高频SAW滤波器的ZnO/金刚石多层膜制备及器件设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声表面波(SAW)器件具有小型化、高可靠、多功能、一致性好等特点,所以它在雷达、电子战、声纳、无线通信、光纤通信及广播电视系统中正在获得广泛的应用。
     声表面波滤波器工作频率f由声表面波传播速度V和叉指周期长度L决定,即f=V/L。近年来,大量数据传输和移动通信的增加,通信频带向高频方向扩展,急需高频声表面波(SAW)滤波器,由于所采用的材料和加工工艺的限制,目前的声表面波器件其工作频率很难达到GHz。金刚石具有非常高的声表面波速度,以它为衬底制作的声表面波器件工作频率很容易达到GHz,且具有很多优点,因此利用金刚石作为衬底制作多层膜SAW滤波器已成为国际上的一个热点。
     本文围绕ZnO/IDT/Diamond多层膜结构GHz级声表面波滤波器的研制,主要就适于SAW滤波器的高声速传播载体金刚石基底的制备进行了研究,采用MPCVD技术制备出了金刚石薄膜,并利用XRD、SEM、Raman等测试手段对薄膜进行了表征分析。由于论文侧重点的不同,有关ZnO压电薄膜的制备本课题组采用磁控溅射生长法,具体请见我的合作伙伴的论文。
     围绕高频SAW滤波器的研制,本文作了以下工作:
     首先,对多层膜结构SAW滤波器的原理进行了阐述;
     其次,
     1、采用MPCVD技术在<100>镜面抛光硅片表面异质外延生长了金刚石薄膜,采用XRD, SEM, Raman等测试手段对薄膜进行了分析,表明此外延生长的薄膜为<004>高定向的质量较高的金刚石薄膜;
     2、研究了在不同类型Si衬底上金刚石的生长。分别在<100>、<111>两种不同类型Si衬底上生长了金刚石薄膜,利用XRD测试分析,表明采用不同类型的衬底对金刚石生长的取向有所影响;
     3、研究了沉积温度对金刚石取向的影响。分别在较高和较低温度下制备出了金刚石薄膜,在较高温度下生长的金刚石薄膜呈正六面体形,在沉积温度降低时,金刚石由正六面体向正八面体转化;
     4、在金刚石生长过程中,金刚石晶粒不能柱状生长无限长大,各个取向晶粒互相抑制,生长过程中达到一个稳定的大小。本文结合测试结果,对金刚石晶体的生长机理进行了初步的探索;
     此外,对声表面波滤波器的设计方法进行了简要的介绍。
     总之,通过一系列的研究,本文研究了沉积工艺对薄膜性能的影响,并进一步对CVD的机理进行了初步的探索,为下一步制作ZnO/IDT/Diamond多层膜结构声表面波滤波器奠定了基础。
Surface Acoustic Wave (SAW) Device has the characteristic of mini capacity, high reliability, multiple-function and good coherence, so it have being used widely in the scope of radar, electronic battle, sonar, wireless communication, optic communication and broadcast system.
     Center frequency of SAWF was decided by SAW velocity V and the IDT’s cycle-width L, that is f=V/L. Now, with transport of mass data and increasing of mobile communication, communication frequency band extend to high frequency and high-frequency SAW filter was urgently needed. Because of the limitation of material and process technology, it is hard to reach GHz frequency for general SAWF. Diamond has much high velocity of SAW, so the SAWF adopted diamond as underlay can easily reach GHz frequency and it turns to be a hotspot in international.
     Because of different emphasize point in our task-team, this thesis mostly studied on diamond deposition which fit SAW filter. ZnO/IDT/Diamond multi-film SAW filter require diamond film has smooth surface, low vice density and so on, in order to be advantageous to deposit aluminium film to fabricate IDT. Because the IDT was very thin, it required the diamond film surface has high smooth rate in order to minish insert-waste and low vice density to minish transmit-waste.
     Surround manufacture of SAW device, this thesis do these works as follows:
     First, expatiate the theory of multi-film SAW device;
     Second,
     1, Adopting MPCVD skill, we deposited diamond film on <100> mirror-polished Si flake. Using XRD, SEM, Raman testing method, we proved this film to be <004> high tropism and high quality diamond film.
     2, Studyed diamond’s growth on different type Si flake, XRD spectrum indicate that on <111>Si flack, the diamond film growed has relatively more <111> tropism.
     3, Studyed influence of temperature to diamond tropism. With temperature fall, the shape of diamond transform from hexahedron to octahedron.
     4, In the process of growth, diamond crystal can not grow more and more big infinitely like column, with restrain of different tropism crystal, it reach a steady size. In this thesis, we also explored diamond growth mechanism elementarily.
     Besides, introduced designing method of SAW filter briefly.
     To sum up, through a series of study, this thesis studied influence to diamond growth adopting different deposition teachnology and do some elementary exploration to CVD mechanism, established foundation to next step to facture SAWF of ZnO/IDT/Diamond structure.
引文
[1]Lord Rayleigh,On waves propagated along the plane surface of an elastic body [J], Proc. Math. Soc. London, 1885, 17:4
    [2][日]Ken-ya Hashimoto:Surface Acoustic Wave Devices in Telecommunications Msdelling and Simulation [M], 北京:国防工业出版社 (Beijing:National Defence Industry Press),2002.
    [3]Yansong LIU , Preparation of Piezoelectric Thin Films on High Acoustic Velocity Substrates and Exploration of SAW Device s Fabrication[D] . Shanghai Institute of Met2 allurgy , Chine se Academy of Science s , paper of Ma ster ,2000.
    [4]Colin K. Campbell, Understanding Surface Acoustic Wave (SAW) Devices for Mobile and Wireless Applications and Design Techniques [J], Ph.D., D.Sc 2004
    [5]何世堂,移动通讯用声表面波器件发展近况 中科院声学所,北京,1994
    [6]李勇等,高频窄带声表面波滤波器,固体电子学研究与进展,1999,19(2):216
    [7]Kenjiro Higaki, Hideaki Nakahata, Hiroyuki Kitabayashi, satoshi Fuji, “High Power Durability of ZnO/Diamond Structure Surface Acoustic Wave Filter” IEEE Trans, Ultrason., Ferrelect., and Freq Contr., 1997,44(6):1365
    [8]武以立等,声表面波原理及其在电子技术中的应用,国防工业出版社,1983
    [9]S. Fujii, Y. Seki, K. Yoshita, H. Nakahata, K. Higaki, H. Kitabayashi and S. Shikata,Diamond Wafer for SAW Application [J], 1-1-1, Koya-kita, itami, Hyogo, 664 Japan IEEE, 1997
    [10]于凌宇,冯玉萍,声表面波应用前景分析[J],component and Application,2003,3-53
    [11]翁寿松,毛立平,声表面波滤波器初析[J],微电子技术,1999,27(3):27
    [12]郝俊杰,徐廷献,声表面波用基片材料[J],硅酸盐通报,2000(6),32~36
    [13]B. Dischler, C. Wild, low-pressure Synthetic Diamond Manufacturing and Application [J], Spring-Verlag Berlin Herdelberg, 1998
    [14]黄刚,声表面波滤波器的应用及发展[J],电子元器件应用,2002,4(3):24
    [15]潘峰,高频金刚石多层薄膜结构声表面波滤波器的设计和研制[D],清华大学硕士学位论文,2004
    [16]一之濑生,尾上守夫等,声表面波器件及其应用[M],日本电子材料工业会,许昌昆、孟秀林、林江、许文义译,科学出版社,北京,1984
    [17]atsumoto S, Sato Y, Kamo M, Setaka N. Jpn J Appl Phys [J],21,(1982):L183.
    [18]Matsumoto S, et a[J]. J Mat Sci, 17, (1982):3106.
    [19]amo M,Sato Y, Matsumoto S, SetakaN. J[J], Cryst Growth, 62, (1983):642.
    [20]蒋翔六.CVD金刚石薄膜的应用和市场前景. [M].化学工业出版社,1991年4月:7.
    [21] Michael E Thorns, William J Tropf. [J], SPIE, Vol.22861994)144.
    [22]Thomas N Caasselman, [J], SPIE, Vol.2999(1997)2.
    [23]Bundy F Petal. Nature, [J], 176, (1955):51.
    [24]钟国仿.[D]博士学位论文.北京科技大学.1998
    [25]S. Heidger' , S.Fries-Car, J. Weimer, B.Jordanl , and R.Wul'K, Wright Patterson, Dielectric Characterlization of Microwave Assised Chemically Vapor Deposited Diamond [J], AFFWPRPE, OH 45433,1998
    [26]满卫东等,微波等离子体化学气相沉积——一种制备金刚石膜的理想方法[J],中国科学院等离子体物理研究所, 真空与低温,2003
    [27]Mamoru Yoshimoto, Kenji Yoshida, Hideaki Maruta,Yoshiko Hishitani, Hideomi Koinuma, Shigeru Nishio, Masato Kakihana,Takeshi Tachibana,Epitaxial diamond growth on sapphire in an oxidizing environment[J],Nature,VOL 399 ,1999,340-342
    [28]Z.Y. Chen, J.P. Zhao, T. Yano, T. Ooie, M. Yoneda, J. Sakakibara,Growth of nano-crystalline diamond by pulsed laser deposition in oxygen atmosphere [J],Journal of Crystal Growth 226 (2001) 62–66
    [29]Takeshi Hara,Tsuyoushi Yoshitake, Tomohito Fukugawa, Consideration of diamond film growth on various oriention substrates of diamond in oxygen and hydrogen atmosphere by reactive pulsed laser deposition[J], Diamond and Related Materials 13 (2004) 622–626
    [30] Yugo S, Kanai T, Kimura T and Muto T. Generation of Diamond Nucleation by Electric Field in Plasma Chemical Vapor Deposition[J ]. App l Phys Lett, 1991; 58 (10) :1036~1038
    [31] Tokuyuki Teraji, Satoshi Mitani,Chunlei Wang, [J],Journal of Crystal Growth 235 (2001) 287–292
    [32]Kurchatov sq.,Moscow 123182, A.P. Dementjev, M.N. Petukhov, “Kurchatov Institute”,Russia, The roles of H and O atoms in diamond growth[J] , , Diamond and Related Materials 6(1997)486-489
    [33]Wang W L , Sanchez G, Polo M C and Esteve J. Combined Roles of Ion Bombardment and Electron Emission in BEN on Si by HFCVD [J ]. Phys Stat Sol, 1997; (a) 161: R3
    [34]Jan Isberg,Johan Hammersberg, Erik Johansson, Tobias Wikstro¨m,1 Daniel J. Twitchen, Andrew J. Whitehead, Steven E. Coe, High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond [J],Geoffrey A. Scarsbrook,Science,2002
    [35]Jin Nakamura, Eiki Kabasawa, and Nobuyoshi Yamada,Yasuaki Einaga,Daisuke Saito, Hideo Isshiki, and Shigemi Yugo Rupert C. C. Perera,Electronic structures of B 2p and C 2p levels in boron-doped diamond films studied using soft x-ray absorption and emission spectroscopy[J], PHYSICAL REVIEW,2004
    [36]Wang, Z. L. Wang, P. Xu, A. Z. Jin, B. G Quan, Z. Cui and C. Z. Gu, Field emission properties of diamond cone arrays formed by plasma etching Q. Beijing National Laboratory for Condensed Matter Physics[J], IEEE, 2005
    [37]Yook-Kong Yong, Shigeo Karma, FREQUENCY-TEMPERATURE EFFECTS IN THREE-DIMENSIONAL SURFACE ACOUSTIC WAVE PERIODIC STRUCTURES[J],IEEE, 1999
    [38]T. Uemura, S. Fujii, H. Kitabayashi, K. Itakura, A. Hachigo, H. Nakahata, S. Shikata, K. Ishibashi and T. Imai, Low Loss Diamond SAW Devices by Small Grain Size Poly- crystalline Diamond[J], IEEE, 2002
    [39]Yonhua Tzeng, Plasma Assisted Chemical Vapor Deposition of Diamond and Applications: From Large-Grain Polycrystalline Diamond to Nanocrystalline Diamond[J].
    [40]Yasushi YAMAMOTO, SAW FILTERS AND RESONATORS FOR PUBLIC COMMUNICATION SYSTEMS, NEC Corporation[J], IEEE, 1993
    [41]刘志杰,张卫,万永中,张剑云,王秀陶,碳氢氧体系低压金刚石非平衡定态系列相图[J],化学通报,1999(2)
    [42]Sally C.Eaton , Mahendra K.Sunkara, Mayumi Ueno, Kevin M.W alsh, Modeling the effect of oxygen on vapor phase diamond deposition inside micro-trenches[J], Diamond and Related Materials 10 (2001) 2212–2219
    [43]A. Lafosse, D. Teillet Billy, J.-P. Guillotin, Y. Le Coat, and R. Azria,Role of electronic band structure and resonances on electron reflectivity and vibrational excitation functions: The case of hydrogenated diamond[J],PHYSICAL REVIEW B 68, 235421 (2003)
    [44]A. P. Dementjev, M. N. Petukhov, The roles of H and O atoms in diamond growth[J], Diamond and Related Materials 6 (1997) 486-489
    [45]Gregory C. McIntosh, Mina Yoon, Savas Berber, and David Tománek,Diamond fragments as building blocks of functional nanostructures[J], PHYSICAL REVIEW B 70, 045401 (2004)
    [46]王小兵等,MPCVD方法制备军用光学元件纳米金刚石膜[J],光学技术,100221582 (2004)
    [47]Yue Qi and Louis G. Hector, Jr.,Hydrogen effect on adhesion and adhesive transfer at aluminum/diamond interfaces[J], PHYSICAL REVIEW B 68, 201403 (2003)
    [48]王蜀霞,Si(100)上异质外延金刚石膜生长及其应用研究[J],稀有金属材料与工程,2001
    [49]杨武保等,丙酮环境下ECR微波等离子体辅助化学气相沉积类金刚石薄膜研究[J],物理学报,2004
    [50]刘志凌,深亚微米光刻金刚石自支撑掩膜制备工艺探索研究[D], 北京科技大学,2003
    [51]W. P. Kang1, J. L. Davidson1, Y. M. Wong1, K. L. Soh1, and Y. Gurbuz ,Carbon-Derived Micro- and Nanostructures for Chemical Sensing[J], IEEE 2004
    [52]J. P. Goss and P. R. Briddon,Deep hydrogen traps in heavily B-doped diamond[J],PHYSICAL REVIEW B 68, 235209 (2003)
    [53]C. Gomez-Aleixandre, M. M. Garia, O. Sanchez, J. M. Albella, Influence of oxygen on the nucleation and growth of diamond films[J], thin Solid Films 303 (1997) 34-38
    [54]金子一,周利清,数字信号处理基础[M],北京邮电大学出版社,北京,2002
    [55]Joyce Vande Vegte,数字信号处理基础[M],电子工业出版社,北京,2003
    [56]S. Shikata,H.Nakahata,SAW device application of diamond [J],
    [57]Hideaki Nakahata, Akihiro Hachigo, Kenjiro Higaki, Satoshi Fujii,Shin-ichi Shikata,Naoji Fujimori, Theoretical Study on SAW Characteristics ofLayered Structures Including a Diamond Layer[J],IEEE,1995
    [58]刘清洪, 声表面波滤波器的综合设计, 火控雷达技术[C],第31卷,2002
    [59]秦廷辉,朱自湘,声表面波滤波器中虚假信号的抑制[J],压电与声光,1994
    [60] 1.1GHz 声表面波滤波器的设计和制作,任天令, 杨磊, 刘理天,清华大学微电子学研究所, 北京,压电与声光,2002
    [61]Yasushi YAMAMOTO , SAW Filter and Resonators For Public Communication System[J],IEEE,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700