1680-1684.
    [39] A.J. Bard, L.R. Faulkner, Electrochemical methods, fundamental and applications, 2nd ed. New York: John Wiley & Sons In, 2001, 594-597.
    [40] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal Chem, 1979, 101, 19-28.
    [41] L. Gorton, Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes, J. Chem Soc. Faraday. Trans. I, 1986, 82, 1245-1258.
    [1] P. He, M. Bayachou, Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles, Langmuir, 2005, 21, 6086-6092.
    [2] J.H. Rouse, Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol-gel composite formation, Langmuir, 2005, 21, 1055-1061
    [3] E. Katz, I. Willner, J. Wang, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles, Electroanalysis, 2004, 16, 19.
    [4] J.J. Gooding, R. Wibowo, J.Q. Liu, W.R. Yang, D. Losic, S. Orbong, F.J. Mearns, Protein electrochemistry using aligned carbon nanotube arrays, J. Am. Chem. Soc, 2003, 125, 9006-9007.
    [5] J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing, Electrochim. Acta, 2005, 50, 3049-3060.
    [6] J. Wang, Carbon-nanotube based electrochemical bioseusors: a review, Electroanalysis, 2005, 17, 7-14.
    [7] Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes, Electroanalysis, 2002, 14, 1609-1613.
    [8] C.X. Cai, J. Chen, J. Bao, T. Lu, Allications of carbon nanotubes in analytical chemistry, Chin. J. Anal. Chem, 2004, 32, 381-387.
    [9] J. Chen, J. Bao, C.X. Cal, T. Lu, Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode, Anal. Chim. Acta, 2004, 516, 29-34.
    [10] J. Chen, C.X. Cai, Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode, Chin. J. Chem, 2004, 22, 167-171.
    [11] M. Musameh, J. Wang, A. Merkoci, Y. Yin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun, 2002, 4, 743-746.
    [12] J. Zeng, W. Wei, L. Wu, X. Liu, K. Liu, Y. Li, Fabrication of poly (tolnidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH, J. Electroanal. Chem, 2006, 595, 152-160.
    [13] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single-wall carbon nanotubes, Electroanalysis, 2002, 14, 225-230.
    [14] F.H. Wu, G.C. Zhao, X.W. Wei, Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode, Electrochem. Commun, 2002, 4, 690-694.
    [15] Q. Liang, Y. Wang, G. Luo, Z. Wang, Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid, J. Electroanal. Chem, 2003, 540, 129-134.
    [16] J. Chen, J. Bao, C.X. Cal, Fabrication, characterization and electrocatalysis of an ordered carbon nanotube electrode, Chin. J. Chem, 2003, 21, 665-669.
    [17] H. Luo, Z. Shi, N. Li, Z. Gu, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode, Anal. Chem, 2001, 73, 915-920.
    [18] J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xu, F.S. Sheu, Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun, 2004, 6, 66-70.
    [19] J. Wang, M. Li, Z. Shi, N. Li, Z. Li, Z. Gu, Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode, Microchem. J, 2002, 73, 325-333.
    [20] X.N. Cao, L. Lin, Y.Y. Zhou, G.Y. Shi, W. Zhang, K. Yamamoto, L.T. Jin, Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit, Talanta, 2003, 60, 1063-1070.
    [21] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection, Sens. Actuators B, 2003, 92, 279-285.
    [22] J. Wang, M. Musameh, Y.Lin, Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc, 2003, 125, 2408-2409.
    [23] J. Wang, M. Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Anal.Chem, 2003, 75, 2075-2079.
    [24] P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes, Adv. Mater, 1999, 11, 154-157.
    [25] M. Zhang, Y. Yan, K. Gong, L. Mao, Z. Guo, Y. Chen, Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O_2 reduction, Langmuir, 2004, 20, 8781-8785.
    [26] Y. Yan, W. Zheng, M. Zhang, L. Wang, L. Su, L. Mao, Bioelectrochemically functional nanohybrids through Co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response, Langmuir, 2005, 21, 6560-6566.
    [27] C.X. Cai, J. Chen, Direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode, Acta. Chim. Sinica, 2004, 62, 335-340.
    [28] C.X. Cai, J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotnhe electrode, Anal. Biochem, 2004, 325, 285-292.
    [29] L. Chen, G. Lu, Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin, J. Electroanal.Chem, 2006, 597, 51-59.
    [30] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes, Electrochem. Commun, 2003, 5, 408-411.
    [31] Y.F. Lu, Y.J. Yin, P. Wu, C.X. Cai, Direct Electrochemistry and bioelectrocataiysis of myoglobin at a carbon nanotube-modified electrode, Acta Phys.-Chim.Sin, 2007, 23, 5-8.
    [32] F. Patolsky, Y. Weizmann, I. Willner, Long-range electrical contacting of redox enzymes by SWCNT Connectors, Angew. Chem. Int. Ed, 2004, 43, 2113-2117.
    [33] A. Guiseppi-Elie, C. Lei, R.H. Baughman, Direct electron tranfer of glucose oxidase on carbon nanotubes, Nanotechnology, 2002, 13, 559-564.
    [34] C.X. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes, Anal. Biochem, 2004, 332, 75-83.
    [35] Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens. Bioelectron, 2005, 21, 984-988.
    [36] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wail carbon nanotubes, Anal. Chem, 2002, 74, 1993-1997.
    [37] G.C. Zhao, Z.Z. Yin, L. Zhang, X.W. Wei, Direct electrochemistry of cytochrome c on a multi-wailed carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2, Electrochem. Commun, 2005, 7, 256-260.
    [38] Y. Yin, P. Wu, Y. Lu, P. Du, Y. Shi, C.X. Cai, Immobilization and direct electrochemistry of cytochrome C at a single-wall carbon nanotubes modified electrode, J.Solid State Electrochem, 2007, 11, 390-397.
    [39] G. Wang, J.J. Xu, H.Y. Chen, Interfacing cytochrome e to electrodes with a DNA-carbon nanotube composite film, Electrochem. Commun, 2002, 4, 506-509.
    [40] Y. Lu, C.X. Cai, Immobilization, characterization and direct electron transfer reaction of ferredoxin on multi-wailed carbon nanotube, Acta Chim. Sinica, 2006, 64, 2396-2402.
    [41] M. Wang, Y. Shen, Y. Liu, T. Wang, F. Zhao, B. Liu, S. Dong, Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes, J. Electroanal. Chem, 2005, 578, 121-127.
    [42] J.J. Stephenson, J.L. Hudson, S. Azad, J.M. Tour, Individualized single-wall carbon nanotubes from bulk material using 96% sulfuric acid as solvent, Chem. Mater, 2006, 18, 374-377.
    [43] Y. Wang, Z. Iqbal, S. Mitra, Rapidly functionalized, water-dispersed carbon nanotubes at high concentration, J. Am. Chem. Soc., 2006, 128, 95-99.
    [44] M.J. O'Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett, 2001, 342, 265-271.
    [45] P. Du, Y.M. Shi, P. Wu, Y.M. Zhou, C.X. Cai, Rapid functionalization of carbon nanotube and its electrocatalysis, Acta. Chim. Sinca, 2007, 65, 1-9.
    [46] Y.C. Tsai, J.M. Chen, S.C. Li, Cast thin film biosensor design aased on a nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function, Langmuir, 2005, 21, 3653-3658.
    [47] Y.C. Tsai, J.D. Huang, Poly (vinyl alcohol)-assisted dispersion of multiwalled carbon nanotubes in aqueous solution for electroanalysis, Electrochem. Commun, 2006, 8, 956-960.
    [48] L. Jiang, R. Wang, X. Li, L. Jiang, G. Lu, Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode, Electrochem. Commun, 2005, 7, 597-601.
    [49] J. Li, Q. Liu, Y. Liu, S. Liu, S. Yao, DNA biosensor based on chitosan film doped with carbon nanotubes, Anal. Biochem, 2005, 346, 107-114.
    [50] S.F. Wang, L. Shen, W.D. Zhang, Y.J. Tong, Preparation and mechanical properties of chitosan/carbon nanotubes composites, Biomacromolecules, 2005, 6, 3067-3072.
    [51] Y. Zhang, J. Li, Y. Shen, M. Wang, J. Li, Poly-L-lysine functionalization of single-wall carbon nanotubes, J. Phys. Chem. B, 2004, 108, 15343-15346.
    [52] H. Zhao, H. Ju, Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase, Anal. Biochem, 2006, 350, 138-144.
    [53] S.N. Liu, C.X. Cai, Immobilization and characterization of alcohol dehydrogenaseon single-walled carbon nanotubes and its application in sensing ethanol, J. Electroanal. Chem, 2007, 602, 103-114.
    [54] T. Welton, Room-temperature ionic liquids solvents for synthesis and catalysis, Chem. Rev, 1999, 99, 2071-2083.
    [55] S. Pandey, Analytical applications of room-temperature ionic liquids: A review of recent efforts, Anal. Chim. Acta, 2006, 556, 38-45.
    [56] S. T. Handy, Greener solvents: room temperature ionic liquids from biorenewable sources, Chem. Eur. J., 2003, 9, 2938-2944.
    [57] M. Galinski, A. Lewandowski, I. Stepniak, Ionic liquids as electrolytes, Electrochim.Acta, 2006, 51, 5567-5580.
    [58] C.P. Mehnert, Supported Ionic Liquid Catalysis Chemistry, Chem. Eur. J., 2005, 11, 50-56.
    [59] S. Imabayashi, K. Ishii, M. Watanabe, Effect of the modification of phenothiazine-labeled poly (ethylene oxide) on the solubility and enzymatic electrocatalytic reaction of glucose oxidase in water/1-butyl-3-methylimidazolium tetrafluoroborate mixtures, Electrochem. Commun, 2006, 8, 45-50.
    [60] V. Rumbau, R. Marcilla, E. Ocboteco, J.A. Pomposo, D. Mecerreyes, Ionic liquid immobilized enzyme for biocatalytic synthesis of conducting polyaniline, Macromolecules, 2006, 39, 8547-8549.
    [61] Z.W. Zhao, Z.P. Guo, J. Ding, D. Wexler, Z. F. Ma, D.Y. Zhang, H.K. Liu, Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes, Electrochem Commun, 2006, 8, 245-250.
    [62] K. Shimojo, M. Goto, Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes, Anal.Chem, 2004, 76, 5039-5044.
    [63] F. Zhao, X. Wu, M. Wang, Y. Liu, L. Gao, S. Dong, Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials, Anal. Chem, 2004, 76, 4960-4967.
    [64] M. Matsumiya, M. Terazono, K. Tokuraku, Temperature dependence of kinetics and diffusion coefficients for ferrocene/ferricenium in ammonium-imide ionic liquids, Electrochim. Acta, 2006, 51, 1178-1183.
    [65] T. Sato, G. Masuda, K. Tskagi, Electrochemical properties of novel ionic liquids for electric double layer capacitor applications, Electrochim. Acta, 2004, 49, 3603-3611.
    [66] J.F. Huang, I.W. Sun, Nonanomalous electrodeposition of zinc-iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid, J. Electrochem.Soc, 2004, 151, C8-C14.
    [67] D. Wei, C. Kvarnstrom, T. Lindfors, A. Ivaska, Eleclrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids, Electrochem. Commun, 2007, 9, 206-210.
    [68] C.Y. Wang, V. Mottaghitalab, C.O. Too, G.M. Spinks, G.G. Wallace, Polyaniline and polyaniline-carbon nanotune composite fibres as battery materials in ionic liquid electrolyte, J. Power Sources, 2006, 13, 589-596.
    [69] Q. Zhao, D. Zhan, H. Ma, M. Zhang, Y. Zhao, P. jing, Z. Zhu, X. Wan, Y. Shao, Q. Zhuang, Direct proteins electrochemistry based on ionic liquid mediated carbon naotube modified glassy carbon electrode, Front. Biosci, 2005, 10, 326-334.
    [70] X. Lu, Q. Zhang, L. Zhang, J. Li, Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid, Electrochem. Commun, 2006, 8, 874-878.
    [71] Y. Liu, L. Shi, M. Wang, Z. L, H. Liu, J. Li, A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application, Green Chem, 2005, 7, 655-658.
    [72] X. Lu, J. Hu, X. Yao, Z. Wang, J. Li, Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin, Biomacromolecules, 2006, 7, 975-980.
    [73] P. Yu, Y. Lin, L. Xiang, L. Su, J. Zhang, L. Man, Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications, Langmuir, 2005, 21, 9000-9006.
    [74] S.F. Ding, M.Q. Xu, G.C. Zhao, X.W. Wei, Direct electrochemical response of myoglobin using a room temperature ionic liquid, 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte, Electrochem. Commun, 2007, 9, 216-220.
    [75] H. Chen, Y. Wang, Y. Liu, Y. Wang, L. Qi, S. Dong, Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in nafion-RTIL composite film, Electrochem. Commun, 2007, 9, 469-474.
    [76] Y. Liu, M. Wang, J. Li, Z. Li, P. He, H. Liu, J. Li, Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials electronic supplementary information, Chem. Commun, 2005, 24, 1778-1780.
    [77] D.L. Compton, J.A. Laszlo, Loss ofcytochrome c Fe(Ⅲ)/Fe(Ⅱ) redox couple in ionic liquids, J. Electroanal. Chem., 2003, 553, 187-190.
    [78] Y. Liu, L. Liu, S. Dong, Electrochemical characteristics of glucose oxidase adsorbed at carbon nanotubes modified electrode with ionic liquid as binder, Electroanalysis, 2007, 19, 55-59.
    [79] L.G. Lin, Y. Wang, J.W. Yan, Y.Z. Yuan, J. Xiang, B.W. Mao, An in situ STM study on the long-range surface restructuring of Au (111) in a non-chloroaluminumated ionic liquid, Electrochem. Commun, 2003, 5, 995-999.
    [80] K. G. Welinder, Amino acid sequence studies of horseradish peroxidase, Eur. J. Biochem, 1979, 96, 483-502.
    [81] Y. Enoki, Y. Ohga, M. Kawase, A. Nakatani, Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications, Biochim. Biophys. Acta, 1986, 789, 331-337.
    [82] B. Lonetti, E. Fratini, S. H. Chen, P. Baglioni, Viscoelastic and small angle neutron scattering studies of concentrated protein solutios, Phys. Chem. Chem. Phys., 2004, 6, 1388-1395.
    [83] K. Tohji, T. Goto, H. Takahashi, Y. shinoda, N. Shimizu, B. Jeyadevan, I. matsuoka, Purifying single-walled nanotubes, Nature, 1996, 383, 679-1256.
    [84] S. Park, R.J. Kazlanskas, Biocatalysis in ionic liquidsadvantages beyond green technology, Curr. Opin. Biotechnol, 2003, 14, 432-437.
    [85] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes, Science, 2003, 300, 2072-2074.
    [86] G. Chambers, C. Carroll, F.G. Farrell, B.A. Dalton, M. McNamara, M. Panhuis, J.H. Byrne, Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes, Nano Lett, 2003, 3, 843-846.
    [87] T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Mater. Sci. & Eng. B, 2005, 119, 105.
    [88] J.L. Kaar, A.M. Jesionowski, J.A. Berberich, R. Moulton, A.J. Russell, Impact of ionic liquid physical properties on lipase activity and stability, J. Am. Chem. Soc., 2003, 125, 4125-4131.
    [89] Z.H. Chi, S.A. Asher, UV resonance raman determination of protein acid denaturation: selective unfolding of helical segments of horse, myoglobin, Biochemistry, 1998, 37, 2865-2872.
    [90] P.H. Chen, R.L. McCreery, Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification, Anal.Chem, 1996, 68, 3958-3965.
    [91] S.P. Perone, W.J. Kretlow, Application of controlled potential techniques to study of rapid succeeding chemical reaction coupled to electro-oxidation of ascorbic acid, Anal. Chem, 1966, 38, 1760-1763.
    [92] Y. Zhao, Y. Gao, D. Zhan, H. Liu, Q. Zhao, Y. Kou, Y. Shao, M. Li, Q. Zhuang, Z. Zhu, Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode, Talanta, 2005, 66, 51-57.
    [93] L. Shen, R. Huang, N. Hu, Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis, Talanta, 2002, 56, 1131-1139.
    [94] N. Hu, J. F. Rusling, Electrochemistry and catalysis with myoglobin in hydrated poly (ester sulfonic acid) ionomer films, Langmuir, 1997, 13, 4119-4125.
    [95] Z. Li, N. Hu, Direct electrochemistry of heme proteins in their layer-by-layer films with clay nanoparticles, J. Electroanal. Chem, 2003, 558, 155-165.
    [96] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J.Electroanal. Chem, 1979, 101, 19-28.
    [97] H. Huang, N. Hu, Y.H. Zeng, G. Zhou, Electrochemistry and. electrocatalysis with heme proteins in chitosan biopolymer films, Anal.Biochem, 2002, 308, 141-151.
    [98] A.J. Bard, L.R. Faulkner, Electrochemical methods, funda mental and applications, 2nd ed. New York: John Wiley & Sons Inc, 2001, 594-597.
    [1] P. He, M. Bayachou, Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles, Langmuir, 2005, 21, 6086-6092.
    [2] J.H. Rouse, Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon nanotube/sol-gel composite formation, Langmuir, 2005, 21, 1055-1061.
    [3] E. Katz, I. Willner, J. Wang, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles, Electroanalysis, 2004, 16, 19-44.
    [4] J.J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F.J. Meatus, J.G. Shapter, D.B. Hibbert, Protein electrochemistry using aligned carbon nanotube arrays, J. Am. Chem. Soc., 2003, 125, 9006-9007.
    [5] J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochim. Acta, 2005, 50, 3049-3060.
    [6] J.Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, 17, 7-14.
    [7] Q. Zhao, Z. Gan, Q. Zhuang, Electrochemical sensors based on carbon nanotubes, Electroanalysis, 2002, 14, 1609-1613.
    [8] C.X. Cai, J. Chen, J. Bao, T. Lu, Applications of carbon nanotubes in analytical chemistry, Chin. J. Anal. Chem, 2003, 32, 381-387.
    [9] S.K. Smart, A.I. Cassady, G.Q. Lu, D.J. Martin, The biocompatibility of carbon nanotubes, Carbon, 2006, 44, 1034-1047.
    [10] P.M. Ajayan, Nanotubes from carbon, Chem. Rev., 1999, 99, 1787-1800.
    [11] H. Dai, Carbon nanotunes: opportunities and challenges, Suf. Sci., 2002, 500, 218-241.
    [12] T. belin, F. Epron, Characterization methods of carbon nanotubes: a review, Mater. Sci. Eng. B, 2005, 119, 105-118.
    [13] G Jurmann, K. Tammeveski, Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution, J. Electroanal. Chem, 2006, 597, 119-126.
    [14] S. Liu, C.X. Cai, Immobiliozation and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol, J. Electroanal. Chem, 2007, 602, 103-114.
    [15] V.B. Kandimalla, V.S. Tripathi, H. Ju, A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application, Biomaterials, 2006, 27, 1167-1174.
    [16] G. Liu, Y. Lin, Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes, Electrochem. Commun, 2006, 8, 251-256.
    [17] H. Zhan, H. Ju, Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase, Anal. Biochem, 2006, 350, 138-144.
    [18] M. Zhang, A. Smith, W. Carbon nanotube-chitosan system for electrochemical sensing based on. dehydrogenase enzymes, Gorski, Anal. Chem, 2004, 76, 5045-5050.
    [19] J. Chen, J. Ban, C.X. Cai, T. Lu, Electrocatalytix oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode, Anal. Chim. Acta, 2004, 516, 29-34.
    [20] J. Chen, C.X. Cai, Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode, Chin. J. Chem, 2004, 22, 167-171.
    [21] M. Musameh, J. Wang, A. Merkuci, Y. Yin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun, 2002, 4, 743-746.
    [22] J. Zeng, W. Wei, L. Wu, X. Liu, K. Liu, Y. Li, Fabrication of poly(toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH, J. Electroanal. Chem, 2006, 595, 152-160.
    [23] Q. Liang, Y. Wang, G. Luo, Z. Wang, Carbon nanotnhe-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid, J. Electroanal.Chem, 2003, 540, 129-134.
    [24] J. Chen, J. Ban, C.X. Cai, Fabrication, characterization and electrocatalysis of an ordered carbon nanotube electrode, Chin. J. Chem, 2003, 21, 665-669.
    [25] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-walled carbon nanotubes, Anal.Chem, 2002, 74, 1993-1997.
    [26] J.S. Ye, Y. Wen, W.D. Zhang, L.M. Gan, G.Q. Xn, F.S. Sheu, Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun, 2004, 6, 66-70.
    [27] X.N. Cao, L. Lin, Y.Y. Zhou, G.Y. Shi, W. Zhang, K. Yamamoto, L.T. Jin, Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit, Talanta, 2003, 60, 1063-1070.
    [28] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection, Sens. Actuators B, 92 (2003) 279-285.
    [29] J. Wang, M. Musameh, Y. Lin, Solubilization of carbon nanotubes by Nation toward the preparation of amperometric biosensors, J. Am. Chem. Soc, 2003, 125, 2408-2409.
    [30] J. Wang, M. Musameh, Carbon nanotube/Teflon composite electrochemical sensors and biosensors, Anal. Chem, 2003, 75, 2075-2079.
    [31] P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes, Adv. Mater, 1999, 11, 154-157.
    [32] M. Zhang, Y. Yan, K. Gong, L. Mao, Z. Guo, Y. Chen, Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O_2 reduction, Langmuir, 2004, 20, 8781-8785.
    [33] Y. Yan, W. Zheng, M. Zhang, L. Wang, L. Su, L. Man, Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response, Langmuir, 2005, 21, 6560-6566.
    [34] C.X. Cai, J. Chen, direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode, Acta Chim. Sinica, 2004, 62, 335-340.
    [35] C.X. Cai, J. Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotubes electrode, Anal. Biochem, 2004, 325, 285-292.
    [36] L. Chen, G. Lu, Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin, J. Electroanal. Chem, 2006, 597, 51-59.
    [37] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes, Electrochem.Commun, 2003, 5, 408-411.
    [38] Y.F. Lu, YJ. Yin, P. Wu, C.X. Cai, Direct electrochemistry and bioelectrocatalysis of myoglobin at a carbon nanotube-modified electrode, Acta Phys. Chim. Sin, 2007, 23, 5-11.
    [39] F. Patolsky, Y. Weizmann, I. Willner, Long-range electrical contacting of redox enzymes by SWNT connectors, Angew. Chem. Int. Ed, 2004, 43, 2113-2117.
    [40] C.X. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotunes, Anal. Biochem, 2004, 332, 75-83.
    [41] Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens. Bioelectron, 2005, 21, 984-988.
    [42] Y. Yin, P. Wu, Y. Lu, P. Du, Y. Shi, C.-X. Cai, Immobilization and direct electrochemistry of cytochrome c at a single-walled carbon nanotube-modified electrode, J.Solid State Electrochem, 2007, 11, 390-397.
    [43] Y.F. Lu, C.X. Cal, Immobilization, characterization and direct electron transfer reaction of ferredoxin on multi-walled carbon nanotube, Acta. Chim. Sinica, 2006, 64, 2396-2402.
    [44] M. Wang, Y. Shen, Y. Liu, T. Wang, F. Zhao, B. Liu, S. Dong, Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes, J. Electroanal. Chem, 2005, 578, 121-127.
    [45] C.A. Dyke, J.M. Tour, Solvent-free functionalization of carbon nanotubes, J. Am. Chem. Soc, 2004, 108, 1156-1157.
    [46] C.Y. Hong, Y.Z. You, C.Y. Pan, Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization, Chem. Mater, 2005, 17, 2247-2254.
    [47] M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, A. Hirsch, Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes, J. Am. Chem. Soc, 2003, 125, 8566-8580.
    [48] D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.P. Briand, M. Prate, A. Bianco, Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides, J. Am. Chem. Soc, 2003, 125, 6160-6164.
    [49] D. Sun, L. Zhu, H. Huang, G. Zhu, Fabrication of 9,10-phenanthrenequinone/carbon nanotubes composite modified electrode and its electrocatalytic property to the reduction of iodate, J. Electroanal. Chem, 2006, 597, 39-42.
    [50] D. Baskaran, J.W. Mays, M.S. Bratcher, Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanombes, Chem. Mater, 2005, 17, 3389-3397.
    [51] Y. Yan, M. Zhang, K. Gong, L. Su, Z. Guo, L. Mao, Adsorption of methylene blue dye onto carbon nanotubes: a mute to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite, Chem. Mater, 2005, 17, 3457-3463.
    [52] Q.Li.J. Zhang, H. Yan, M. He, Z. Liu, Thionine-mediated chemistry of carbon nanotubes, Carbon, 2004, 42, 287-291.
    [53] N.S. Lawrence, J. wang, Chemical adsorption of phenothiazine dyes onto carbon nanotubes: toward the low potential detection of NADH, Electrochem. Commun, 2006, 8, 71-76.
    [54] P. Du, Y. M. Shi, P. Wu, Y. M. Zhou, C.X. Cai, Rapid functionalization of carbon nanotubes and its electrocatalysis, Acta Chim. Sinica, 2007, 65, 1-9.
    [55] P. Du, Y. M. Shi, P. Wu, T. H. Lu, C.X. Cai, Electrocatalytic activities of 1,2-naphthoquinone modified carbon nanotubes to the electrochemical oxidation of β-nicotinamide adenine dinucleotide, Chin. J. Anal.Chem, 2006, 12, 1688-1692.
    [56] K. Zhao, H. Song, S. Zhuang, L. Dai, P. He, Y. Fang, Determination of nitrie with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotunes, Electrochem. Commun, 2007, 9, 65-70.
    [57] D. Wei, C. Kvarnstrom, T. Lindfors, A. Ivaska, Electrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids, Electrochem. Commun, 2007, 9, 206-210.
    [58] C.Y. Wei, D. Srivastava, K.J. Cho, Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites, Nano Lett, 2002, 2, 647-650.
    [59] K.H. An, S.Y. Jeong, H.R. Hwang, Y.H. Lee, Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Adv. Mater, 2004, 16, 1005-1009.
    [60] H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J.W. Park, J.H. Lee, Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer, Synth. Met, 2001, 116, 369-372.
    [61] S. Bhattacharyya, E. Kymakis, G.A.J. Amaratunga, Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices, Chem. Mater, 2004, 16, 4819-4823.
    [62] C.Y. Wang, V. Mottaghitable, C.O. Too, G.M. Spinks, G.G. Wallace, Polyaniline and polyaniline-carbon nanotune composite fibres as battery materials in ionic liquid electrolyte, J. Power Sources, 2006, 13, 589-596.
    [63] J.E. Wang, X.H. Li, J.C. Xu, H.L. Li, Well-dispersed single-walled carbon nanotubes/polyaniline composite films, Carbon, 2003, 41, 2731-2736.
    [64] K. Lota, V. Khomenko, E. Frackowiak, Capacitance properties of poly (3,4-ethylenedioxythiophene)/carbon nanotubes composites, J. Phys. Chem. Solid, 2004, 65, 295-301.
    [65] H.S. Wang, T.H. Li, W.L. Jia, H.Y. Xu, highly selective and sensitive determination of dopamine using a nation/carbon nanotubes coated poly (3-methylthiophene) modified electrode, Biosen. Bioelectron, 2006, 22, 664-669.
    [66] N. Ferrer-Anglada, M. Kaempgen, V. Skakalova, U. Dettlaf-Weglikowska, S. Roth, Synthesis and characterization of carbon nanotube-conducting polymer thin films, Diamond and related materials, 2004, 13, 256-260.
    [67] Z. Wang, J. Yuan, M. Li, D. Han, Y. Zhang, Y. Shen, L. Niu, A. Ivaska, Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite, J. Eleetroanal. Chem, 2007, 599, 121-126.
    [68] Y. Yan, W. Zheng, L. Su, L. Mao, Carbon-nanotube-based glucose/O_2 biofuel cells, Adv. Mater, 2006, 18, 2639-2643.
    [69] B. Persson, L. Gorton, A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH, J. Electroanal. Chem, 1990, 292, 118-138.
    [70] K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Purifying single-walled nanotubes, Nature, 1996, 383, 679-686.
    [71] C.X. Cai, K.H. Xue, Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A, Anal. Chim. Acta, 1997, 343, 69-77.
    [72] C.X. Cai, K.H. Xue, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with an electropolymerized film of nile blue A, Chin. J. Chem, 2000, 18, 182-187.
    [73] A.A. Karyakin, E E. Strakbova, E.E. Karyakina, S.D. Varfolomeyev, A.K. Yatsmirsky, The electrochemical polymerization of methylene blue and bioelectrochemical activity of the resulting film, Bioelectrochem. Bioenerg, 1993, 32, 35-43.
    [74] A. Bergel, J. Souppe, M. Comtat, Enzymatic amplification for spectropbotometric and electrochemical assays of NAD~+ and NADH, Anal. Biochem, 1989, 179, 382-388.
    [75] S. Serban, N.E. Murr, Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes: New approach for dehydrogenase based biosensors, Biosens. Bioelectron, 2004, 20, 161-166.
    [76] B. Limoges, D. Marchal, F. Mavre, J.M. Saveant, Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes, J. Am. Chem. Soc, 2006, 128, 2084-2092.
    [77] L. Wu, X. Zhang, H. Ju, Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential, Anal.Chem, 2007, 79, 453-458.
    [78] C.X. Cai, K.H. Xue, Electrocacalysis of NADH oxidation with electropolymerized films of azure I, J. Electroanal. Chem, 1997, 427, 147-153.
    [79] B.A. Deore, M.S. Freund, Reactivity of poly (anilineboronic acid) with NAD~+ and NADH, Chem. Mater, 2005, 17, 2918-2923.
    [80] M.I. Alvarez-Gonzalez, S.B. Saldman, M.J. Lobo-Castanon, A.J. Miranda-Ordieres, P. Tunon-Blanco, Electrocatalytic detection of glycerol by NAD~+-medified carbon electrodes, Anal. Chem, 2000, 72, 520-527.
    [81] D.M. Zhou, J.J. Sun, H.-Y. Chen, H.Q. Fang, Electrochemical polymerization of toluidine blue and its application for the amperometric determination of β-D-glucose, Etectrichim. Acta, 1998, 43, 1803-1809.
    [82] H.C. Laventis, I. Streeter, G.G. Wildgoose, N.S. Lawrence, L. Jiang, T.G.J. Jones, R.G. Compton, Derivatised carbon powder electrodes: reagentless pH sensors, Talanta, 2004, 63, 1039-1051.
    [83] L. Andersson, H. Jomvall, A. Akeson, K. Mosbach, Separation of isozymes of horse liver alcohol dehydrogenase and purification of the enzyme by affinity chromatography on an immobilized AMP-analogue, Biochem. Biophys. Acta, 1974, 364, 1-8.
    [84] H. Jornvall, Horse liver alcohol dehydrogenase on the primary structures of the isoenzymes, Eur. J. Biochem, 1970, 16, 41-49.
    [85] L. Cheng, L. Lek, Inhibition of alcohol dehydrogenases by thiol compounds, FEBS Lett, 1992, 300, 251-253.
    [86] L. Skursky, A. Khan, M. Saleem, Y. Altamer, A new potent inhibitor of horse liver alcohol dehydrogenase: p-methylbenzyl hydroperoxide, Biochem. Int, 1992, 26, 899-904.
    [87] B.V. Plapp, Enhancement of the activity of horse liver alcohol dehydrogenase by modification of amino groups at the active sites, J. Biol. Chem, 1970, 245, 1727-1735.
    [88] R.A. Kamin, G.S. Wilson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer, Anal. Chem, 1980, 52, 1198-1205.
    [89] M.K. Ciolkosz, J. Jordan, Comparison of spoctrophotometric and amperometric rate parameters of enzymatic reactions, Anal. Chem, 1993, 65, 164-168.
    [90] F.M. Dickinson, G.P. Monger, A study of the kinetics and mechanism of yeast alcohol dehydrogenase with a variety of substrates, Biochem. J, 1973, 131, 261-270.
    [91] C.X. Cai, K.H. Xue, Y.M. Zhou, H. Yang, Amperometric biosensor for ethanol based on immobilization of alcohol dehydrogenase on a nickel hexacyanoferrate modified microband gold electrode, Talanta, 1997, 44, 339-347.
    [92] J.M. Nugent, S.V. Santhanam, A. Rubio, P.M. Ajayan, Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes, Nano Lett, 2001, 1, 87-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700