钛表面构建生物活性分子与类骨磷灰石复合功能涂层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金是目前临床上广泛使用的一类植入物材料,具有良好的机械性能和生物相容性。然而,长期临床实践和相关研究表明,现有钛植入体材料尚面临许多问题,主要包括:骨再生能力差或再生缓慢,与周围骨组织整合不佳,平均使用寿命不能满足患者的需求。由于钛植入体在体内是通过其表面与周围人体组织相接触的,因此通过表面改性对获得综合性能优良的植入体具有现实意义。通过对材料进行表面改性,能够获得综合性能优良的钛植入体,这对于克服钛植入体的上述不足具有重要的现实意义。近年来,在医用钛植入体表面构建类骨磷灰石涂层,并进一步装载药物、生长因子等生物活性分子,已经成为医用钛领域的研究热点。这些表面改性技术赋予医用钛植入体特定的功能,例如骨传导性和骨诱导性,从而改善钛植入体的骨整合性能和使用寿命。
     本论文选用具有促细胞粘附的纤连蛋白(Fibronectin, FN)和促细胞向成骨分化的成骨生长肽(Osteogenic growth peptide, OGP),在钛表面构建了一系列的生物活性分子与类骨磷灰石复合功能涂层。我们首先研究了钛表面类骨磷灰石涂层的制备,并对仿生矿化液中类骨磷灰石涂层的生成机理进行了探讨;其次,在钛表面构建了纤连蛋白-类骨磷灰石和成骨生长肽-类骨磷灰石两种复合涂层,并对复合涂层的物相组成、微观形貌、精细结构等进行了检测和分析,研究了生物活性分子对类骨磷灰石生长的影响及作用机理;最后,我们通过不同的生物活性分子固定方法(共沉积法和/或表面吸附法)以及不同的固定顺序,将纤连蛋白和成骨生长肽共固定到具有类骨磷灰石涂层的钛表面,并对改性表面进行了相关的物化表征和体外生物学评价。本文的研究结果包括以下三个方面:
     (1)通过离子束辅助沉积和仿生矿化沉积相结合的方法,可以在钛表面构建出均匀且均一的类骨磷灰石涂层。实验结果表明,在类骨磷灰石涂层沉积的过程中,随着浸泡时间的延长,类骨磷灰石的XRD特征衍射峰增强,且逐渐窄化,DPBS溶液中钙离子浓度随着磷灰石薄膜的分解逐渐升高,到达峰值后,随着类骨磷灰石的沉积,溶液中钙离子的浓度逐渐降低。随着涂覆在钛表面的磷灰石薄膜结晶度的增加,仿生矿化液中钛表面类骨磷灰石成核的速率逐渐减慢,但随后晶核生长的速度有所增加。
     (2)通过生物仿生矿化沉积法,可在磷灰石薄膜活化的钛表面沉积上纤连蛋白-类骨磷灰石或成骨生长肽-类骨磷灰石两种复合涂层。FESEM、confocal结果显示,在构建的复合涂层中,生物活性分子均匀地分布在类骨磷灰石涂层内。慢扫XRD数据的Rietveld精修结果表明,单纯的类骨磷灰石涂层无机化学组成为apatite和OCP,随着生物活性分子的共沉积,类骨磷灰石中OCP所占的百分比逐渐降低,apatite晶胞的c轴长度增加,a轴的长度发生改变。同时,生物活性分子的加入,会降低类骨磷灰石晶体的生长速率,并影响类骨磷灰石晶体的微观形貌。初步的物化表征和精细结构分析表明,生物活性分子的共沉积主要是由生物活性分子、材料表面及溶液中的离子三者之间的静电吸附介导的,在沉积过程中,生物活性分子参与了类骨磷灰石晶胞构建的过程。
     (3)通过共沉积法、表面吸附法或两者相结合的方法能够将纤连蛋白和成骨生长肽共固定到具有类骨磷灰石涂层的钛表面。FESEM及XRD的的结果显示,表面吸附的生物活性分子对预沉积的类骨磷灰石的结构和物相没有影响,而共沉积的生物活性分子使沉积的类骨磷灰石的片层结构晶体增大,并且使沉积的类骨磷灰石的主相由apatite转变为OCP。体外释放结果证明,固定的生物活性分子在体外可以进行持续可控的释放。通过体外细胞实验研究表明,共固定的纤连蛋白/成骨生长肽能够显著的提高骨髓间充质干细胞的贴附和铺展能力,并能够有效的促进骨髓间充质干细胞的增殖和向成骨分化。研究证明,通过表面共吸附的方法能够在钛植入体表面同时固定多种生物活性分子,对生物医用植入体发挥长期疗效具有积极作用,在牙科和整形外科等领域具有良好的临床实用价值。
Titanium and its alloys are extensively used for clinical implants, because of their excellent mechanical properties, and good biocompatibility. The long-term clinical researches show that titanium implant is confronted with the following problems:poor bone regeneration or slow regeneration, poor integration with surrounding bone tissues, and limited service life. The events after implantation include interactions between tissues and implant surfaces. Therefore, it is extremely important to achieve the implant with good comprehensive performance through surface modification. In recent years, further immobilizing the bioactive molecules, such as therapeutic agents or growth factors, with bone-like mineral layer on titanium implants is becoming the research focus in the biomaterials fields. Such surface modification technology could incorporate osteoinductivity and osteoconductivity into the design of the supporting biomaterial, thus improving the osseointegration and extending the service life.
     In this study, we chose fibronectin (FN) and osteogenic growth peptide (OGP) to prepare a series of bioactive molecules-mineral functional composite layers on titanium surfaces. Firstly, the precipitation of bone-like mineral layer on titanium surfaces was studied, and a detailed insight into bone-like mineral nucleation and growth was discussed. Secondly, a coprecipitation method to build FN-mineral or OGP-mineral composite layers on titanium was developed. The phase composition, micro-morphology and fine structure of composite layers were investigated. The mechanisms underlying the coprecipitation of biomolecules into the mineral layer were also discussed. Finally, the fibronectin and osteogenic growth peptide were immobilized with bone-like mineral layer on titanium with varying immobilizing sequences through the methods of coprecipitation and/or physical adsorption. There are three parts in this dissertation, including:
     1. A uniform, homogeneous apatite layer was biomimetically precipitated on hydroxyapatite thin film coated titanium through combing IBAD with biomimetic precipitation. XRD patterns indicate that, during the bone-like apatite precipitation, with the increase of immersion time, the density of apatite's characteristic peak increased and the peak became narrower. The calcium concentration in DPBS solution increased with the dissolution of hydroxyapatite thin film. And then the calcium concentration decreased with the precipitation of apatite. Bone-like apatite was nucleated earliest on the hydroxyapatite thin film with the lowest degree of crystallinity. The rate of nucleation growth increased with increasing crystallinity of the coated hydroxyapatite thin film.
     2. FN-mineral and OGP-mineral composite layers were biomimetically induced on an active hydroxyapatite thin film through coprecipitation method. FESEM and confocal observations show that, the biomimetic coprecipitation process allowed biomolecules to be incorporated uniformly throughout the mineral layer. Rietveld refinement results suggest that, the mineral layer was indexed of a mixture of apatite and OCP. The phases of FN-mineral and OGP-mineral were partially transformed from OCP to apatite. The lattice parameter c of apatite was higher in the bioactive molecules-mineral composite layers than in the mineral layers, and the parameter a of apatite was changed when the bioactive molecules were coprecipitated on the surfaces. The biomimetic coprecipitated bioactive molecules slowed down the rate of mineral growth and influenced the ultimate structure of mineral. Primary physicochemical characterization and fine structure analysis indicate that the coprecipitation process was mainly mediated by electrostatic attraction among bioactive molecules, material surfaces and the ions in the solutions, and the bioactive molecules participated in the formation of the crystal latticework.
     3. The coprecipitation and/or adsorption approaches were used to immobilize FN and/or OGP with biomimetic mineral layer onto titanium substrates. FESEM and XRD results show that, the adsorption of BMs did not change the morphology of mineral crystal and the main phase of mineral layer. Whereas, the coprecipitation of BMs enlarge the mineral crystal and change the main phase of mineral layer from apatite to OCP. Release studies demonstrated that either coprecipitation or adsorption approach provided sustained delivery of bioactive molecules. The dual immobilizing of FN and OGP had a significant impact on bMSCs attachment, spreading, proliferation and osteogenic differentiation compared to immobilizing of FN or OGP alone. The multi-immobilizing mineral with various bioactive molecules through adsorption approach has the potential to be used for orthopedic and dental applications.
引文
[1]Wang J, Layrolle P, Stigter M, et al. Biomimetic and electrolytic calcium phosphate coatings on titanium alloy:physicochemical characteristics and cell attachment. Biomaterials.2004,25(4):583-592.
    [2]Lin C W, Ju C P, Chern Lin J H. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6A1-4V and Ti-13Nb-13Zr alloys. Biomaterials. 2005,26(16):2899-2907.
    [3]Reclaru L, Luthy H, Eschler P Y, et al. Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals. Biomaterials.2005,26(21):4358-4365.
    [4]Takeuchi M, Abe Y, Yoshida Y, et al. Acid pretreatment of titanium implants. Biomaterials.2003,24(10):1821-1827.
    [5]Takemoto S, Yamamoto T, Tsuru K, et al. Platelet adhesion on titanium oxide gels: effect of surface oxidation. Biomaterials.2004,25(17):3485-3492.
    [6]Lu X, Leng Y, Zhang X, et al. Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo. Biomaterials.2005,26(14):1793-1801.
    [7]Wen H B, Wolke J G, de Wijn J R, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments. Biomaterials.1997, 18(22):1471-1478.
    [8]Lee B H, Kim J K, Kim Y D, et al. In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments. J Biomed Mater Res A.2004,69(2):279-285.
    [9]Kim H M, Miyaji F, Kokubo T, et al. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res.1996,32(3):409-417.
    [10]Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res.1995,29(9):1071-1079.
    [11]Solar R J, Pollack S R, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res.1979,13(2):217-250.
    [12]Li L H, Kim H W, Lee S H, et al. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. J Biomed Mater Res A.2005,73(1): 48-54.
    [13]Takebe J, Itoh S, Okada J, et al. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J Biomed Mater Res.2000,51(3):398-407.
    [14]Nayab S N, Jones F H, Olsen I. Effects of calcium ion-implantation of titanium on bone cell function in vitro. J Biomed Mater Res A.2007,83(2):296-302.
    [15]Li Y, Lee I S, Cui F Z, et al. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials.2008,29(13): 2025-2032.
    [16]Tsui Y C, Doyle C, Clyne T W. Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1:Mechanical properties and residual stress levels. Biomaterials. 1998,19(22):2015-2029.
    [17]Tang L, Tsai C, Gerberich W W, et al. Biocompatibility of chemical-vapour-deposited diamond. Biomaterials.1995,16(6):483-488.
    [18]Jiang S J, Jin Z C, Granqvist C G. Low-refractive-index indium-tin-oxyfluoride thin films made by high-rate reactive dc magnetron sputtering. Appl Opt.1988,27(14): 2847-2850.
    [19]Piveteau L D, Gasser B, Schlapbach L. Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials.2000,21(21):2193-2201.
    [20]Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials.2011,32(13):3395-3403.
    [21]Faucheux N, Schweiss R, Lutzow K, et al. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials.2004,25(14):2721-2730.
    [22]Cheng X, Filiaggi M, Roscoe S G Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials.2004, 25(23):5395-5403.
    [23]Yang Y, Ong J L, Tian J. Deposition of highly adhesive ZrO(2) coating on Ti and CoCrMo implant materials using plasma spraying. Biomaterials.2003,24(4): 619-627.
    [24]Klein C P, Patka P, Wolke J G, et al. Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and alpha-tricalcium phosphate. Biomaterials.1994,15(2):146-150.
    [25]Nagano M, Nakamura T, Kokubo T, et al. Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials.1996,17(18):1771-1777.
    [26]Hammerle C H, Bragger U, Schmid B, et al. Successful bone formation at immediate transmucosal implants:a clinical report. Int J Oral Max Impl.1998,13(4): 522-530.
    [27]Puleo D A, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials.1999,20(23-24):2311-2321.
    [28]Middleton C A, Pendegrass C J, Gordon D, et al. Fibronectin silanized titanium alloy:a bioinductive and durable coating to enhance fibroblast attachment in vitro. J Biomed Mater Res A.2007,83(4):1032-1038.
    [29]Ferris D M, Moodie G D, Dimond P M, et al. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials.1999,20(23-24): 2323-2331.
    [30]Zhang S, Yan L, Altman M, et al. Biological surface engineering: a simple system for cell pattern formation. Biomaterials.1999,20(13):1213-1220.
    [31]Tosatti S, De Paul S M, Askendal A, et al. Peptide functionalized poly(L-lysine)-g-poly(ethylene glycol) on titanium:resistance to protein adsorption in full heparinized human blood plasma. Biomaterials.2003,24(27):4949-4958.
    [32]Jiang X, Zhao J, Wang S, et al. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials.2009,30(27):4522-4532.
    [33]Becker J, Kirsch A, Schwarz F, et al. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin Oral Investig.2006,10(3):217-224.
    [34]Deligianni D D, Katsala N, Ladas S, et al. Effect of surface roughness of the titanium alloy Ti-6A1-4V on human bone marrow cell response and on protein adsorption. Biomaterials.2001,22(11):1241-1251.
    [35]MacDonald D E, Deo N, Markovic B, et al. Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials.2002,23(4):1269-1279.
    [36]Klinger A, Steinberg D, Kohavi D, et al. Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res.1997,36(3):387-392.
    [37]Lori J A, Nok A J. Mechanism of adsorption of mucin to titanium in vitro. Biomed Mater Eng.2004,14(4):557-563.
    [38]Jansson E, Tengvall P. Adsorption of albumin and IgG to porous and smooth titanium. Colloid Surface B.2004,35(1):45-51.
    [39]Kohavi D, Badihi Hauslich L, Rosen G, et al. Wettability versus electrostatic forces in fibronectin and albumin adsorption to titanium surfaces. Clin Oral Implan Res. 2012.
    [40]Cai K, Bossert J, Jandt K D. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloid Surface B.2006,49(2): 136-144.
    [41]Valagao Amadeu do Serro A P, Fernandes A C, de Jesus Vieira Saramago B, et al. Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects. J Biomed Mater Res.1999,46(3):376-381.
    [42]Kopac T, Bozgeyik K, Yener J. Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloid Surface A.2008,322(1-3): 19-28.
    [43]Cheng X, Roscoe S G Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials.2005,26(35):7350-7356.
    [44]MacDonald D E, Markovic B, Allen M, et al. Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials. J Biomed Mater Res. 1998,41(1):120-130.
    [45]Schliephake H, Aref A, Scharnweber D, et al. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implan Res.2005,16(5):563-569.
    [46]Becker D, Geissler U, Hempel U, et al. Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J Biomed Mater Res. 2002,59(3):516-527.
    [47]Bierbaum S, Beutner R, Hanke T, et al. Modification of Ti6A14V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix. J Biomed Mater Res A.2003,67(2):421-430.
    [48]Bierbaum S, Douglas T, Hanke T, et al. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate:characterization and influence on osteoblastic cells. J Biomed Mater Res A.2006,77(3):551-562.
    [49]Ong J L, Bess E G, Bessho K. Osteoblast progenitor cell responses to characterized titanium surfaces in the presence of bone morphogenetic protein-atelopeptide type I collagen in vitro. J Oral Implantol.1999,25(2):95-100.
    [50]Stadlinger B, Pilling E, Huhle M, et al. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4:an animal study. Int J Oral Max Surg.2008,37(1):54-59.
    [51]Bessho K, Carnes D L, Cavin R, et al. BMP stimulation of bone response adjacent to titanium implants in vivo. Clin Oral Implan Res.1999,10(3):212-218.
    [52]Lee C S, Belfort G. Changing activity of ribonuclease A during adsorption:a molecular explanation. Proc Natl Acad Sci U S A.1989,86(21):8392-8396.
    [53]Pugdee K, Shibata Y, Yamamichi N, et al. Gene expression of MC3T3-E1 cells on fibronectin-immobilized titanium using tresyl chloride activation technique. Dent Mater J.2007,26(5):647-655.
    [54]Hayakawa T, Yoshinari M, Nemoto K. Quartz-crystal microbalance-dissipation technique for the study of initial adsorption of fibronectin onto tresyl chloride-activated titanium. J Biomed Mater Res B Appl Biomater.2005,73(2): 271-276.
    [55]Hayakawa T, Yoshinari M, Nemoto K. Direct attachment of fibronectin to tresyl chloride-activated titanium. J Biomed Mater Res A.2003,67(2):684-688.
    [56]Yoshioka T, Tsuru K, Hayakawa S, et al. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials.2003,24(17): 2889-2894.
    [57]Muller R, Abke J, Schnell E, et al. Influence of surface pretreatment of titanium-and cobalt-based biomaterials on covalent immobilization of fibrillar collagen. Biomaterials.2006,27(22):4059-4068.
    [58]Dettin M, Bagno A, Gambaretto R, et al. Covalent surface modification of titanium oxide with different adhesive peptides:surface characterization and osteoblast-like cell adhesion. J Biomed Mater Res A.2009,90(1):35-45.
    [59]Puleo D A, Kissling R A, Sheu M S. A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials. 2002,23(9):2079-2087.
    [60]Elmengaard B, Bechtold J E, Soballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials.2005, 26(17):3521-3526.
    [61]Morra M, Cassinelli C, Cascardo G, et al. Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J Biomed Mater Res A.2006,78(3):449-458.
    [62]Elmengaard B, Bechtold J E, Soballe K. In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J Biomed Mater Res A.2005,75(2): 249-255.
    [63]Zreiqat H, Akin F A, Howlett C R, et al. Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. J Biomed Mater Res A.2003, 64(1):105-113.
    [64]Shi Z, Neoh K G, Kang E T, et al. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Eng Part A.2009,15(2):417-426.
    [65]Shi Z, Neoh K G, Kang E T, et al. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res A.2008,86(4):865-872.
    [66]Porte-Durrieu M C, Guillemot F, Pallu S, et al. Cyclo-(DfKRG) peptide grafting onto Ti-6A1-4V:physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials.2004,25(19):4837-4846.
    [67]Morra M, Cassinelli C, Cascardo G, et al. Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials.2003,24(25):4639-4654.
    [68]Uchida M, Oyane A, Kim H M, et al. Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties. Advanced Materials.2004,16(13):1071-1074.
    [69]Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater.1998,46(7):2519-2527.
    [70]Liu Y L, Layrolle P, de Bruijn J, et al. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res.2001, 57(3):327-335.
    [71]Li Y, Lee I S, Cui F Z, et al. Incorporation of cytochrome C with thin calcium phosphate film formed by electron-beam evaporation. Surf Coat Tech.2008, 202(22-23):5742-5745.
    [72]Hata T, Furukawa T, Sunamura M, et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res.2005,65(7):2899-2905.
    [73]Sogo Y, Ito A, Onoguchi M, et al. Formation of cytochrome C-apatite composite layer on NaOH-and heat-treated titanium. Mat Sci Eng C-Bio S.2009,29(3): 766-770.
    [74]Stigter M, de Groot K, Layrolle P. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials.2002,23(20):4143-4153.
    [75]Liu Y, Layrolle P, de Bruijn J, et al. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res.2001, 57(3):327-335.
    [76]Yu X, Wei M. Preparation and evaluation of parathyroid hormone incorporated CaP coating via a biomimetic method. J Biomed Mater Res B Appl Biomater.2011, 97(2):345-354.
    [77]Yu X, Qu H, Knecht D A, et al. Incorporation of bovine serum albumin into biomimetic coatings on titanium with high loading efficacy and its release behavior. J Mater Sci Mater Med.2009,20(1):287-294.
    [78]Cheng P T. Calcif Tissue Int.1987,40(6):339-343.
    [79]Ferraris S, Spriano S, Pan G, et al. Surface modification of Ti-6A1-4V alloy for biomineralization and specific biological response:Part I, inorganic modification. J Mater Sci Mater Med.2011,22(3):533-545.
    [80]do Serro A P, Fernandes A C, de Jesus Vieira Saramago B. Calcium phosphate deposition on titanium surfaces in the presence of fibronectin. J Biomed Mater Res. 2000,49(3):345-352.
    [81]Chen C, Qiu Z Y, Zhang S M, et al. Biomimetic fibronectin/mineral and osteogenic growth peptide/mineral composites synthesized on calcium phosphate thin films. Chem Commun.2011,47(39):11056-11058.
    [82]Mutsuzaki H, Ito A, Sakane M, et al. Fibroblast growth factor-2-apatite composite layers on titanium screw to reduce pin tract infection rate. J Biomed Mater Res B Appl Biomater.2008,86(2):365-374.
    [83]Aberg J, Brohede U, Mihranyan A, et al. Bisphosphonate incorporation in surgical implant coatings by fast loading and co-precipitation at low drug concentrations. J Mater Sci Mater Med.2009,20(10):2053-2061.
    [84]Wen H B, de Wijn J R, van Blitterswijk C A, et al. Incorporation of bovine serum albumin in calcium phosphate coating on titanium. J Biomed Mater Res.1999,46(2): 245-252.
    [85]Liu Y, de Groot K, Hunziker E B. Osteoinductive implants:the mise-en-scene for drug-bearing biomimetic coatings. Ann Biomed Eng.2004,32(3):398-406.
    [86]Park Y S, Yi K Y, Lee I S, et al. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Max Impl.2005,20(1):31-38.
    [87]Yoon H J, Song J E, Um Y J, et al. Effects of calcium phosphate coating to SLA surface implants by the ion-beam-assisted deposition method on self-contained coronal defect healing in dogs. Biomed Mater.2009,4(4):044107.
    [88]Uchida M, Kim H M, Kokubo T, et al. Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res A.2003,64(1): 164-170.
    [89]Liu Y, Hunziker E B, Randall N X, et al. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials.2003,24(1):65-70.
    [90]Choi S, Murphy W L. Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater.2010,6(9):3426-3435.
    [91]Liu Y, de Groot K, Hunziker E B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone.2005, 36(5):745-757.
    [92]Pan C J, Dong Y X, Zhang Y Y, et al. Enhancing the antibacterial activity of biomimetic HA coatings by incorporation of norvancomycin. J Orthop Sci.2011, 16(1):105-113.
    [93]Liu Y, Enggist L, Kuffer A F, et al. The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials.2007,28(16):2677-2686.
    [94]Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mat Sci Eng R.2004,47(3-4):49-121.
    [95]Breme J, Steinhauser E, Paulus G Commercially pure titanium Steinhauser plate-screw system for maxillofacial surgery. Biomaterials.1988,9(4):310-313.
    [96]Browne M, Gregson P J. Effect of mechanical surface pretreatment on metal ion release. Biomaterials.2000,21(4):385-392.
    [97]Galante J O, Lemons J, Spector M, et al. The biologic effects of implant materials. J Orthop Res.1991,9(5):760-775.
    [98]Schroeder A, van der Zypen E, Stich H, et al. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg.1981,9(1):15-25.
    [99]Nanci A, Wuest J D, Peru L, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res.1998,40(2): 324-335.
    [100]Thomsen P, Larsson C, Ericson L E, et al. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. J Mater Sci Mater Med. 1997,8(11):653-665.
    [101]Schouten C, van den Beucken J J, Meijer G J, et al. In vivo bioactivity of DNA-based coatings:an experimental study in rats. J Biomed Mater Res A.2010, 92(3):931-941.
    [102]Zheng X, Huang M, Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials.2000,21(8):841-849.
    [103]Lu Y P, Li M S, Li S T, et al. Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials.2004, 25(18):4393-4403.
    [104]Milella E, Cosentino F, Licciulli A, et al. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials. 2001,22(11):1425-1431.
    [105]Kim H W, Koh Y H, Li L H, et al. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials.2004,25(13): 2533-2538.
    [106]Aves E P, Estevez G F, Sader M S, et al. Hydroxyapatite coating by sol-gel on Ti-6A1-4V alloy as drug carrier. J Mater Sci Mater Med.2009,20(2):543-547.
    [107]Wang C X, Wang M, Zhou X. Nucleation and growth of apatite on chemically treated titanium alloy:an electrochemical impedance spectroscopy study. Biomaterials.2003,24(18):3069-3077.
    [108]Jonasova L, Muller F A, Helebrant A, et al. Hydroxyapatite formation on alkali-treated titanium with different content of Na+in the surface layer. Biomaterials.2002,23(15):3095-3101.
    [109]Jonasova L, Muller F A, Helebrant A, et al. Biomimetic apatite formation on chemically treated titanium. Biomaterials.2004,25(7-8):1187-1194.
    [110]de Groot K, Geesink R, Klein C P, et al. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res.1987,21(12):1375-1381.
    [111]Kweh S W, Khor K A, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials.2002,23(3):775-785.
    [112]Chang E, Chang W J, Wang B C, et al. Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium:part Ⅰ:phase, microstructure and bonding strength. J Mater Sci Mater Med.1997,8(4):193-200.
    [113]Weng W, Baptista J L. Alkoxide route for preparing hydroxyapatite and its coatings. Biomaterials.1998,19(1-3):125-131.
    [114]Radin S, Campbell J T, Ducheyne P, et al. Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials.1997,18(11):777-782.
    [115]Lee Y, Wu H. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection. B Math Biol.2012, 74(1):73-90.
    [116]Choi J M, Kim H E, Lee I S. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials.2000,21(5): 469-473.
    [117]Lee I S, Kim D H, Kim H E, et al. Biological performance of calcium phosphate films formed on commercially pure Ti by electron-beam evaporation. Biomaterials. 2002,23(2):609-615.
    [118]Lee I S, Whang C N, Lee G H, et al. Effects of ion beam assist on the formation of calcium phosphate film. Nucl Instrum Meth B.2003,206:522-526.
    [119]Fulmer M T, Ison I C, Hankermayer C R, et al. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials.2002,23(3):751-755.
    [120]Nanci A, Wuest J D, Peru L, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res.1998,40(2): 324-335.
    [121]Lowenberg B F, Pilliar R M, Aubin J E, et al. Cell attachment of human gingival fibroblasts in vitro to porous-surfaced titanium alloy discs coated with collagen and platelet-derived growth factor. Biomaterials.1988,9(4):302-309.
    [122]Gao Y, Zou S, Liu X, et al. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. Biomaterials.2009,30(9):1790-1796.
    [123]Yoshinari M, Oda Y, Ueki H, et al. Immobilization of bisphosphonates on surface modified titanium. Biomaterials.2001,22(7):709-715.
    [124]Yoshinari M, Oda Y, Inoue T, et al. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials.2002,23(14): 2879-2885.
    [125]Rosengren A, Johansson B R, Danielsen N, et al. Immunohistochemical studies on the distribution of albumin, fibrinogen, fibronectin, IgG and collagen around PTFE and titanium implants. Biomaterials.1996,17(18):1779-1786.
    [126]Oyane A, Uchida M, Onuma K, et al. Spontaneous growth of a laminin-apatite nano-composite in a metastable calcium phosphate solution. Biomaterials.2006, 27(2):167-175.
    [127]Uchida M, Ito A, Furukawa K S, et al. Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. Biomaterials.2005,26(34):6924-6931.
    [128]Kolk A, Haczek C, Koch C, et al. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating. Biomaterials.2011, 32(28):6850-6859.
    [129]Zhang T, Yu H, Gong W, et al. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials.2009,30(30):6102-6108.
    [130]Yan S G, Zhang J, Tu Q S, et al. Enhanced osseointegration of titanium implant through the local delivery of transcription factor SATB2. Biomaterials.2011,32(33): 8676-8683.
    [131]Rammelt S, Illert T, Bierbaum S, et al. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials.2006,27(32):5561-5571.
    [132]Schuler M, Owen G R, Hamilton D W, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence:a cell morphology study. Biomaterials.2006,27(21):4003-4015.
    [133]Kazemzadeh-Narbat M, Kindrachuk J, Duan K, et al. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials.2010,31(36):9519-9526.
    [134]Antoci V, Jr., Adams C S, Parvizi J, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials.2008,29(35): 4684-4690.
    [135]Tu J, Yu M, Lu Y, et al. Preparation and antibiotic drug release of mineralized collagen coatings on titanium. J Mater Sci Mater Med.2012,23(10):2413-2423.
    [136]Liu Y, Li J P, Hunziker E B, et al. Incorporation of growth factors into medical devices via biomimetic coatings. Philos Transact A Math Phys Eng Sci.2006, 364(1838):233-248.
    [137]Darst S A, Robertson C R, Berzofsky J A. Adsorption of the protein antigen myoglobin affects the binding of conformation-specific monoclonal antibodies. Biophys J.1988,53(4):533-539.
    [138]Puleo D A. Biochemical surface modification of Co-Cr-Mo. Biomaterials.1996, 17(2):217-222.
    [139]Brownell A G, Bessem C C, Slavkin H C. Possible functions of mesenchyme cell-derived fibronectin during formation of basal lamina. Proc Natl Acad Sci U S A. 1981,78(6):3711-3715.
    [140]Lewis C A, Pratt R M, Pennypacker J P, et al. Inhibition of limb chondrogenesis in vitro by vitamin A:alterations in cell surface characteristics. Dev Biol.1978,64(1): 31-47.
    [141]Hassell J R, Pennypacker J P, Kleinman H K, et al. Enhanced cellular fibronectin accumulation in chondrocytes treated with vitamin A. Cell.1979,17(4):821-826.
    [142]Grinnell F, Ho C H, Wysocki A. Degradation of fibronectin and vitronectin in chronic wound fluid:analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol.1992,98(4):410-416.
    [143]Weiss R E, Reddi A H. Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc Natl Acad Sci U S A.1980,77(4):2074-2078.
    [144]Weiss R E, Reddi A H. Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow. J Cell Biol.1981,88(3):630-636.
    [145]Bab I, Chorev M. Osteogenic growth peptide:from concept to drug design. Biopolymers.2002,66(1):33-48.
    [146]Sun Y Q, Ashhurst D E. Osteogenic growth peptide enhances the rate of fracture healing in rabbits. Cell Biol Int.1998,22(4):313-319.
    [147]Chen Z X, Chang M, Peng Y L, et al. Osteogenic growth peptide C-terminal pentapeptide [OGP(10-14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regul Pept.2007,142(1-2):16-23.
    [148]Spreafico A, Frediani B, Capperucci C, et al. Osteogenic growth peptide effects on primary human osteoblast cultures:potential relevance for the treatment of glucocorticoid-induced osteoporosis. J Cell Biochem.2006,98(4):1007-1020,
    [149]Liu Y, Hunziker E B, Layrolle P, et al. Remineralization of demineralized albumin-calcium phosphate coatings. J Biomed Mater Res A.2003,67(4): 1155-1162.
    [150]Chen C, Lee I S, Zhang S M, et al. Biomimetic apatite formation on calcium phosphate-coated titanium in Dulbecco's phosphate-buffered saline solution containing CaCl(2) with and without fibronectin. Acta Biomater.2010,6(6): 2274-2281.
    [151]Smith P K, Krohn R I, Hermanson G T, et al. Measurement of protein using bicinchoninic acid. Anal Biochem.1985,150(1):76-85.
    [152]Wiechelman K J, Braun R D, Fitzpatrick J D. Investigation of the bicinchoninic acid protein assay:identification of the groups responsible for color formation. Anal Biochem.1988,175(1):231-237.
    [153]Shen J W, Wu T, Wang Q, et al. Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials.2008,29(5):513-532.
    [154]Kay M I, Young R A, Posner A S. Crystal Structure of Hydroxyapatite. Nature.1964, 204:1050-1052.
    [155]Daculsi G, Pilet P, Cottrel M, et al. Role of fibronectin during biological apatite crystal nucleation:ultrastructural characterization. J Biomed Mater Res.1999,47(2): 228-233.
    [156]Luong L N, Hong S I, Patel R J, et al. Spatial control of protein within biomimetically nucleated mineral. Biomaterials.2006,27(7):1175-1186.
    [157]Matsuno H, Yokoyama A, Watari F, et al. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials.2001,22(11):1253-1262.
    [158]Likibi F, Chabot G, Assad M, et al. Influence of orthopedic implant structure on adjacent bone density and on stability. Am J Orthop (Belle Mead NJ).2008,37(4): E78-83.
    [159]Aparicio C, Gil F J, Fonseca C, et al. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials.2003,24(2):263-273.
    [160]Sul Y T, Johansson C B, Roser K, et al. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials.2002,23(8):1809-1817.
    [161]Luong L N, Ramaswamy J, Kohn D H. Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system. Biomaterials. 2012,33(1):283-294.
    [162]Peng H, Wright V, Usas A, et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest.2002,110(6):751-759.
    [163]Ripamonti U, Crooks J, Petit J C, et al. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus). Eur J Oral Sci.2001, 109(4):241-248.
    [164]Raiche A T, Puleo D A. In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials.2004,25(4):677-685.
    [165]Murphy W L, Kohn D H, Mooney D J. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res. 2000,50(1):50-58.
    [166]Ohgushi H, Yoshikawa T, Nakajima H, et al. Al2O3 doped apatite-wollastonite containing glass ceramic provokes osteogenic differentiation of marrow stromal stem cells. J Biomed Mater Res.1999,44(4):381-388.
    [167]Schwarzbauer J E, Sechler J L. Fibronectin fibrillogenesis:a paradigm for extracellular matrix assembly. Curr Opin Cell Biol.1999,11(5):622-627.
    [168]Greenberg Z, Chorev M, Muhlrad A, et al. Structural and functional characterization of osteogenic growth peptide from human serum:identity with rat and mouse homologs. J Clin Endocr Metab.1995,80(8):2330-2335.
    [169]Gabarin N, Gavish H, Muhlrad A, et al. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells:activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP. J Cell Biochem.2001,81(4):594-603.
    [170]Tuan R S, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther.2003,5(1):32-45.
    [171]Petite H, Viateau V, Bensaid W, et al. Tissue-engineered bone regeneration. Nat Biotechnol.2000,18(9):959-963.
    [172]Clem W C, Chowdhury S, Catledge S A, et al. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials.2008,29(24-25):3461-3468.
    [173]Ishiyama M, Miyazono Y, Sasamoto K, et al. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta.1997,44(7):1299-1305.
    [174]Hu Y, Cai K, Luo Z, et al. Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials.2009,30(21):3626-3635.
    [175]Wen H B, Liu Q, De Wijn J R, et al. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment. J Mater Sci Mater Med.1998,9(3): 121-128.
    [176]Nuttelman C R, Mortisen D J, Henry S M, et al. Attachment of fibronectin to poly (vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J Biomed Mater Res.2001,57(2):217-223.
    [177]Park I S, Han M, Rhie J W, et al. The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials.2009,30(36): 6835-6843.
    [178]van den Beucken J J, Walboomers X F, Boerman O C, et al. Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. J Control Release. 2006,113(1):63-72.
    [179]Bierbaum S, Hempel U, Geissler U, et al. Modification of Ti6AL4V surfaces using collagen I, III, and fibronectin. II. Influence on osteoblast responses. J Biomed Mater Res A.2003,67(2):431-438.
    [180]Schliephake H, Scharnweber D, Dard M, et al. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater.2005, 73(1):88-96.
    [181]Oyane A, Murayama M, Yamazaki A, et al. Fibronectin-DNA-apatite composite layer for highly efficient and area-specific gene transfer. J Biomed Mater Res A. 2010,92(3):1038-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700