中国甘蓝育成品种系谱分析及骨干亲本01-20的遗传效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结球甘蓝简称甘蓝,是世界上许多国家的主要蔬菜作物。中国自20世纪50-60年代开展甘蓝新品种选育以来,先后有200多个不同类型新品种通过审(认、鉴)定。但许多甘蓝品种的系谱尚不清楚,对甘蓝育成品种的系谱研究与我国主要农作物相比相差甚远。通过系谱分析不仅能够发现育成品种更替演变规律,总结出在育种过程中亲本选择和组合配制上的规律,而且能够发现在育种中重要的骨干亲本。在此基础上解析骨干亲本的遗传构成,挖掘其与重要农艺性状相关的特异染色体位点和区段并揭示其遗传效应,将有利于提高甘蓝育种工作中亲本选配的准确性和效率,为创造新的骨干亲本提供理论指导。
     本研究在对甘蓝育成品种系谱分析的基础上,利用甘蓝骨干亲本01-20及其姊妹系、衍生系以及由01-20和自交系96-100构建的DH群体,发掘骨干亲本01-20特异的染色体位点和区段并利用QTL揭示其遗传效应,研究获得以下结果:
     1、系统总结分析了中国甘蓝育成品种的系谱。1982~2012年中国共报导育成甘蓝品种219个,其中杂交种183个,所占比例为83.56%,尤其是近10年来育成品种中杂交种占96.74%;扁球型品种最多,为108个。对目前亲本来源清楚的176个杂交种的亲本组成进一步分析表明,176个杂交种来自261个直接亲本,可以追溯到67个我国地方品种和104个国外引进品种。其中黑叶小平头衍生品种最多(38个),其次是北京早熟(27个)。系谱分析发现亲本选配时不同地理来源或者植物学性状差异较大的两个亲本组配能够表现较强的杂种优势,并结合国内育成的几个重要甘蓝主栽品种的亲本组配特点,探讨在甘蓝育种过程中亲本选择、组合配制上的规律和特点。绘制了‘黑叶小平头21-3’、‘北京早熟01-20’两个甘蓝骨干亲本的系谱图。
     2、利用978对EST-SSR引物,2173对Scaffold-SSR引物和707对Indel引物在DH群体的双亲01-20和96-100间进行筛选,获得273对SSR和261对Indel多态性引物,将这些标记全部用于遗传图谱构建,获得了一张包含406个标记的甘蓝遗传图谱,包含9个连锁群,总长度为934.06cM,平均间距2.3cM。根据共有标记实现连锁群与甘蓝9条染色体的对应。
     3、在此图谱的基础上,根据2011-2012两年三季田间调查结果对甘蓝株型、叶片、叶球、种子、品质和抗性性状进行了QTL定位。共检测到与32个数量性状相关的QTL171个,其中与株型、叶片性状相关的QTL有58个,其中贡献率大于10%的38个;与叶球性状相关的QTL57个,贡献率大于10%的QTL共38个;与叶色、球色相关的QTL38个,贡献率大于10%的QTL有26个;与抗性和叶球品质相关的QTL11个,贡献率大于10%的有10个;与角果和种子相关的QTL7个,贡献率大于10%的QTL有5个;并且有15个性状的26个QTL在至少两季调查结果中能够重复检测到。这些QTL的定位为下一步骨干亲本01-20特异染色体位点的性状关联和遗传效应分析奠定了基础。
     4、在多条染色体上出现了不同性状QTL成簇聚集现象。其中Chr.1上55.9~60.9cM处聚集了与株型和叶片、叶球性状相关的QTL分别为9个、7个;Chr.3上88~92cM处聚集了与株型和叶片、叶球、球色相关性状QTL分别为5个、7个、1个;Chr.7上27.8~30.9cM处聚集了与球色、叶球相关性状QTL分别为2个、4个;Chr.9上58.6~61.5cM处聚集了与叶色、叶球相关性状QTL各3个,与品质、抗性相关性状QTL3个。这些染色体区段为将来进行QTL精细定位和克隆提供了重要的参考依据,也为甘蓝育种过程中相关联性状的辅助选择提供分子依据。
     5、通过对骨干亲本01-20及其姊妹系和亲本材料的表型性状研究发现,骨干亲本01-20的表型特征在于综合性状优良,与其他姊妹系相比没有明显的缺陷,既继承了其原始亲本北京早熟的早熟性特征,又在株型、叶色、球色和品质性状方面有所提高。对6个姊妹系基因组SSR/Indel位点多态性比较分析发现,01-20具有1个特异位点,01-07-258具有1个特异位点,01-20和01-07-258共同区别于其他姊妹系的特异位点有6个。利用QTL定位结果,其中5个特异染色体位点与农艺性状关联并揭示其遗传效应,表现为骨干亲本材料外叶色绿,株型紧凑、叶球圆正,中心柱较细,球叶脆嫩。其中Chr.3上Indel64位点和Chr.9上Indel353位点具有明显的不同性状聚集和染色体区段效应,是骨干亲本01-20在育种中发挥重要作用的染色体位点和区段。
Cabbage (Brassica oleracea var. capitata) is a major vegetable crop widely cultivated in the world.More than200cabbage varieties of different types have been developed and released since the1950s and1960s in china. But the pedigree analysis of cabbage varieties was far behind many major crops, andmany cabbage varieties’ pedigree were unclear. The analysis of pedigree could not only find the rule ofcultivar succession, predict breeding objectives, but also reveal the rule of parental selection andcombination, provide guidance for the breeding of new cabbage varieties. The analysis of pedigree wouldbe conducted to clarify the founder parent phenomenon in cabbage. Several specific chromosomal lociand regions associated with important agronomic traits could be detected based on the revealing ofgenetic composition and breeding effects of founder parents. This study will improve the accuracy andefficiency of parental selection in cabbage breeding, and provide theoretical guide for the the creation ofnew founder parents.
     Based on the pedigree analysis of cabbage released,01-20(founder parent), other four sister lines(non-founder parents) and their derived lines, DH population from founder parent01-20and96-100wereused as materials for discovering specific chromosome loci and regions of founder parent01-20. Theconstructed high density linkage map and QTL analysis could clarify the relations between specifical lociof founder parent and important agronomic traits and elucidate the breeding effect of specific loci orregions.
     1. There were219cabbage varieties released during1982-2012in china, which included183hybrids, accounting for83.56%. The hybrid proportion reached96.74%in recent10years. The analysisof176varieties with known parental origination indicated that all the varieties were combined with261parental lines, which could be traced to171original resources, i.e.67domestic landraces and104alienaccessions. In all the original resources, the number of Heiyexiaopingtou derived varieties was the most(38), followed by Beijingzaoshu (27). The pedigree analysis showed that the combinations with twoparents from different geographical area or having great botanical characteristic difference always hadstrong heterosis. The rule of parental selection and combination was revealed based on the parentalcharacteristic of several major varieties in China. Pedigree of foundation parents Beijingzaoshu01-20and Heiyexiaopingtou21-3were drawn in this study.
     2. Polymorphism between parent01-20and96-100was screened with978EST-SSR,2173Scaffold-SSR,707Indel primer pairs. The polymorphic markers of273SSRs and261Indels weredetected. The linkage map has placed406SSR and Indel loci into nine groups. The map covered934.06cM, and average marker interval was2.3cM. All nine linkage group was assigned to nine chromosomeswith anchored markers.
     3. QTL analysis was performed to determine the markers associated with important agronomicaltraits of plant, leaf, head and seed, quality and disease resistance, according to the results of three seasonsin2011-2012. A total of171QTLs were detected for33agronomical traits. There were58QTLs for plant and leaf traits, and the number of QTLs (R2>10%) was38;57QTLs for head traits,38QTLs(R2>10%) and11QTLs were repeatedly detected in different seasons;38QTLs for leaf color and headcolor traits,26QTLs (R2>10%);11QTLs for quality and disease resistance traits,10QTLs (R2>10%);seven QTLs for silique and seed traits, five QTLs (R2>10%). These QTLs could be used for clarifing therelations between specific loci of founder parent01-20and important agronomic traits, and elucidatingthe breeding effect of specific loci.
     4. Several QTL clusters had been found on regions of chromosome1,3,7and9. The region in55.9~60.9cM on Chr.1contained nine plant and leaf trait QTLs and seven head trait QTLs. The regionof88~92cM on Chr.3contained five plant and leaf trait QTLs, seven head trait QTLs and one headcolor trait QTL. The region of27.8~30.9cM on Chr.7contained four head trait QTLs and two headcolor trait QTLs. The region of58.6~61.5cM on Chr.9contained three head traits QTLs, three leafcolor trait QTL and three quality and disease resistance traits. These regions provided importantreferences for the QTL fine mapping and cloning.
     5. According the phenotype comparison of founder parent01-20with other5sister lines, thefounder parent01-20had good comprehensive traits and no obvious defects. It not only inherited theearly maturity, but also improved in leaf color, head color and quality traits. The polymorphic patternsamong six sister lines showed that01-20had one unique allele,01-07-258had one unique allele,01-20and01-07-258had five same alleles which were however different from the other four sister lines.Based on the QTL analysis, there are five specific loci of founder parent associated with importantagronomic traits, which could elucidate the breeding effect of specific loci. Founder parent01-20possessed the greener outer leaves, smaller plant expansion, rounder head shape, less core length andbetter quality. The loci of Indel64on Chr.3and Indel353on Chr.9have significant cluster and geneticeffect.
引文
1.陈琛,庄木,李康宁,刘玉梅,杨丽梅,张扬勇,程斐,孙培田,方智远.甘蓝EST-SSR标记的开发与应用.园艺学报,2010,37(2):221~228.
    2.陈佳慧,兰进好,王晖.小麦RIL群体SSR分子标记偏分离的遗传分析.麦类作物学报,2011,(03):25~28.
    3.程周超.黄瓜SSR遗传图谱的构建及黄瓜重要农艺性状的QTL定位.[硕士学位论文].北京,中国农业科学院,2010.
    4.陈书霞,房玉林,王晓武,程智慧,方智远,孙培田.甘蓝类作物抽薹期及开花期数量性状的研究进展.中国农学通报,2005,21(7):298~301.
    5.陈志德,俞春涛,谢吉先.江苏花生品种系谱分析及农艺性状的演变.花生学报,2011,(02):22~25.
    6.崔章林,盖钧锰,邱家训等.中国大豆育成品种及其系谱分析(1923~1995).北京:中国农业出版社,1998.
    7.杜雅楠,陈新宏,赵继新,刘淑会,杨群慧,周博,武军,刘萍丽.小麦华山新麦草衍生后代抗旱性分析.麦类作物学报,2010,30(4):670~675.
    8.鄂志国,王磊.中国水稻品种及其系谱数据库.中国水稻科学,2011,25(5):565~566.
    9.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    10.方智远.我国甘蓝生产和市场的变化及对策建议-在首届中国蔬菜种业发展论坛北京峰会上的讲话摘要.中国蔬菜,2007,9:4.
    11.方智远.我国甘蓝产销变化与育种对策.中国蔬菜,2008(1):1~2.
    12.方智远,孙培田,刘玉梅等.甘蓝栽培技术(修订版).北京:金盾出版社,2008.
    13.福永公平,稻垣正典.日本1929年以来小麦育成品种系谱图.Japan J Breed,1985,35(1):89~92.
    14.付亚书.绥农号大豆品种系谱分析及主要性状比较研究.[农业推广硕士论文].北京:中国农业科学院,2006.
    15.盖红梅,王兰芬,游光霞,郝晨阳,董玉琛,张学勇.基于SSR标记的小麦骨干亲本育种重要性研究.中国农业科学,2009,42(5):1503~1511.
    16.高富欣,刘佳,闫书鹏,李向前,刘伟,孔德男.我国甘蓝品种市场需求的变化趋势.中国蔬菜,2005,(2):41~42.
    17.韩俊,张连松,李静婷等.小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析.作物学报,2009,35(8):1395~1404.
    18.胡学军,邹国林.甘蓝分子连锁图的构建与品质性状的QTL定位.武汉植物学研究,2004,22(6):482~485.
    19.黄金堂,陈海玲,郑国栋.福建花生品种系谱及其性状演变分析.中国农学通报,2012,(27):37~42.
    20.黄滋康.中国棉花品种及其系谱.北京:中国农业出版社,2007.
    21.孔令杰.玉米骨干亲本及其衍生系重要生理性状演变规律研究.[硕士学位论文].山东泰安:山东农业大学,2009.
    22.黎裕,王天宇.我国玉米育种种质基础与骨干亲本的形成.玉米科学,2010,18(5):1~8
    23.李红琴,相吉山,郭青云,杨欣明,李秀全,刘伟华,李立会.小麦骨干亲本阿夫及其衍生品种(系)的高分子量麦谷蛋白亚基演变分析.植物遗传资源学报,2009,10(1):37~41.
    24.李建斌.春甘蓝种质资源评价及新品种选育.[硕士学位论文].江苏:南京农业大学,2007.
    25.李建明.中国小麦骨干亲本(品种)性状演变与遗传差异研究.[硕士论文].陕西:西北农林科技大学,2007.
    26.李璐.国审强筋小麦品种分析及推广前景.种业导刊,2012,(10):19~21.
    27.李明,窦云河.黑龙江省亚麻育成品种及骨干系的系谱分析.种子世界,1996,(4):30.
    28.李梅.结球甘蓝抽薹开花性状的遗传、QTL定位及生理研究.[博士学位论文].北京:中国农业科学院,2009.
    29.李琼,王长有,刘新伦等.小偃6号及其衍生品种(系)遗传多样性的SSR分析.麦类作物学报,2008,28(6):950~955.
    30.李小军,小麦骨干亲本碧蚂4号的遗传效应分析.[博士学位论文].北京:中国农业科学院,2009.
    31.李小军,徐鑫,刘伟华,李秀全,李立会.利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传.中国农业科学,2009,42(10):3397~3404.
    32.李永峰,高洪斌,刘君成,张树森,褚永志.双丰系列甜菜二倍体品种及其系谱.中国糖料,1996,2:1~5.
    33.李占省,刘玉梅,方智远,杨丽梅,庄木,张扬勇,袁素霞,赵文,刘二艳,孙培田.青花菜DH群体花球中莱菔硫烷含量的遗传效应分析.园艺学报.2012,1:107~114.
    34.李占省.青花菜中莱菔硫烷含量遗传分析、QTL定位及相关基因研究.[博士学位论文].北京:中国农业科学院,2012.
    35.林世成,闵绍楷.中国水稻品种及其系谱.上海:上海科学技术出版社,1991.
    36.刘二艳.青花菜花球外观品质性状的遗传分析及分子标记研究.[硕士学位论文].北京:中国农业科学院,2009.
    37.刘化龙,王敬国,刘华招,赵宏伟,陈温福,邹德堂,徐正进.基于SSR标记的寒地水稻品种骨干亲本分析.植物遗传资源学报,2011,12(6):865~871.
    38.刘应红.玉米骨干亲本及其衍生系主要表型性状演变规律研究.[博士学位论文].四川农业大学,2010.
    39.刘旭.2009.我国小麦种质资源价值的分析.中国资产评估,3:26~30.
    40.刘怀年.骨干亲本蜀恢527的全基因组扫描以及产量相关性状的QTL.[博士学位论文].四川:四川农业大学,2011.
    41.刘怀年,王世全,邓其明等.水稻骨干亲本蜀恢527产量相关性状关键区段分析.农业生物技术学报,2011,19(3):393~406.
    42.刘新伦,司清林,李琴琴,王长有,王亚娟,张宏,吉万全.利用SSR标记分析小麦骨干亲本阿夫及衍生品种(系)的遗传多样性和变化趋势.农业生物技术学报,2012,20(9):983~995.
    43.刘新伦,王长有,王亚娟,张宏,吉万全.小麦骨干亲本阿夫及其衍生品种(系)重要性状的演变规律.西北农林科技大学学报(自然科学版),2011,(1):104~110.
    44.刘旭.我国小麦种质资源价值的分析.中国资产评估,2009,3:26~30.
    45.刘玉梅,方智远.我国甘蓝新品种选育与育种技术研究简述.当代蔬菜,2006,(10):16~17.
    46.卢良恕.反应我国小麦育种科学发展的新成就-评《中国小麦品种改良与系谱分析》.中国农业科学,1985,96.
    47.苗晗.栽培黄瓜SSR遗传图谱构建及重要农艺性状定位.[博士学位论文].北京:中国农业大学,2010.
    48.缪体云,刘玉梅,方智远,杨丽梅,庄木,张扬勇,袁素霞,孙培田.一个结球甘蓝DH群体主要农艺性状的遗传效应分析.园艺学报,2008,35(1):59~64.
    49.缪体云.结球甘蓝遗传图谱的构建及主要农艺性状的QTL定位.[硕士论文].北京:中国农业科学院,2007.
    50.彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素,宋燕春,王天宇,黎裕.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010a,36(10):1624~1633.
    51.彭勃,王阳,李永祥,刘成,刘志斋,王迪,谭巍巍,张岩,孙宝成,石云素,宋燕春,王天宇,黎裕.不同水分环境下玉米产量构成因子及籽粒相关性状的QTL分析.作物学报.2010b,36(11):1832~1842.
    52.彭荧.基于Visual basi的马铃薯家谱数据库系统设计.[硕士学位论文].长沙:湖南农业大学,2008.
    53.彭勇,梁永书,王世全等.水稻SSR标记在RI群体的偏分离分析.分子植物育种,2006,(06):44~48.
    54.钱秀珍.我国甘蓝型油菜品种(系)的系谱初析.中国油料作物学报,1985,(2):11~14.
    55.秦君,陈维元,关荣霞,姜成喜,李英惠,付亚书,刘章雄,张孟臣,常汝镇,邱丽娟.国外种质拓宽中国大豆品种遗传基础的SSR标记分析.科学通报,2006,(6):686~692.
    56.山东农学院编.蔬菜作物栽培.1979.
    57.石云素.玉米重要自交系遗传多样性分析及产量相关性状QTL研究.[博士学位论文].北京:中国农业科学院,2008.
    58.司清林,刘新伦,刘智奎,王长有,吉万全.阿夫及其小麦衍生品种的(系)的SSR分析.作物学报,2009,35(4):615~619.
    59.苏彦宾.结球甘蓝耐裂球性状遗传效应分析及QTL定位.[硕士学位论文].北京:中国农业科学院,2012.
    60.苏泽胜,张效忠,李泽福,王元垒.安徽省主要育成水稻品种及其系谱分析.安徽农业科学,1994,22(1)7~10.
    61.唐映军.黔西北小麦生产品种及其系谱分析.中国种业,2002,(05):16~17.
    62.汤圣祥,王秀东,刘旭.中国常规水稻品种的更替趋势和核心骨干亲本研究.中国农业科学,2012,(8):7~16.
    63.万建民.作物分子设计育种.作物学报,2006,32(3):455~462.
    64.万建民.中国水稻遗传育种与品种系谱(1986-2005).北京:中国农业出版社,2010.
    65.汪黎明,王庆成,孟昭东.中国玉米品种及其系谱.上海:上海科学技术出版社,2010.
    66.王会才,曲文祥,慈艳华,张玮,魏云山.赤峰地区玉米主推品种基础种质的系谱分析.华北农学报,2007,22:116~119.
    67.王磊,鄂志国,余汉勇,汤圣祥,Graham C. Mclaren.国际水稻信息系统及其应用.中国水稻科学,2005,19(2):193~194.
    68.王琦.农学精品-中国小麦品种改良及系谱分析.分子植物育种,2004:306~307.
    69.王庆彪.我国甘蓝育成品种系谱及部分骨干亲本的初步分析.中国园艺学会十字花科分会第九届学术研讨会论文集,2011,150~155.
    70.王业文,郭明星,冯志峰,周凯,王俊义,王保军,闫理峰.籼稻骨干亲本产量相关性状遗传效应.四川农业大学学报,2012,(02):13~18.
    71.王志忠,王兆晓,崔瑞敏.河北省棉花品种来源系谱分析.中国棉花,2000,27(2):16~18.
    72.王珊珊,李秀全,田纪春.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性.分子植物育种,2007,5(4):485~490.
    73.王晓武,娄平,何杭军,杨宝军,张延国,赵建军.利用芥蓝×青花菜DH群体构建AFLP连锁图谱.园艺学报,2005,32(1):30~34.
    74.王业文,郭明星,冯志峰,周凯,王俊义,王保军,闫理峰.籼稻骨干亲本产量相关性状遗传效应.四川农业大学学报,2012,30(2):134~139.
    75.韦新宇,柯蓓,张受刚,卓伟,马彬林,杨腾帮,杨旺兴,邹文广,范祖军,许旭明,梁康迳.籼粳杂交不同衍生世代产量相关性状基因型×环境互作效应研究.福建农业学报,2010,25(3):251~259.
    76.韦新宇,许旭明,张受刚,卓伟,马彬林,梁康迳.水稻籼粳交衍生系产量相关性状的遗传效应与杂种优势.亚热带农业研究,2011,6(3):146~152.
    77.韦新宇.水稻籼粳杂交育种系谱ISSR标记及育成品种产量和茎秆性状遗传分析.[博士学位论文].福建福州:福建农林科技大学,2008.
    78.吴耕民.蔬菜园艺学.南京:中华农业图书社,1936.
    79.吴琼,孙长君,李书涛.辽宁棉花品种系谱分析.安徽农学通报(下半月刊),2009,(10):142~143.
    80.武永慧.优质高产抗病甘蓝新品种选育与种质资源的创新研究.[硕士学位论文].北京:中国农业大学,2007.
    81.肖永贵,殷贵鸿,李慧慧.小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位.中国农业科学,2011,(19):7~17.
    82.熊冬金,赵团结,盖钧镒.中国大豆育成品种亲本分析.中国农业科学,2008,41(9):2589~2598.
    83.徐鑫,李小军,李秀全,杨欣明,刘伟华,高爱农,李立会.小麦骨干亲本碧蚂4号系谱品种HMW-GS组成分析.植物遗传资源学报,2010,11(4):439~450.
    84.徐鑫,李小军,李秀全,杨欣明,刘伟华,高爱农,李立会.小麦骨干亲本洛夫林10号1BL/1RS在衍生品种中的遗传分析.麦类作物学报,2010,30(2):221~226.
    85.徐敏.中国马铃薯审定品种系谱分析及遗传多性研究.[硕士学位论文].北京:中国农业科学院,2007.
    86.许洛.玉米骨干亲本及衍生系重要基因组区段的传递研究.[硕士学位论文].北京:中国农业科学院,2008.
    87.杨春玲,侯军红,宋志均,李晓亮,李改叶.河南省主要小麦品种系谱研究及核心种质利用.山东农业科学,2009,1:27~31.
    88.杨丽梅,方智远,刘玉梅,庄木,张扬勇,孙培田.“十一五”我国甘蓝遗传育种研究进展.中国蔬菜,2011(2):1~10.
    89.杨宜.水稻骨干亲本SSSL群体的构建与QTL分析.[硕士学位论文].四川:四川农业大学,2009.
    90.禹山林.中国花生品种及其系谱.上海:上海科学技术出版社,2008.
    91.叶静渊.我国结球甘蓝的引种史—与蒋明川同志商榷.中国蔬菜,1984(2):52~53.
    92.于海霞.小麦骨干亲本矮孟牛衍生系主要农艺及品质性状的关联分析.[博士学位论文].山东泰安:山东农业大学,2012.
    93.袁翠平,沈波,董英山.中国大豆抗(耐)胞囊线虫病品种及其系谱分析.大豆科学,2009,(06):107~111.
    94.袁园园,王庆专,崔法,张景涛,杜斌,王洪刚.小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递.作物学报,2010,36(1):9~16.
    95.詹筠,史庆馨,鹿英杰.黑龙江省大白菜品种资源及系谱分析.黑龙江农业科学,1996,6:21~25.
    96.张浩.基于导入系群体的玉米产量性状QTL鉴定与配合力分析.[硕士学位论文].河北:河北农业大学,2009.
    97.张俊灵,孙美荣,张东旭.山西省农科院谷子研究所小麦品种改良及系谱分析.山西农业科学,2011(03):25~28.
    98.张学勇,董玉深,游光侠等.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析.中国农业科学,2001,34(4):355~362.
    99.张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,2006,39(8):1526~1535.
    100.张岩.玉米株高和穗位高QTL定位与遗传基础研究.[硕士学位论文].北京:中国农业科学院,2010.
    101.中国农业科学院编.中国蔬菜优良品种.北京:中国农业出版社,1959,115~139.
    102.中国农业科学院蔬菜花卉所主编.中国蔬菜品种志(上册).北京:中国农业科技出版社,2001,620~671.
    103.中国水稻品种及其系谱数据库,http://www.ricedata.cn/variety/.
    104.朱军,王连铮,戴景瑞.复杂性状基因定位的混合线性模型方法.全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998.
    105.朱立宏.评《中国水稻品种及其系谱》.上海农业学报1992,8(2):60.
    106.庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003.
    107. Andolfatto P. Adaptive hitchhiking effects on genome variability. Current Opinion in Genetics andDevelopment,2001,(11):635~641.
    108. A. M. Oldacres, H. J. Newbury, I. J. Puddephat. QTLs controlling the production of transgenic andadventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. TheorAppl Genet,2005,111:479~488.
    109. Ashikari M, Sakakibara H, Lin S, et al. Cytokinin Oxidase Regulates Rice Grain Production.Science,2005,309:741~745.
    110. Bernard R L, Juvik G A, Hartwig E E, Edwards C J. Origins and pedigrees of public soybeanvarieties in the United States and Canada. U.S. Department of Agriculture Technical Bulletin,1988,17~64.
    111. Bernardo R., Romero-Severson J., Ziegle J., Hauser J., Joe L., Hookstra G, Doerge R.W. Parentalcontribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data.Theoretical and Applied Genetics,2000,(100):552~556.
    112. Bohuon E. J. R.. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus.TAG,1996,93(5/6):833~839.
    113. Boswell V R. Our vegetable travelers. Texas A&M Horticulture Network.1949.
    114. Camargo WY, Champagne G. Mapping of quantitative trait loci controlling resistance of Brassicaoleracea to Xanthomonas campestris PV. Phytopathology,1995,85(10):1296~1300.
    115. Chen C, Zhuang M, Fang Z Y, Wang Q B, Zhang Y Y, Liu Y M, Yang L M and Cheng F. Aco-dominant marker BoE332applied to marker-assisted selection of homozygous male-sterileplants in cabbage (Brassica oleracea var. capitata L.). Journal of Integrative Agriculture,2013,12(4):596~602.
    116. Cheung WY. Comparison of the genetic maps of Brassica napus and Brassica oleracea. TheorAppl Genet,1996,94:569~582.
    117. Christopher M., Mace E., Jordan D., Rodgers D., McGwan P., Delacy L, Banks P., Sheppard J.,Butler D., Poulsen D. Applications of pedigree-based genome mapping in wheat and barleybreeding programs. Euphytica,2007,154:307~316.
    118. Chyi YS. A genetic linkage map of restriction fragment length polymorphism loci for Brassicarapa (syn. Campestris). J Genome.1992,35:746~757.
    119. Doi K, T Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-daypromotion of flowering and controls FT-like gene expression independently of Hd1. Genes&Dev.,2004,18:926~936.
    120. FAOSTAT. http://faostat.fao.org/.2011.
    121. Frary A, Nesbitt T C, Frary A, et al. fw2.2: A Quantitative Trait Locus Key to the Evolution ofTomato Fruit Size. Science,2000,289:85~88.
    122. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative traitlocus for tomato sugar content to484bp within an invertase gene. PNAS,2000,97:4718~4723.
    123. Fu Y. B., Peterson G W., Richards K.W., Somers D., DePauw R.M., Clarke J.M. Allelic reductionand genetic shift in the Canadian hard red spring wheat germplasm released from1845to2004.Theorerical and Applied Generics,2005,110:1505~1516.
    124. Gao M, Li G, Potter D, McCombie W R, Quiros C F. Comparative analysis ofmethylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassicaoleracea and Arabidopsis thaliana. Plant Cell Rep,2006,25(6):592~598.
    125. Gizlice Z., Carter T.E., Burton J. Genetic base for North American public soybean cultivarsreleased between1947and1988. Crop Science,1994,34:1143~1151.
    126. Guy C. Barker, Tony R. Larson, Ian A. Graham, James R. Lynn, and Graham J. King NovelInsights into Seed Fatty Acid Synthesis and Modification Pathways from Genetic Diversity andQuantitative Trait Loci Analysis of the Brassica C Genome. Plant Physiology,2007,144:1827~1842.
    127. Helm J. Morphologisch-Taxonomische Gliederung der Kultursippen von Brassica oleracea L. DieKulturpflanze,1963(11):92~210.
    128. Hon-Ming Lam, Xun Xu, Xin Liu, Wenbin Chen, Guohua Yang, et al. Resequencing of31wildand cultivated soybean genomes identifies patterns of genetic diversity and selection. NatureGenetics,2010,42(12):1053~1059.
    129. I. B. Holme, A. M. Torp, L. N. Hansen, S. B. Andersen. Quantitative trait loci affecting plantregeneration from protoplasts of Brassica oleracea. Theor Appl Genet,2004,108:1513~1520.
    130. Ivandic V, Hackett C.A., Nevo E, Keith R., Thomas W.T.B., Forster B.P. Analysis of simplesequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology,geograp and flowering time. Plant Molecular Biology,2002,48:511~527.
    131. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and twomarker gene loci. Theor Appl Genet,1989,78:613~618.
    132. Jiaqin Mei, Yijuan Ding, Kun Lu, Dayong Wei, Yao Liu, oseph Onwusemu Disi, Jiana Li, LiezhaoLiu, Shengyi Liu, John McKay, Wei Qian. Identification of genomic regions involved in resistanceagainst Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet,2013,126:549~556.
    133. John P. Hammond, Martin R. Broadley, Philip J. White, Graham J. King, Helen C. Bowen et al.Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with rootarchitecture traits. Journal of Experimental Botany,2009,60(7):1953~1968,
    134. Kearsey M J. The principles of QTL analysis. J Exp Bot,1998,(327):1619~1623.
    135. Kennard W C, Slocum M K, Figdore S S, Osborn T C. Genetic analysis of morphological variationin Brassica oleracea using molecular markers. Theor Appl Genet.1994,87:721~732.
    136. Kianian S F and Quiros C F. Generation of a Brassica oleracea composite RFLP map: linkagearrangement among various population and evolutionary implications. Theor Appl Genet,1992,84:544~554.
    137. Knapp S. J, Bridges W. C (Jr), Birkes D. Mapping quantitative trait loci using molecular markerlinkage maps. Theor and Appl Genet,1990,79:583~592.
    138. Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hd1under short-day conditions. Plant Cell Physiol,2002,43:1096~1105.
    139. Konishi S, Izawa T, Lin S, et al. An SNP Caused Loss of Seed Shattering During RiceDomestication. Science,2006,312:1392~1396.
    140. Lander E. S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLPlinkage maps. Genetics,1989,121:185~199.
    141. Landry B S, Hubert N, Crete R, Chang M S, Lincoln S E, and Etho T A. genetic map of Brassicaoleracea based on RFLP markers detected with expressed DNA sequences and mapping ofresistance genes to race2of Plasmodiophora brassicae (Woronin). Genome,1992,35:409~420.
    142. Li C, Zhou A and Sang T. Rice domestication by reducing shattering. Science,2006,311:1936~1939.
    143. Lin F, Xue S. L, Zhang Z. Z, et al. Mapping QTL associated with resistance to fusarium head blightin the Nanda2419×Wangshuibai population. II. Type I resistance. Theoretical and AppliedGenetics,2006,112:528~535.
    144. Liu J, Eck J V, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shapedtomato fruit. PNAS,2002,99:13302~13306.
    145. Lorenzen L L, Boutin S, Young N, Specht J E, Shoemaker R C. Soybean pedigree analysis usingmap-based molecular markers: I. Tracking RFLP markers in cultivars. Crop Science,1995,35:1326~1336.
    146. Lou P, Kang J G, Zhang G Y, Guusje B, Fang Z Y, Wang X W. Transcript profiling of a dominantmale sterile mutan(tMs-cd1)in cabbage during flower bud development. Plant Science.2007,172:111~119.
    147. Lukens L N, Doebley J. Molecular evolution of the teosinte branched gene among maize andrelated grasses. Molecular Biology and Evolution,2001,18:627~638.
    148. Ma Z, Zhao D, Zhang C, et al. Molecular genetic analysis of five spike-related traits in wheat usingRIL and immortalized F2populations. Molecular Genetics and Genomics,2007,277:31~42.
    149. Martin R., Broadley, John P., Hammond, Graham J., King, Dave Astley et al. Shoot Calcium andMagnesium Concentrations Differ between Subtaxa, Are Highly Heritable, and Associate withPotentially Pleiotropic Loci in Brassica oleracea. Plant Physiology,2008,4(146):1707~1720.
    150. Martynov S. P., Dobrotvorskaya T. V.. Genealogical Analysis of Diversity of Russian Winter WheatCultivars (Triticum aestivum L.). Genetic Resources and Crop Evolution,2006,53(2):379~386.
    151. Mouchel C F, Briggs G C, Hardtke1C S. Natural genetic variation in Arabidopsis identifiesBREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes&Dev,2004,18:700~714.
    152. Muqiang Gao, Genyi Li, Bo Yang, Dan Qiu, Mark Farnham, Carlos Quiros. High-density Brassicaoleracea linkage map identification of useful new linkages. Theor Appl Genet,2007,(115):277~287.
    153. Nishimura A, Ashikari M, Lin S, et al. Isolation of a rice regeneration quantitative trait loci geneand its application to transformation systems. PNAS,2005,102:11940~11944.
    154. N. M. Hall, H. Griffiths, J. A. Corlett, H. G. Jones, J. Lynn and G. J. King. Relationships betweenwater-use traits and photosynthesis in Brassica oleracea resolved by quantitative genetic analysis.Plant Breeding,2005,124:557~564.
    155. Osborn T C, Kole C, Parkin IA P. Comparison of flowering time genes in Brassica rapa, B. napusand Arabidopsis thaliana. Genetics,1997,156:1123~1129.
    156. Palaisa K, Morgante M, Tinggey S, Rafalski A. Long-range patterns of diversity and linkagedisequilibrium surrounding the maize Y1gene are indicative of an asymmetric selective sweep. TheProceedings of the National Academy of Science of the USA,2004,(101):9885~9890.
    157. Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factorsby using a complete linkage map of restriction fragment length polymorphisms. Nature,1998,335:721~726.
    158. Pestsova E, R der M. Microsatellite analysis of wheat chromosome2D allows the reconstructionof chromosomal inheritance in pedigrees of breeding programmes. Theoretical and AppliedGenetics,2002,106:84~91.
    159. Reffay N, Jackson P.A., Aitken K.S., Hoarau J.Y, D'Hont A., Besse P. Mclntyre C.L.Characterisation of genome regions imcorporated from an important wild relative into Australiansugarcane. Molecular Breeding,2005,(15):367~381.
    160. Reif J. C, Zhang P, Dreisigacker S, et al. Wheat genetic diversity trends during domestication andbreeding. Theor Appl Genet,2005,110:859~864.
    161. Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodiumtransporter. Nat Genet,2005,37(10):1141~1146.
    162. Russell J.R., Ellis R.P., Thomas W.T.B., Waugh R., Provan J., Booth A., Fuller J., Lawrence P.,Young G, Powell W. A retrospective analysis of spring barley germplasm development from‘foundation genotypes’ to currently successful cultivars. Molecularl breeding,2000,(6):553~568.
    163. Sebastian R L, Kearsey M J, King G J. Identification of quantitative trait loci controllingdevelopmental characteristics of Brassica oleracea L. Theor Appl Genet,2002,104(4):60l~609.
    164. Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yieldsduring rice domestication. Nat.Genet,2008,40:1023~1028.
    165. Simko I, Costanzo S., Haynes K.G, Christ B.J., Jones R.W. Linkage disequilibrium mapping of aVerticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum)through a candidate gene approach. Theoretical and Applied Genetics,2004,(108):217~224.
    166. Slocum M K. Linkage arrangement of restriction length polymorphism loci in Brassica oleracea.Theor Appl Genet,1990,80:57~64.
    167. Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previouslyunknown RING-type E3ubiquitin ligase. Nat Genet,2007,39(5):623~630.
    168. Sparrow PAC, Townsend TM, Arthur AE, Dale PJ, Irwin JA. Genetic analysis of Agrobacteriumtumefaciens susceptibility in Brassica oleracea. Theor Appl Genet,2004a,108:644~650.
    169. Sparrow PAC, Townsend TM, Morgan CL, Dale PJ, Arthur AE, Irwin JA. Genetic analysis of invitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet,2004b,108:1249~1255.
    170. Sparrow PAC, Dale PJ, Irwin JA. The use of phenotypic markers to identify Brassica oleraceagenotypes for routine high-throughput Agrobacterium-mediated transformation. Plant Cell Rep,2004c,23:64~70.
    171. Su J., Xiao Y, Li Ming., Liu Q., Li B., Tong Y., Jia J., Li Z. Mapping QTL for phosphorusdeficiency tolerance at wheat seedling stage. Plant and Soil,2006,281:25~36.
    172. Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved inphotoperiod sensitivity, encodes the subunit of protein kinase CK2. PNAS,2001,98:7922~7927.
    173. Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in ricedomestication. Nat. Genet,2008,40:1360~1364.
    174. Tanksley S D. Mapping polygenes. Annu Rev Genet,1993,(27):205~233.
    175. Tian F., Li D.J., Fu Q., Zhu Z.F., Fu YC., Wang X.K., Sun C.Q. Construction of introgressionlines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.)background and characterization of introgressed segments associated with yield-related traits.Theoretical and Applied Genetics,2006,(112):570~580.
    176. Tian Q.Z, Zhou R.H., Jia J.Z. Genetic diversity trend of common wheat (Triticum turgidum L.) inChina revealved with AFLP markers. Genetic Resours and Crop Evolution,2005,52:325~331.
    177. Uauy C, Distelfeld A, Fahima T, et al. A NAC Gene Regulating Senescence Improves GrainProtein, Zinc, and Iron Content in Wheat. Science,2006,314:1298~1301.
    178. Ueda T, Sato T, Hidema J, et al. qUVR-10, a major quantitative trait locus for ultraviolet-Bresistance in rice, encodes cyclobutane pyrimidine dimer photolyase. Genetics,2005,171:1941~1950.
    179. R. Uptmoor, J. Li, T. Schrag, H. Stutzel. Prediction of flowering time in Brassica oleracea using aquantitative trait loci-based phenology model. Plant Biology,14(1),179~189.
    180. Voorips R E, Jongerius M C, Kanne H J. Mapping of two genes for resistance to clubroot(plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea bymeans of RFLP and AFLP markers, Theor Appl Genet,1997,94:75~82.
    181. Wang S S, Li X Q, Tian J C. Genetic diversity of main parent of wheat‘Aimengniu’ and itspedigree on SSR markers. Mol Plant Breed,2007,5(4):485~490.
    182. Xu K, Xu X, Fukao T, et al. Sub1A is an ethylene response factor like gene that conferssubmergence tolerance to rice. Nature,2006,442:705~708.
    183. Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7is an important regulator of heading dateand yield potential in rice. Nature Genetics,2008,40:761~767.
    184. Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects.Theor Appl Genet,2005,110:1268~1274.
    185. Yano M, Katayose Y, Ashikari M, et al. Hd1, A Major Photoperiod Sensitivity Quantitative TraitLocus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene Constans. The plantcell,2000,12:2473~2484.
    186. Zhang X Y, Dong Y C, You G X, Wang L F, Li P, Jia J Z. Allelic variation of Glu-A1, Glu-B1andGlu-D1in Chinese commercial wheat varieties in the last50years. Sci Agric Sin,2001,34(4):355~362.
    187. Zhang Z, Ober J A, Kliebenstein D J. The Gene Controlling the Quantitative Trait LocusEPITHIOSPECIFIER MODIFIER1Alters Glucosinolate Hydrolysis and Insect Resistance inArabidopsis. The Plant Cell,2006,18:1524~1536.
    188. Zhou X L, Carter T E Jr, Cui Z L, Miyazaki S, Burton J W. Genetic base of Japanese soybeancultivars released during1950to1988. Crop Science,2000,(40):1794~1802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700