PVD制备超硬多层复合薄膜材料工艺与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质薄膜材料可以广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等领域。在实际的工业应用中,硬度是诸多技术要求中的一个重要指标,除此之外,还有高温硬度和韧性、抗氧化性、化学稳定性等。人们对硬质材料的摩擦系数和磨损率、涂层的附着强度、导热系数等也都有一定的要求,不同的使用环境下对薄膜材料的技术要求也各有侧重。自1985年Knotek等首次发表了关于涂层的研究成果后,TiAlN薄膜以其优异的性能,引起了世界各国的关注,并逐渐成为TiN的更新换代涂层。人们对其良好的使用性能表示了极大的关注,已经用多种PVD方法成功制备了TiAlN薄膜。
     为更好的利用PVD方法制备TiAlN薄膜及TiN/TiAlN复合薄膜,并研究其性能,本文利用多弧离子镀、空心阴极离子镀及空心阴极辅助多弧离子镀等镀膜技术分别对TiN薄膜、TiAlN薄膜、TiN/TiAlN复合薄膜的镀制工艺参数进行了大量实验研究,特别是对TiN/TiAlN复合薄膜的靶材成分、镀制方式、镀制循环时间及清洗与镀制工艺参数进行了较深入的研究。使用微纳米压(划)痕及表面轮廓测试系统对薄膜的表面压痕(硬度)、划痕、弹性模量以及薄膜在基体上的附着力等机械性能进行了测试分析研究,还通过X射线衍射(XRD)、扫描电镜(SEM)、场发射扫描电镜(FE—SEM)、激光共聚焦显微镜(CLSM)等实验分析手段研究了薄膜的形貌、结构及性能特征。
     重点分析讨论了多层膜体系的结构和性能以及工艺参数之间的相互关系,特别是研究了不同调制周期和不同靶材镀制对薄膜结构和性能的影响。通过观察TiN/TiAlN多层膜的表面与截面形貌,表明在同等沉积条件下,“55”靶在基体上的沉积速率要高于用“37”靶在基体上的沉积速率,并且用“55”靶沉积的样品表面大颗粒较少,表面较为平整,凹坑少且较浅,其力学性能要好于“37”靶沉积的样品。多层薄膜XRD中显示薄膜中有TiN、AlFe3、AlN、Ti2AlN等相存在,说明多层膜形成了良好的相结构。通过微纳米压(划)痕仪测出的样品压痕(硬度)表明:本实验的TiN/TiAlN多层膜的硬度最高达到了40.12GPa,远高于本试验与文献中给出的TiN薄膜及TiAlN薄膜的硬度。在同等条件下用“55”靶镀制的样品的硬度要高于“37”靶镀制的样品硬度。划痕实验表明,“55”靶镀制的TiN/TiAlN多层膜样品的临界载荷要高于“37”靶镀制的TiN/TiAlN多层膜样品的临界载荷,“37”靶镀制TiN/TiAlN多层膜样品的临界载荷要高于TiAIN单层膜样品的临界载荷。“55”靶镀制的样品的弹性恢复能力和硬度都优于“37”靶镀制的样品的弹性恢复能力和硬度;“55”靶及“37”靶镀制的TiN/TiAlN多层膜样品的弹性恢复能力和硬度都要高于TiAlN单层膜弹性恢复能力和硬度。
     通过实验研究,获得了镀制多层膜的最佳工艺参数,确定了镀制TiAlN薄膜与TiN/TiAlN复合薄膜的最佳镀制方法,并在W6Mo5Cr4V2高速钢基体上镀制了性能较好的TiAlN薄膜及TiN/TiAlN多层复合薄膜。研究结果表明,用空心阴极辅助多弧离子镀工艺可以良好的进行TiN/TiAlN复合薄膜的镀制工作。在空心阴极辅助多弧离子镀工艺下对“55”靶的应用具有良好的应用前景。
The horniness films can be used at the making machine, automobile industry, spinning industry, geological drilling, dieing industry and aerospace engineering very comprehensive. In the actual industry, hardness is the most important technical requirement at the lots of datas. Besides this, the hardness at the high temperature, toughness, non-oxidizability and chemical stability are also very important. Peplo also have some requirements to hard material, such as friction factor, wear rate, adhesive strength and coefficient of heat conductivity. The different environment has the different emphases to the technical requirement of the thin-film material. Since 1985 Knotek published the research production about the coating, because of the good performance of TiAIN films that it has makes attention all the world. It is replacing TiN films. Peplo has paied for attentions to its service performance and has use some of PVD methods to make the TiAlN films.
     For use the PVD method to make the TiAIN and TiN/TiAlN films better and research its performance. In this paper, we use the AIP, HCD and AIP+HCD methods to make the TiN film, TiAIN film and TiN/TiAlN films. For researching the films we have found the processing parameter, specially to the component of the targets, making methods, cycle time and cleaning processing parameter. Use the multi-specimen test system to make the analytical study about the hardness, scratch marks, elastic ratio and adhesive power. Also use XRD, SEM, FE-SEM and CLSM to reaserch the pattern, structure and performance of the films.
     The focal point is to discuss and analysis the relationship between the structure, performance and processing parameter, especially the influence that be made by the different periods and targets. From observing the surface and sectional pattern about TiN/TiAlN films, it can be seen that at the same condition of the aggradation, the rate of the aggradation on the base stock, "55" target is better than "37" target. The samples are made by "55" target is very well. Its bulky grains are less, the surface is smooth, the pits are less and shallow and its mechanical property is better than "37" target. From XRD, the multi-films can be seen have the structure of TiN、AlFe3、AlN、Ti2AlN, explained the multilayer films formed the modulate sturcture favorable, crystal intergrality preferably. The multi-specimen test system test show that:the hardness of TiN/TiAlN multilayer films is tiptop to 40.12GPa, outclass the TiN films and TiAIN films. The hardness of films by 55 target is excel the 37 target in same condition. Scratch test show that:The critical load of the TiN/TiAlN multilayer films made by 55 target is excelled the films made by 37 target.The critical load of the TiN/TiAIN multilayer films made by 37 target is excelled the TiAIN monolayer films. The flexibility resume ability and hardness of the TiN/TiAIN multilayer films made by 55 target is excelled the films made by 37 target, and there are all excelled the TiAIN monolayer films.
     In this research, obtained the best parameter of how to made the multilayer films, confirm the best plating method of TiAIN and TiN/TiAlN films, and plating the TiAlN and TiN/TiAIN films in W6Mo5Cr4V2 surface successful. From the result, it can be seen that: use the AIP+HCD can made the favorable TiN/TiAIN films. The applycation of 55 target have a better foreground by AIP+HCD.
引文
[1]沈壮行.我国高效切削加工技术的发展落后于机械工业需要的深层次原因及解决对策[J].工具技术,2006,40(4):3-8
    [2]M S Greenfield,A T Santhanam.The impact of cutting tool advances on machining productivity[J].Tool Engineering,2006,40(3):13-21
    [3]王福珍,马文存编著.气象沉积应用技术[M].北京:机械工业出版社,2007
    [4]艾兴.切削加工制造领域面临的挑战[C],2006年中国机械工程学会年会暨中国工程院机械与运载工程学部首届年会论文集,中国杭州,2006
    [5]Sundgren J E. Structure and properties of TiN coatings [J]. Thin Solid Films, 1885,128:21-44.
    [6]Sproul W D, Rothstein R. High hate reactively sputtered TiN coating on HSS drill[J]. Thin Solid Film,1985,126:257-263
    [7]Wang YK, Xiao L F, Lei T O, et al. A research microstructure and properties of (Ti, Al)N coating[J]. Surface and Coatings Technology,1995,72:71-75
    [8]Sanchette F, Czerwiec T. Sputtering of Al-Cr and Al-Ti composite targets in pure Ar and in reactive Ar-N2 plasmas[J]. Surface and Coatings Technology,1997,96:184-190
    [9]Wahlstrom U, Hultman L, Sundgren J E, et al. Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering[J]. Thin Solid Films,1993,235:62-70
    [10]Madan A, Kin I W, Cheng S C, et al. Stabilization of cubic AlN in epitaxial AIN/TiN superlattice[J]. Phys. Rev. Lett,1997,78:1743-1746
    [11]郑伟涛等。薄膜材料与薄膜技术。化学工业出版社,北京,2004
    [12]李建,韦习成。物理气相沉积技术的新发展。材料保护,33(1),2000:91-94
    [13]雷斌。TiAIN涂层摩擦学行为及其铣削性能研究。西南交通大学硕士论文,2006
    [14]L.Cunha, M. Andritschky, K. Pischow, Z. Wang. Microstructure of CrN coatings produced by PVD techniques. Thin Solid Films,355-356,1999:465-471
    [15]P. E. Hovsepian, W. D. Munz, A. Medlock, G. Gregory. Combined cathodic arc/unbalanced magnetron grown CrN/NbN superlattice coatings for applications in the cutlery industry. Surface and Coatings Technology,133-134,2000:508-516
    [16]A. Schroer, W. Ensinger, G. K. Wolf. A Comparison of the corrosion Behaviour and Hardness of Steel Samples Coated with Titanium Nitride and Chromiun Nitride by Different Institutions Using Different Depostion Techniuques. Materials Science Engineering A,140,1991:625-630
    [17]B. Navinsek, P. Panjan, A. Cvelbar. Characterization of low temperature CrN and TiN (PVD) hard coatings. Surface and Coatings Technology,74-75,1995:155-161
    [18]Y. L. Su, S. H. Yao, C. T. Wu. Comparisons of characterizations and tribological performance of TiN and CrN deposited by cathodic arc plasma deposition process. Wear,199,1996:132-141
    [19]莫继亮,朱星昊,安剑,雷斌,周仲荣。物理气相沉积CrN涂层的研究进展。中国表面工程,19(4-Ⅱ),2006:71-75
    [20]A. Kimura, T. Murakami, K. Yamada, T. Suzuki. Hot-pressed Ti-Al targets for synthesizing Ti1-xAlxN films by the arc ion plating method. Thin Solid Films,382, 2001:101-105
    [21]J. Vetter, R. Knaup, H. Dweletzki, E. Schneider, S. Vogler. Hard coatings for luburication reduction in metal forming. Surface and Coatings Technology,86-87, 1996:739-747
    [22]A. E. Reiter, V. H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory. Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation. Surface and Coatings Technology,200,2005:2114-2122
    [23]O. Banakh, P. E. Schmid, R. Sanjines, F. Levy. High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering. Surface and Coatings Technology,163-164,2003:57-61
    [24]K. Bobzin, E. Lugscheider, R. Nickel, N. Bagcivan, A. Kramer. Wear behavior of Cr1-xAlxN PVD-coatings in dry running conditions. Wear,263,2007:1274-1280
    [25]H. Scheerer, H. Hoche, E. Broszeit, B. Schramm, E. Abele, C. Berger. Effects of the chromium to aluminum content on the tribology in dry machining using (Cr, Al)N coated tools. Surface and Coatings Technology,200,2005:203-207
    [26]M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa. Friction and wear properities of CrAIN and CrVN films deposited by cathodic arc ion plating method. Surface and Coatings Technology,177-178,2004:627-630
    [27]X. Z. Ding, X. T. Zeng. Structural, mechanical and tribological properties of CrAIN coatings deposited by reactive unbalanced magnetron sputtering. Surface and Coatings Technology,200,2005:1372-1376
    [28]J. C. Sanchez-Lopez, D. Martinez-Martinez, C. Lopez-Cartes, A. Fernandez, M. Brizuela, A. Garcia-Luis, J. I. Onate.-Mechanical behavior and oxidation resistance of Cr(Al)N coatings. Journal of Vacuum Science and Technology A,23(4),2005:681-686
    [29]C. Brecher, G Spachtholz, K. Bobzin, E. Lugscheider,O. Knotek, M. Maes. Superelastic (Cr, Al)N coatings for high end spindle bearings. Surface and Coatings Technology,200,2005:1738-1744
    [30]A. Richter. Recipe for enhancement. Cutting Tol Engineering,57,2005:10-12
    [31]P. Hammer, A. Steiner, R. Villa, M. Baker, P. N. Gibson, J. Haupt, W. Gissler. Titanium boron nitride coatings of very high hardness. Surface and Coatings Technology, 68-69,1994:194-198
    [32]F. Zhou, K. Adachi, K. Kato. Friction and wear properties of a-CNx coatings sliding against ceramic and steel ball in water. Diamond and Related Materials,14(10), 2005:1711-1720
    [33]胡志彪,李贺军,付前刚,陈强,王兰英。低摩擦系数固体润滑涂层研究进展。材料工程,3,2006:61-62
    [34]张祥林,熊贤武,章小锋,王爱华。固体自润滑涂层摩擦磨损特性研究。现代制造工程,3,2007:1-3
    [35]X. T. Zeng. TiN/NbN superlattice hard coatings depositedby unbalanced magnetron sputtering. Surface and Coatings Technology,113(1-2),1999:75-79
    [36]S. Veprek, S. Reiprich. A concept for the design of novel superhard coatings. Thin Solid Film,268,1995:64-71
    [37]S. C. Lee, W. L. Pao, W.Y. Ho. Process and properties of CrN coating deposited on plasma nitrided high-speed steel. Surface and Coatings Technology,73,1995:34-38
    [38]J. C. Doong, J. G Duh, S. Y. Tsai. Wear behaviour in TiN coatings modified by an electro-less Ni interlayer on mild steel. Surface and Coatings Technology,58, 1993:151-155
    [39]B. Skorie, D. Kakas. Tribolgical behavior of TiN and TiAlN deposited on substrates plasma nitrided at low pressure. Materials and Manufactruing Processes,2,1995:321-326
    [40]K. Laing, J. Hampshire, D. Teer, G. Chester. The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating. Surface and Coatings Technology,112(1-3),1999:177-180
    [41]安剑.物理气相沉积氮化铬涂层的制备及其摩擦学性能研究.西南交通大学硕士论文,2007
    [42]H. A. Jehn, B. Rother. Homogeneity of multi-component PVD hard coatings deposited by multi-source arrangements. Surface and Coatings Technology,112(1-3),1999:103-107
    [43]I. G. Brown, J. E. Galvin, B.F. Gavin, R. A. MacGill. Metal vapor vacuum ion source. Review of Scientific Instruments,57(6),1986:1069-1084
    [44]T. Schuelke, T. Witke, H. J. Scheibe, P. Siemroth, B. Schultrich,O. Zimmer, J. Vetter. Comparison of DC and AC arc thin film deposition techniques. Surface and Coatings Technology,120-121,1999:226-232
    [45]D. M. Sanders, A. Anders. Review of cathodic arc deposition technology at the slart of the new millennium. Surface and Coatings Technology,133-134,2000:78-90
    [46]沟引宁。类金刚石多层膜的制备及其力学性能研究。西南交通大学硕士论文,2007
    [47]T. A. Edison. Process of Duplicating Phonograms. US Patent,1892:484-582
    [48]I. Konyashin, G. Fox-Rabinovich, A. Dodonov. TiN thin films deposited by filtered arc-evaporation; Structure, Properties and applications. Journal of Materials Science, 32(22),1997:6029-6038
    [49]A. Bendavid, P. J. Martin, H. Takikawa. Deposition and modification of titanium dioxide thin films by filtered are deposition. Thin Solid Films,360(1-2),2000:241-249
    [50]S. Verprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, M. Sima. Recent progress in the superhard nanocrystalline composites:towards their industrialization and understanding of the origin of the supethardness. Surface and Coatings Technology, 108-109(1-3),1998:138-147
    [51]R. L. Boxman, V. N. Zhitomersky, I. Grimberg, L. Rapoport, S. Goldsmith, B. Z. Weiss. Structure and hardness of vacuum arc deposited multi-component nitride coatings of Ti, Zr and Nb. Surface and Coatings Technology,125(1-3),2000:257-262
    [52]S. Veprek, The search for novel, superhard materials, J.Vac.Sci. Technol. A, 1999;7(5),2401-2420.
    [53]W. Schedler, Hartmetall fur den Praktiker (VDI.Dusseldorf),1998.
    [54]Metals Handbook,10th ed,edited by J. R. Davis. P. Allen, S. R. Lampman et al. (ASM International, Metals Park,OH),1990,2,950-953.
    [55]A. Y. Liu, M. L.Cohen, Prediction of New Low Compressibility Solids, Science, 1989,245 (4920),841-842.
    [56]Y. A. Chen, L. Guo, E. G. Wang, alpha beta Experimental evidence for alpha and beta-phases of pure crystalline C3N4 in films deposited on nickel substrates, Philosophical Magazine Letters,1997,75(3),155-162.
    [57]Metals Handbook,10th ed, Edited by J. R. Davis. P. Allen, S. R. Lampman et al. (ASM International, Metals Park,OH).1990,2,950-953.
    [58]Y. Zhang, Z. Zhou, H. Li, Crystalline carbon nitride films formation by chemical vapor 'deposition, Appl. Phys.Lett.1996,68,634-636.
    [59]Y. Chen, L. P. Guo, F. Chen, E. G. Wang, Synthesis and characterization of C3N4 crystalline films on silicon,J.Phys:Condens.Mater,1996,8,685-690.
    [60]Y. A. Li, S. Xu, H. S. Li, W. Y. Luo, Polycrystalline carbon nitridep-C3N4 films synthesized by radio frequency magnetron sputtering, Journal of Materials Science Letters,1997,17(1),31-35.
    [61]D. L. Yu, F. R. Xiao, T. S. Wang, Y. J. Tian, J. L. He, D. C. Li, W. K. Wang, Synthesis of graphite-C3N4 crystal by ion beam sputtering, Journal of Materials Science Letters, 2000,19(7),553-556.
    [62]D. J. Johnson, Y. Chen, Y. He, Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition, Diamond Relat.Matter.,1997,6,1799-1805
    [63]Y. Chen, L. Guo, E. G. Wang, alpha beta Experimental evidence for alpha-and beta-phases of pure crystalline C3N4 in films deposited on nickel substrates,Philos.Mag.Lett.1997,75,155-162.
    [64]S. Veprek, S. Reiprich, Li Shizhi, Superhard nanocrystalline composite materials:The TiN/Si3N4 system,Applied Physics Letters,1995,66,2640-2648.
    [65]S. Veprek, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology,1997,97(1-3),15-22.
    [66]R. F. Zhang, S. Veprek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system, Materials Science and Engineering: A,2006,424(1-2),128-137.
    [67]S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings Thin Solid Films,1996,268,64-71.
    [68]S. Veprek, M. Haussmann, S. Reiprich, Superhard nanocrystalline W 2 N/amorphous Si3N4 composite materials J.Vac.Sci.Technol.A,1996,14,46-52.
    [69]S. Veprek, M. Jilek, Super-and ultrahard nanacomposite coatings:generic concept for their preparation, properties and industrial applications,2002,67(3-4),443-449.
    [70]S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vep ek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surface and Coatings Technology,2005,194(1),143-148.
    [71]S. Veprek, H.-D. M?nnling, P. Karvankova, J. Prochazka, The issue of the reproducibility of deposition of superhard nanocomposites with hardness of≥50 GPa, Surface and Coatings Technology,2006,200(12-13),3876-3885.
    [72]S. Veprek, S. Mukherjee, P. Karvankova, H.-D.Mcnnling,J.L.He,K.Moto,Limits to the strength of super-and ultrahard nanocomposite coatings, Journal of Vacuum Science&Technology A:Vacuum, Surfaces, and Films,2003,21(3),532-544.
    [73]X. P. Hu, G. Y. Li, M. Y. Gu. Microstructure and properties of Ti-Si-N nanocomposite films. Journal of Vacuum Science and Technology,2002,20(6),1921-1925.
    [74]胡晓萍,董云杉,孔明,李戈扬,顾明元,TiN/Si3N4纳米多层膜的生长结构与超硬效应,真空科学与技术学报,2005,25(4),263-267.
    [75]M. Kong, W. Zhao, L. Wei, G Li, Investigations on the microstructure and hardening mechanism of TiN/Si 3 N 4 nanocomposite coatings, Journal of Physics D, Applied Physics, 2007,40,2858-2863.
    [76]L. Hultman, J. Bareno, A. Flink, H. Soderberg, K.Larsson, V. Petrova, M. Oden, J. E. Greene, I. Petrov, Interface structure in superhard TiN-SiN nanolaminates and nanocomposites:Film growth experiments and ab initio calculations, Physical Review B,2007,75,155437.
    [77]S. A. Barnett, Meenam Shinn. Plastic and Elastic Properties of Compositionally Modulated Thin Films. Annu.Rev.Mater.Sci.,1994,24,481-511.
    [78]J. S. Koehler, Attempt to Design a Stronge Solid.Phys.Rev.B,1970,2,547-551.
    [79]S. L. Lehoczky, Strength Enhancement in Thin-layered Al-Cu Laminates. Journal of Applied Physics.1978,49,5479-5485.
    [80]U. Helmersson, S. Todorova, S. A. Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J. Appl. Phys.1987, 62(2),481-484.
    [81]W. M. Yang, T. Tsakalakos, J E. Hilliard, Enhanced Elastic Modulus in Composition-modulated Gold-nikel and Copper-palladium Foils. Journal of Applied Physics.1977,48,876-879.
    [82]T. Tsakalakos, J. E. Hilliard, Elastic modulus in composition-modulated copper-nickel foils. Journal of Applied Physics,1983,54,734-737.
    [83]R. C. Cammarata, Schlesinger T E, Kim C, et al. Nanoindentation Study of the Mechanical Properties of Copper-nickel multilayered thin films. Appl.Phys.Lett.1990,56,19,1862-1864.
    [84]C. Kim, S. B. Qadri, M. R. scanlon, R. C. Cammarata, Low-dimension Structural Properties and Microindentation studies of Ion-beam-sputtered Multilayers of Ag/Al Films.Thin Solid Films.1994,240,52-55.
    [85]G. Y. Li, J. H. Xu, L. Q. Zhang, L. Wu, M. Y. Gu, Growth, Microstructure, and Microhardness of W/Mo nanostructured multilayers.J.Vac.Sci.Technol.B.2001,19(1),94-97.
    [86]K. K. Shih, D. B. Dove, Ti/TiN, Hf/HfN and W/WN Multilayer Films with.High Mechanical Hardness. Appl.Phys.Lett.1992,61(6),654-656.
    [87]Y. Kang, C. Lee, J. Lee, Effects of Processing Variables on the Mechanical Properties of Ta/TaN Multilayer Coatings.Materials Science and Engineering B.2000,75,17-23.
    [88]J. Wang, W. Z. Li, H.D. Li, Mechanical Properties of nanoscaled TiC/Fe multilayers deposited by ion beam sputtering technique.Thin Solid Films.2001,382,190-193.
    [89]T. C. Chou, T. G Nieh, S. D. McAdams, G. M. Pharr, W. C. Oliver, Mechanical Properties and Microstruceures of Metal/ceramic Microlaminates:Part1. Nb/MoSi2 Systems. J. Mater. Res.1992,7(10),2774-2784.
    [90]H Ollendorf, D Schneider, T Schwarz, et al. A comparative study of the mechamical properties of TiN coatings using the mon-destructive surface acoustic wave method, scratch test and four-point bending test. Surface and Coating Technology.1996.84:458-464
    [91]覃明,嵇宁,汪伟.TiN附着膜的应力—应变关系.金属学报.2003.39(7):721-724
    [92]陈利,汪秀金,尹飞.TiN涂层的微观组织结构及力学性能分析.硬质合金.2006.23(1):8-10
    [93]E Ertrk,0 Knotek, W burgmer, et al. Ti(C,N) coatings using the arc process. Surface and Coating Technology.1991.46:39-46
    [94]L Chaleix, J Machet. Study of the composition and of the mechanical properties of TiBN films obtained by D. C. magnetron sputtering. Surface and Coating Technology.1997.91:74-82
    [95]Liang Shi, Yunle Gu, Luyang Chen, et al. A convenient solid state reaction route to nanocrystalline TiB2. Inorganic Chemistry Communications.2004.7:192-194
    [96]M Berger, E Coronel, E Olsson. Microstructure of d. c. magnetron magnetron sputtered TiB2 coatings. Surface and Coating Technology.2004.185:240-244
    [97]William, D Sproul. Very high rate reactive sputtering TiN, ZrN and HfN. Thin Solid Films.1983.107:141-146
    [98]Aknotek, M Bohmer, T Leyendecker, et al. The structure composition and of Ti-Zr-N, Ti-Al-Zr-N, Ti-Al-V-N coatings. Materials Science and Engineering.1988.A 105-106:481-488
    [99]T Leyendecker, T Jungblut. On the properties of physical vapor deposited Ti-Al-V-N coatings. Thin Solid Films.1987.153:83-90
    [100]L A Donohue, I J Smith, W D Munz, et al. Microstructure and oxidation-resistance of Ti1-x-y-zAlxCryYzN layers grown by combined teered-arc/unbalanced-magnetron-sputter deposition. Surface and Coating Technology.1997.94-95:226-231
    [101]熊玉明,朱圣龙,王福会.带涂层的TiAINb合金高温氧化行为,稀有金属材料工程。2006.35(2):213-216
    [102]Hiroshi Ichimura and Atsuo Kawana. High-temperature oxidation of ion-plated TiN and TiAIN films. J.Mater.Res.1993:1093-1100
    [103]A N Kale, K ravindranath, D C Kothari, et al. Tribological properties of (Ti,Al)N coatings deposited at different bias voltages using the cathodic arc technique. Surface and Coating Technology.2001.145:60-70
    [104]宋贵宏,郑静地,刘越.TiAI过渡层对电弧离子镀沉积TiAIN膜层的影响,人工晶体学报.2004.33(3):422-427
    [105]Kwang Lung Lin, Wen Hsiuan Chao, Cheng-Dau Wu. The performance and degradation behaviours of the TiAlN/interlayer coatings on drills. Surface and Coating Technology.1997.89:279-284
    [106]熊仁章,夏立芳,白羽.TiAIN/Ti多元复合涂层的界面结构.材料科学与工艺.2000.8(2):55-57
    [107]李明升,王福会,王铁钢等.电弧离子镀(Ti1-xAlx)N复合镀层的结构和性能的研究,金属学报.2003.39(1):55-60
    [108]L Hultman, G Hakansson, U Wahlstrom, et al. Transmission electron microscopy studies of microstructural evolution, defect structure and phase transition in polycrystalline and epitaxial Ti1-xAlxN and TiN films grown by reactive magnetron sputter. Thin solid films.1991.205:153-164
    [109]Masahiro kawate, Ayako Kimura Hashimoto, Tetsuya Suzuki. Oxidation resistance of Cr1-xAlxN and Ti1-xAlxN films. Surface and Coating Technology.2003.165:163-167
    [110]J H Woo, J K Lee, S R Lee, et al. High-temperature oxidation of Ti30Al20N50 thin films deposited on a steel substrate by ion plating. Oxid. Met.2000.53(5-6):529-537
    [111]Hiroshi Ichimura, Atsuo Kawana. High-temperature oxidation of ion-plated TiN and TiAIN films. J. Mater.Res.1993.8(5):1093-1100
    [112]冯长杰.中国科学院金属研究所.[博士学位论文],2006.5.40-53
    [113]李明升.中国科学院金属研究所.[博士学位论文],1999.6.53-78
    [114]潘道皑,赵成大,郑载兴.物质结构[M].北京:高等教育出版社,1998.570-573
    [115]VonLaue M, Friedrich W, Knipping P. Mthchener Sitzungsberichte [J].1912,303; Ann. Physik,1913,41:971
    [116]Bragg W L, Proc Camb. Phil. Soc[J],1913,17:43.
    [117]谢存毅.纳米压痕技术在材料科学中的应用[J].实验技术,2000,30(7):432-433
    [118]H T Stokes. Solid State Physics. Second Edition. Utah:Brigham Young University, 2000:15-23
    [119]王世中,藏鑫士.现代材料研究方法.北京;北京航空航天大学出版社,1991:120-327
    [120]V Teixeira.Mechanical integrity in PVD coatings due to the presence of residul stresses.Thin Solid Films.2001(392):276-281
    [121]信觉俗.PVD法硬质薄膜中的残余应力.薄膜科学与技术.1990(3):46-51
    [122]李佳,夏长青,刘昌斌.A1含量对(Ti,Al)N涂层结构性能的影响[J].材料导报,2003,12(7):29-35.
    [123]张飞,严鹏勋.(Ti1-xAlx)N硬质涂层的研究进展[J],人工晶体学报,2007,6(3):699-703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700