彩色棉GhF3'H与GhF3'5'H基因的克隆、鉴定及四种类黄酮物质的HPLC分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上重要的经济作物,棉纤维是纺织工业中天然纤维的主要来源。彩色棉是一种棉纤维具有天然色泽的棉花类型,由于其加工过程无须人工染色而博得了“生态棉”的美誉,具有非常广阔的市场前景,但是彩色棉纤维品质差、色泽单一,制约的彩色棉产业的发展。
     本研究以彩色棉为研究对象,对彩色棉纤维中色素物质生物合成途径的分子调控和生物化学等方面进行了初步探索,为丰富彩色棉纤维的色彩,增强纤维品质提供一定理论依据。本研究从彩棉纤维细胞中克隆了参与类黄酮生物合成的两个重要分支酶基因,采用生物信息学分析、分子杂交、Real Time-PCR表达分析和在烟草中转基因表达等方法系统分析了它们的分子特征、表达特性和功能活性等。主要结果如下:
     1、利用cDNA-AFLP差异显示技术,比较天彩5号(棕色),天彩7号(绿色)与白棉开花后18天的纤维细胞的基因表达,寻找与棉纤维色素基因表达相关的片段。结果表明:64对引物组合检测到约3800条TDF片段条带,平均每一对选择性引物可以获得25条左右,挑取明显差异片段60条,进行反northern杂交,获得17个阳性片段。通过BlastX比对,获得类黄酮3羟基化酶类黄酮3’5’羟基化酶,两个与色素相关的差异片段,一个蛋白激酶,一个顺乌头归酸酶,一个与老化相关酶,一个苹果酸脱氢酶,其余无法比对。
     2、利用RACE-PCR技术获得F3’5'H基因全长cDNA,1876bp,含有一个编码509个氨基酸残基的开放阅读框。Blast分析表明该基因的编码产物为类黄酮3’5’羟基化酶,命名为GhF3'5'H, GenBank登录号为GU062184;同时获得F3’H基因的全长cDNA,1873bp,含有一个编码510个氨基酸残基的开放阅读框。Blast分析表明该基因的编码产物为类黄酮3羟基化酶,命名为GhF3'H, GenBank登录号为GU062185。通过保守结构域分析,GhF3'5'H与GhF3'H基因属于P450细胞色素家族基因。
     3、通过RT-PCR与实时荧光定量RT-PCR,对白色棉,绿色棉,棕色棉品种中的根、茎、叶、花和棉纤维细胞中GhF3'5'H与GhF3'H基因的转录水平进行检测和比较。结果显示:GhF3'5'H与GhF3'H在彩色棉不同组织中的表达量均显著高于其近等基因系白色棉,且主要在纤维细胞中表达。在纤维发育过程中,GhF3'5'H与GhF3'H基因在纤维发育的早期表达量最高,并随纤维发育逐渐降低。推测这两个基因可能在彩色棉纤维色素前体物质的形成中发挥作用。
     4、类黄酮合成途径中关键酶的底物专一性研究,对于揭示花色的合成途径和分子改良的技术路线有着重要的意义。构建pET28a-GhF3'H与pET28a-GhF3'5'H蛋白表达载体,通过不同表达温度和时间发现,加入IPTG诱导后,在大肠杆菌中可以诱导出目的蛋白,能够检测到较高量的目的蛋白表达,纯化发现pET28a-GhF3'H与pET28a-GhF3'5'H蛋白均以包涵体形式存在,这为验证GhF3'H和GhF3'5'H基因的功能和其编码酶的活性研究提供了基础。
     5、分别构建GhCHS基因的超量表达载体,GhCHS基因RNAi干扰载体,用于烟草、棉花等转化研究。通过PCR检测分析,获得转GhCHS基因的阳性烟草10株,转基因烟草与野生型相比生长缓慢,植株较小;对转基因烟草植株与野生型烟草进行蔗糖非生物胁迫处理,发现随着胁迫时间的增加,叶片总黄酮含量在增加,并且转基因烟草中总黄酮的含量高于野生型中总黄酮的含量;推测增加碳源可以促进类黄酮物质的合成。
     6、运用HPLC技术,建立了同时检测四种类黄酮物质的方法,对棉纤维发育过程中的类黄酮物质(柑橘素,杨梅素,槲皮素,山奈素)进行检测并分析。结果发现:(1)白色与彩色棉花纤维中均存在多种类黄酮物质,包括柑橘素、山奈素、槲皮素和杨梅素等色素前体物质。(2)柑橘素在棉纤维发育的早期积累,随着棉纤维的发育该物质累积下降。(3)杨梅素与槲皮素在彩色棉纤维中积累量远高于同时期白色棉中累积量,且差异显著。(4)山奈素在棕色与绿色棉纤维快速伸长期极少量积累。结果表明:在棉花纤维发育过程中有大量活跃复杂的色素物质合成并转化,柑橘素、山奈素、槲皮素和杨梅素等色素前体物质对彩色棉纤维色素形成有一定作用。
Cotton is one of the most globally important cash crops, and cotton fiber is the main natural fiber in textile industry. Color cotton fiber is a kind of cotton with natural color in its fiber. Color cotton is healthy and profitable for mankind for it no dye printing in processing. Due to the advantage, it has caught tremendous attention and named "ecological fiber" highly praised by consumers. However, there are still some weak points that block its further development, only a few color series, instability of pigment, etc. which hinde the development of cotton industry.
     This research regarded colored cotton as materials and focused on fiber biochemistry and molecular biolosy. Cloning of genes related to color formation study will help thoroughly understand pigment synthesis pathway and molecular mechanism, and perform genetic engineering. Two important genes related to flavonoids bio-synthesis were cloned, and their characteristics, expression profiles and functional activity were studied by bioinformatics analysis, blot, Real Time-PCR, and expression in tobacco. The results are as follow:
     1. The study was carried out to search the different expressing genes in the fiber of brown, green and white color cotton though complementary DNA amplified fragment lenth polymorphism-(cDNA-AFLP) analysis. The result showed that sixty-four pairs of primers were used to amplify products for analysis. About 3800 bands were detected and the average number of bands per pair of primers amplified was 25. Using cDNA as probe,60 special framents were analyzed by reverse Northern blot, and got 17. BLASTx analysis showed that 6 TDFs had the homologous sequences with other sequences in GenBank, we got two framents which relatived to pigment formation. They are flavoionds 3'hydroxylase in brown color cotton fiber and flavoionds 3'5'hydroxylase in green color cotton fiber.
     2. Using rapid amplification of cDNA ends (RACE), the complete cDNA sequence of GhF3'5'H gene was isolated from green cotton fiber. The full-length of this cDNA colne was 1876bp, and its open reading frame encoded 509 amino acids. The gene was designated as GhF3'5'H (GenBank accession:GU062184). By the same way, we also got the complete cDNA sequence from brown cotton fiber and named GhF3'H (GenBank accession:GU062185). The full-length of this gene have 1873bp, and its open reading frame encoded 510 amino acids. Both GhF3'5'H and GhF3'H genes are belong to P450 family by the analysis of their conservation structure region.
     3. RT-PCR and Fluorescence real time quantitative PCR technology were used to study the expression of GhF3'5'H and GhF3'H genes in different development stages of fiber and organs. Real-time PCR analysis showed that GhF3'5'H and GhF3'5'H specially expressed in naturally color cotton fibers prior to white cotton fibers, and there expression levels are much higher in color cotton than in white cotton. They shrink in proportion to fiber development. Suggesting that GhF3'5'H and GhF3'H genes may involve in the precursor sythesis and play an important role in pigment formation during natural green and brown cotton fibers development.
     4. In the flavnoid sythesis pathway, studying on constructed enzyme choosing substrate is most important to reveal flower pigment formation. We constructed pET28a-GhF3'H and pET28a-GhF3'5'H protein vector at same time, which were induced by the IPTG in different conditions. We could found induced aim albume in the gel. Both pET28a-GhF3'H and pET28a-GhF3'5'H albume were presence in inclusion body which is had to pure.
     5. We constructed GhCHS gene expression vector and GhCHS RNAi vector repectively, for the tobacco and cotton transformation research. Got ten transformed tobacco plants which detected by PCR technique. By the assay, we found that tranformed plants grow more slowly and smaller than wild plants. With sucrose streesing, total flavonoid in transformed and wild tobacco planta is increasing as the time goes by, moreover, transformed plants have much more flavonoid than wilds'.we have a conclusion that sucrose might promote flavonoid proucts sythesis.
     6. We established a determination method which could detect four effective flavonoids in cotton fiber at the same time. During the fiber developing, we detected myricetin、quercetin、naringenin and kaempferol four flavonoids in the fiber through HPLC. We got following results:(1) There are many different flavonoids in both white and colour cotton fiber; (2) Naringenin accumulated in the early time and decreased by the time; (3) Myricetin and quercetin accumulated much more in colour cotton than white cotton fibers, and difference remarkable; (4) Kaempferol accumulated little in the fast elongation stage. These results demonsted that numerous actively and complicated flavonoids sythesis and transtfored in the process of cotton fiber development. Myricetin、quercetin naringenin and kaempferol are useful to precursor pigment in the color fiber.
引文
[1]毕殉,卢嘉文综述,蔡东联审校.银杏及叶中黄酮类化合物生理功效的研究进展[J].武警医学,2004,15(6):458-459.
    [2]陈国梁,张金文,王蒂.马铃薯gbss、ssⅡ和ssⅢ基因片段的融合及其RNAi载体的构建[J].中国生物工程杂志,2008,28(8):51-56.
    [3]程水源,王燕,李俊凯,费永俊,朱桂才.内源激素含量与银杏叶中类黄酮含量的关系[J].林业科学,2004b,40(6):45-49.
    [4]黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织DNA的差异[J].植物生理学报,1999,25(4):332-338.
    [5]冷欣夫,邱星辉主编.细胞色素P450酶系的结构,功能与应用前景[M].北京:科学出版社,2001:107-128.
    [6]韩斌,彭建营.cDNA-AFLP技术及其在植物基因表达研究中的应用[J].西北植物学报,2006,26(8):1753-1758.
    [7]刘彩霞,孙振元.香石竹ACC氧化酶基因RN为载体构建及其遗传转化研究[D].北京:中国林业科学研究院,2007.
    [8]李凤林,李清旺,冯彩宁,郜俊杰,天然黄酮类化合物提取方法研究进展[J].中国食品添加剂2008,5:60-65.
    [9]李惠英,张献龙.陆地棉体细胞胚胎发生过程中的mRNA差异显示分析[J].棉花学报,2003,15(5):264-268.
    [10]李洪清,李美茹,潘小平,陈贻竹.花色改造基因工程[J].中国生物工程杂志,2003,23(7):42-47.
    [11]李悦有,王学德.彩色棉纤维的超微结构观察.浙江大学学报[J].农业与生命科学版.2002,28(4):379-382.
    [12]李,高明侠,刘新民.银杏及叶中黄酮类化合物生理功效的研究进展.食品科技[J].2001,5(5):71-73.
    [13]娄平,王晓武,利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列[J].园艺学报,2003,30(6):668-672.
    [14]孟丽,戴思兰.瓜叶菊F3'5'H基因cDNA的克隆、序列分析及其原核表达[J],分子植物育种,2005,3(6):721-727.
    [15]孟祥春,张玉进,王小菁.玉米根中花色素苷积累的某些影响因子研究[J].华南师范大学学报(自然科学版),2002,4:25-30.
    [16]孟祥春,张玉进,王小菁.非洲菊花序的离体培养及其舌状花花色素苷积累的调控[J].华南农业大学学报,2005,26(3):56-60.
    [17]马轩.彩色棉生物化学和分子生物学的初步研究(D).硕士论文.北京:中国农业科学院研究生院;2004
    [18]钱俊臻.黄酮类化合物提取方法的研究进展[J].化工文摘,2008,6:35-38.
    [19]庞永珍.银杏黄酮和萜类化合物生物合成途径中重要相关基因的克隆和研究[D].博士论文.上海:复旦大学;2005
    [20]邱新棉,周文龙,李茂松,等.彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究[J].中国农业科学,2002,35(6):610--615.
    [21]孙亮先,谢进金,黄周英.表达序列标记(EST)研究进展[J].泉州师范学院学报(自然科学),2002,20(4):75-77.
    [22]沈亚楠,余迪求,岑川,李宝健.金鱼草DEL基因影响烟草花色素苷的研究[J].中山大学学报,1998,37(3):17-22.
    [23]王定勇,刘恩桂,冯玉静等.杨梅树皮中黄酮类成分研究[J].时珍国医国药.2008,19(5):1149-1150.
    [24]王小菁,孟祥春,彭建宗.花色形成与花生长的调控[J].西北植物学报,2003,23(7):1105-1110.
    [25]王永勤,曹家树,符庆功.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异[J].中国农业科学,2003,36(5):557-660.
    [26]肖月华,罗明,韦宇拓,侯磊,裴炎.棉花纤维起始期基因表达的:cDNA-AFLP分析[J].农业生物技术学报.2003,11(1):20~24.
    [27]邢建民,赵德修,李茂寅,叶和春,李国凤,李佐虎.植物细胞培养生产黄酮类化合物研究进展[J].生物工程进展.2001,21(1):47-50.
    [28]杨超,金志强.Maasrl RNAi植物表达载体的构建及其有效性的鉴定[J].华南热带农业大学,2006.
    [29]余迪求,李宝健.花色素苷生物合成的遗传和发育调控[J].植物生理学通讯,1997,33(1):71-77.
    [30]张学英,张上隆,骆军,叶正文,李世诚.果实花色素苷合成研究进展[J].果树学报,2004,21(5):456-460.
    [31]赵剑,杨文杰,朱蔚华.细胞色素P450与植物的次生代谢[J].生命科学1999,7(11):3-10.
    [32]赵向前,王学德.天然彩色棉纤维色素成分的研究[J].作物学报,2005,31(4):456-462.
    [33]詹少华,林毅,蔡永平等.天然棕色棉纤维色素光谱学特性及其化学结构初步判断[J].植物学通报,2007,24(1):99-104.
    [34]张永超,哈云利,唐大力等.高效液相色谱法测定山楂中芦丁和槲皮素的含量[J].化学工程师.2006,19(3):28-29.
    [35]朱勇清,许可香,陈晓亚.棉花Li突变体生长素极性运输的减弱[J].植物生理与分子生物学学报,2003,29(1):15-20.
    [36]Anita L B, Frederik C B. Cloning of a specific ripening-related gene from the multiple of ripening-related genes identified from a single band excised from a cDNA-AFLP gel. Plant Molecular Biology Reporter.2004,22:225-236.
    [37]Bachem C W B, Vanderhoeven R S, Debruijn S M, Vreugdenhil D, Zabeau M. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP-analysis of gene expression during potato tuber development. The Plant Journal.1996,9(5):745-753.
    [38]BaehemC W, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP:A step-by-step protocol. Plant Molecular Biology Reporter,1998, 16(2):157-173.
    [39]Bardley JM, Davies KM, Deroles SC, Bloor SL, Lewis DH.The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. The Plant Journal,1998,13(3):381-392.
    [40]Ben-Bo Xua, Jia-Na Li, Xue-Kun Zhang, Rui Wang, Ling-Li Xie, You-Rong Chai. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassicanaus. Journal of Plant Physiology 2007; 164: 350-363.
    [41]Blom N, Gammeltoft S, Brunak S. Sequence and structure based prediction of eukaryotic protein phosphorylation sites. Journal of Molecule Biololgy.1999; 254:1351-1362.
    [42]Brugliera F, Barri-Rewell G, Holton TA, Mason JG Isolation and characterization of a flavonoid3'-hydroxylase cDNA clone corresponding to the Htllocus of Petunia hybrida. Plant Jounary 1999; 19:441-451.
    [43]Britsch L Ruhnau-Brich B, Forkmann G. Molecular cloning, sequence analysis, in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. Journal of Biological Chemistry.1992,267(8):5380-5387.
    [44]Burbulis IE, Winkel-Shirley B. Interactions among enzymes of the Arabidopsis Flavonoids biosynthetic pathway. Proc Nati Acad Sci USA,1999,96: 12929-12934
    [45]Chun Suk Jung Helen M. Griffiths Darlene M. De Jong Shuping Cheng Mary Bodis Walter S. De Jong The potato Plocus codes for flavonoid 3'-5'hydroxylase. Theor Appl Genet,2005,110:269-275.
    [46]Chue G, Robbins, et al., Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant cell.1993,5:371-378.
    [47]Constantine D. Stalikas. Extraction, separation, and detectionmethods for phenolic acids and flavonoids. J. Sep. Sci.2007,30,3268-3295.
    [48]Dangl J L, Hahlbrock K, Schell J. Regulation a structure of chalcone synthase genes. Cell Culture Somatic Cell Genetics Plants.1989,6:155-173.
    [49]Diatchenko L, Lau Y C, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the USA.1996,93:6025-6030.
    [50]Durbin ML, McCaig B, Clegg MT. Molecular evolution of chalcone synthase multigene family in the morning glory genome.Plant Mol.Biol.2000,42:79-90.
    [51]Dooner, H. K, Weck, E. Adams, S, et al, A molecular genetic analysis of insertions in the bronze locus in maize. Mol. Gen. Genet.1985,200:240-246.
    [52]Dooner HK, Robbins TP, Jorgensen RA. Anthocyanin biosynthesis. Annual Review Genetic and developmental control of in Genetic.1991,25:173-199.
    [53]Fedoroff, N. V, Furtek, D. B. Nelson, O. E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element activator. Proc. Natlure. Academic. Science. USA,1984,8:3825-3829.
    [54]Fischer R, Budde I, Hain R. Stilbene synthase gene expressioncauses changes in flower color a male sterility in tobacco. Plant Journal.1997,11489-11498.
    [55]Fofana B, Mcnally DJ, LabbeC, et al. Milsana-induced resistance in powdery Mildew infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Physiol Mol Plant Pahol.2002,61:121-132.
    [56]Forkmann G, Dangelmayr B. Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem Genet.1980,18:519-527.
    [57]Forkmann, G and Stotz C Genetic control of flavanone 3-hydroxylase activity and flavonoid 3'-hydroxylse activity in Antirrhinum majus (snapdragon). Z Naturforsch.1981,36c:411-416.
    [58]Forkmann, G. Flavonoids as flower pigments:The formation of the natural spectrum and its extension by genetic engineering. Plant Breed.1991,106: 1-26.
    [59]Forkmann G, Martens S. Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology.2001,12(2):155-160.
    [60]Gabriels S H E J, Takken F L W, Vossen J H, Jong C F, Liu Q, Turk S C H J, Wachowski L K, Peters J, Witsenboer H M A, Wit P J G M, Joosten M H A J. cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Molecular Plant-Microbe Interactions.2006,19(6): 567-576.
    [61]Gollop R, Farhi S, Perl A.Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Science.2001,161:579-588
    [62]Harborne JB, Williams CA. Anthocyanins and other flavonoids. Nat Prod Rep, 2001,18:310-333.
    [63]Hrazdina G, Wagner GJ. Metabolic pathway as enzyme complexes:evidence for the synthesis of phyenylpropanoids and flavonoids on membrance associated enzyme complexes. Arch Biochem Biophy.1985,237:88-100.
    [64]Hertog MCP Hollman PC. Potential health effects of the dietary flavonol quercetin. European Journal Clinnical Nutrition.1996,50(2):63-71.
    [65]Grayer R J, Harborne J B. A survey of antifungal compounds from higher plants, 1982-1993. Phytochemistry.1994,37:19-42.
    [66]Graf B A, Milbury P E and Blumberg J B. Flavonols, flavones, flavanones, and human health: epidemiological Evidence. Journal of Medicine Food.2005,8 (3): 281-290.
    [67]Hagmann M L, Heller W, Grisebach H. Induction and characterization of a microsomal flavonoid 3'-hydroxylase from parsley cell cultures. Eur J Biochem. 1983,134(3):547-554.
    [68]Hallt. C Ma Y Buchbinder B. U., Messenger RNA for G1 protein of French bean seeds:Cell-free translation and product characterization. Proceding of Natlure Academic Science. USA,1978,75:3196-320.
    [69]Han B, Peng J Y. cDNA-AFLP and its application in research about Gene expressions of plants. Acta Botanica Boreal-Occidentalia Sinica.2006,26(8): 1753-1758.
    [70]Harborne J B, Williams C A. Advances in flavonoid research since 1992. Phytochemistry,2000,55:481-504.
    [71]Hiratsuka S, Onodera H, Kawai Y, et al.ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Sci Hortic,2001,90:121-130
    [72]Holton T A, Brugliera F, Lester D R, et al. Cloning and expression of cytochrome P450 gene controlling flower color. Nature,1993,366:276-279.
    [73]Holton T.A., and Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell.1995,7:1071-1083
    [74]Hoshino A, Johzuka Hisatomi Y, Iida S. Gene duplication and mobile genetic elements in the morning glories. Gene.2001,265(1-2):1-10.
    [75]Hollman PC, Katan MB. Health effects and bioavailablility of dietary flavonols. Free Radical Research.1999,31 (supplement):75-80.
    [76]Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting J C S I:ru CY, FarcyE, Stevenson TW. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature.1993,366(6452):276-279.
    [77]Jaakola L, Maatta K, Pirttila AM, et al. Expression of gene involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Phyisol.2002,130: 729-739.
    [78]Jacobs M and Rubery P H. Naturally occurring auxin transport regulators. Science.1988,241:346-349.
    [79]Jean-Marc Routaboul, Antoine Baudry, Lucille Pourcel, Nathalie Nesi, and Michel Caboche, Genetics and Biochemistry of Seed Flavonoids Lepiniec, Isabelle Debeaujon. Plant Biol.2006.57:405-430.
    [80]Kreuzaler, F, Ragg H, Fautz E, et al,1983, Uv-induction of chalcone stythase mRNA in cell suspension cultures of Pet roseli num hotense. Proceeding of. Natlure. Academic. Science. USA,80:2591-2593
    [81]Kim M J, Hyun J A, Park J C, et al. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry.2007,55(12):4802-4809.
    [82]Kim S, Jones R, Yoo KS and Pike LM. Gold color in onions (Album cepa):a natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Mol.Gen. Genet.2004,272:411-419.
    [83]Kitada C, Gong Z, Tanaka Y, Yamazaki M, Saito K.Differential expression of two cytochrome P450s involved in the biosynthesis of flavones and anthocyanins in chemo-varietal forms of Perilla frutescens. Plant Cell Physiol 2001; 42:1338-44.
    [84]Lamb C J. Signals and transduction mechanisms for activation of Plant defense against mierobial attack. Cell.1989:215-24.
    [85]Liang P, Pardee B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science.1992,257(5072):967-997.
    [86]Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science.1993,259(5097):946-951.
    [87]Long S. Rhizobium-legume nodulation:life together in the underground. Cell.1989,56:203-214.
    [88]Lukacin R, Wellmann F, Britsch L, Martens S, Matern U. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry.2003,62(3): 287-292.
    [89]Mao C Z, Yi K K, Yang L, Zheng B S, Wu Y R, Liu F Y, Wu P. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L): aluminium-regulated genes for the metabolism of cell wall components. Journal of Experimental Botany.2004,55(394):137-143.
    [90]Mattila P, Astola J, Kumpulainen J. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. Journal of Agricultural and Food Chemistry.2000,48:5834-5839.
    [91]Martin C, Prescott ACS Mackay S, Bartlett J, Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus.The Plant Journal. 1991,1(1):37-49.
    [92]Meyer P, Heidmann I, Forkmann G, Saedler H. A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature.1987,330: 677-688.
    [93]Miean K H, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agriculture Food Chemistry,2001,49:3106-3112.
    [94]Money T, Reader S, Qu L J, Dunford R P, Moore G. AFLP-based mRNA fingerprinting. Nucleic Acids Research.1996,24(13):2616-2617.
    [95]Mori S, Kobayashi H, Hoshi Y, Kondo M. Nakano M.Heterologous expression of the flavonoid-3'5'-hydroxlyase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant Cell Rep.2004,22(6):415-421.
    [96]MO Y, Nagel C, Taylor L. Biochemical complementation of chalcone synthase mutants define a role for flavonols in functional pollen. Proc Natl Acad Sci USA, 1992,89:7213-7217.
    [97]Morita Y, Saitoh M, Hoshino A, Nitasaka E, Iida S. Isolation of cDNAs for R2R3-MYB, bHLH and WDR Transcriptional Regulators and Identification of c and ca Mutations Conferring White Flowers in the Japanese Morning Glory. Plant Cell Physiol.2006 30 123-132.
    [98]Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology.2001,19(5):470-474.
    [99]Oomen J F J, Bergervoet M J E M, Bechem C W B, Visser R G F, Vincken J P. Exploring the use of cDNA-AFLP with leaf protoplasts as a tool to study primary cell wall biosynthesis in potato. Plant Physiology and Biochemistry, 2003,41(11/12):965-971.
    [100]Pang Y, Shen G, Wu W, etal.Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Science.2005,168:1525-1531.
    [101]Pelletier MK, Winkel-Shirley B. Analysis of flavanone3-hydroxylase in Arabidopsis seedlings. Plant Phyisol,1996,111:339-345.
    [102]Reif H. J, Niesbach U, Denmling B., et al,1985 Cloning and analysis of two genes for chalcone synthase from Petuniahybri da. Mol. Gen. Genet,199: 208-215.
    [103]Ruan Y L, Chourey P S.A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 1998,118:399-406.
    [104]Ryser mlrich. Cotton fiber: developmental biology, quality, improvement, and textile processing. New York:Amarjit S. Basra Edit, Food Products Press. 1999. pp 1-45.
    [105]Reuber S, Jende-Strid B, Wray V, Weissenbock G. Accumulation of the chalconeisosalipurposide in primary leaves of barley flavonoid mutants indicates a defective chalcone isomerase. Physiol. Plant.1997,101:827-832
    [106]Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. Identification of the encoded P450 enzyme. Biologly Chemistry.2000,381:749-755.
    [107]Shimada Y, Nakano Shimada K, Ohbayashi M, et al. Experession of chimeric P450 genes encoding flavonoids-3'5'-hydroxylase in transgenic tobacco and petunia plants. FEBS Letters.1999,461:241-245.
    [108]Simoes-Araujo J L, Rodrigues R L, de A Gerhardt L B, Mondego J M C, Alves-Ferreira M, Rumjanek N G, Margis-Pinheiro M. Identification of differentially expressed genes by cDNA-AFLP technique during heat stress in cowpea nodules. Federation of European Biochemical Societies Letters.2002, 515(1):44-50.
    [109]Spribille R and Forkmann G. Chalcone synthesis and hydroxylation of flavonoids in 3'-position with enzyme preparations from flowers of Dianthus caryophyltus Li. Planta.1982,155:176-182.
    [110]Stalikas C D. Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of separation science.2007,30,3268-3295.
    [111]Schoenbohm C, Martens S, Eder C. EtalI dentification of the Arabidop sisthaliana flavonoid3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biol Chem,2000,381:7475-7489.
    [112]Schwinn K,Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C, A Small Family of MYB-Regulatory Genes Controls Floral Pigmentation Intensity and Patterning in the Genus Antirrhinum. Plant Cell.2006,5(10)123-132.
    [113]Shen G, Pang Y, Wu W, et al. Cloning and characterization of a flavanone 3-hydroxylase gene from Ginkgo biloba. Biosci Rep.2006a,26:19-29.
    [114]Shen G, Pang Y, Wu W, et al. Isolation and characterization of a putative anthocyanindin reductase gene from Ginkgo biloba. Journal of Plant Physiol. 2006b,163:224-227.
    [115]Stafford HA. Possible multienzyme complexes regulating the formation of C6-C3 phenolic compounds and lignins in higher plants. Recent Advance of Phytochem.1974,8:53-79
    [116]Stotz G, de Vlaming P, Wiering H, Schram AW and Forlcmann G. Genetic and biochemical studies on flavonoid 3'-hydroxylation in flowers of Petunia. Theoretical and Applied Genetics.1985,70:300-305.
    [117]Sun Wei-guo, Xu Yang. Study on the composition of the pigments in the nature colored cotton. Journal of Xi'an Polytechnic University 2009,23(2): 119-124.
    [118]Tanaka Y, Tsuda S, Kusumi T. Metabolic engineering tomodify flower colour. Plant Cell physiol,1998,39:1119-1126.
    [119]Taylor L, Jorgensen R. Conditional male fertility in chalcone synthase-deficient petunia. J Hered,1992,83:11-17.
    [120]TeklemariamTA, BlakeT J. Phenylalanine ammonia-lyase-induced freezing tolerancein jack pine (Pinus banksiana) seedlings treated with low, ambient levels ofultraviolet-B radiation. Physiol Plant.2004,122:244-253.
    [121]Toda K, Akasaka E, Dubouzet E G, et al Structure of flavonoid3'-hydroxylase gene for pubescence color in soybean. Crop Science.2005,45:2212-2217.
    [122]Tsukaya H, Ohshima T,Naito S,Chino M, Komeda Y. Sugar-dependent expression ofthe CHS-A gene for chalcone synthase from Petunia in transgenic Arabidopsis. PlantPhysiol.1991,97:1414-1421.
    [123]Tunen A J V, Kose R E, Mol J N M, et al. Cloning of the two chalcone flavanone isomerase genes from Petunia hybrid; coordinate, light-regulated and differential expression of flavonoid genes. EMBO J,1988,7:1257-1263.
    [124]Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y. Molecular and biochemical characterization of torenia flavonoid3'-hydroxylase and flavone synthase Ⅱ and modification of flower color by modulating the expression of these genes. Plant Science.2002,163: 253-263.
    [125]Vander Meer I M, Stam M E, Van2tunen A J, et al. Antisense inhibition of flavonoid biosynthesis in petunia anthers result s in male sterility. Plant Cell. 1992,4:253-262.
    [126]Vander Meer I M, Stuitje A R, Mol J N M. Regulation of general phenylpropanoid and flavonoid gene expression [M]. New York: CRC Press, BocaRaton,1993:125-155.
    [127]Winkel-Shirley Brenda. Flavonoid biosynthesis:a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol,2001,126: 485-493.
    [128]Yamada T, Hashimoto H, Shiraishi T, et al. Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycos phaerella pinodes. Mol Plant Microbe Interact.1991,2:256-261.
    [129]Yamazaki M, Yamagishi E, Gong ZZ, Fukuchi MM, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K. Two flavonoid glucosyltransferases from Petunia hubrida: Molecular cloning, biochemical properties and developmentally regulated expression. Plant Molecular Biology,2002,48: 401-411.
    [130]Yue-hua Xiao, Zheng-sheng Zhang, Meng-hui Yin, et al. Cotton flavonoid structural genes related to the pigmentation in brown fibers. BBRC,2007,358: 73-78.
    [131]Zhang Lei, Xu Liang, Xiao Shan-Shan, et al. Characterization of flavonoids in the extract of Sophora flavescens Ait. By high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis,2007, (44):1019-1028.
    [132]Zhang L, Meakin H, Dickinson M. Isolation of genes expressed during compatible interactions between leaf rust (Puccinia triticina) and wheat using cDNA-AFLP. Molecular Plant Pathology.2003,4(6):469-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700