用户名: 密码: 验证码:
非平面型防风网流场特性模拟及其支撑结构力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉尘污染是我国大气环境污染的重要组成部分,也是中国城市大气污染的重点问题之一。对于露天堆料场粉尘防治问题,防风网抑尘工程技术是比较有效的、适合我国国情的二次扬尘防治技术与装置。
     本文主要以蝶形网和拦沙网为研究对象,依托风洞实验装置研究不同参数对蝶形网和拦沙网后庇护区内流场特性的影响,为防风网的结构优化设计提供可靠的实验数据。还对本课题组在工程中采用的两种钢构架进行了受力特性分析及结果校核。研究结果对防风网抑尘工程装置的优化设计和安全操作具有重要意义。
     首先,对防风网在现场测试、数值模拟及实验研究方面的国内外现状及进展进行了综述,并对几个代表性的防风网抑尘工程进行了简要介绍。
     其次,建立了风洞实验平台,进行了不同工况下不同参数对平面网、蝶形网和拦沙网后庇护区内流场特性影响的实验研究。得出了如下的结论:
     ①不同形式的防风网具有不同的最优开孔率。平面网的最佳开孔率为26.4%,减风率为68.44%;蝶形网的最佳开孔率为27.3%,减风率为63.39%;拦沙网的开孔率为27.1%时庇护效果最好,减风率为63.01%。
     ②具有相似开孔率时,蝶形网和拦沙网的庇护效果略低于平面网,但其强度远远大于平面网,适合在工程建设中推广使用。
     ③风速为3m/s时,不同孔径的蝶形网对尾流区的庇护效果最好;风速为5、7.5、10m/s时其庇护效果依次降低。
     ④开孔率分别为26.4%和27.3%的平面网和蝶形网均在底部间隙为0.15倍网高时减风率最大,分别为68.81%和66.84%,且分别高于在相同条件下平面网无间隙时的减风率68.44%与蝶形网无间隙时的减风率63.39%。
     最后,采用有限元分析软件对直立平行式支撑钢构架和直立斜支撑钢构架进行力学分析,并对计算结果进行了校核,结果表明两种钢构架均满足强度、刚度和稳定性要求。直立斜支撑钢构架与直立平行式支撑钢构架的综合比较表明前者的结构形式较为合理。
Dust pollution contributes to a great portion of as well as one of main causes to air pollution in China. As for the method to control dust in a large open stock piles, the porous fences technology is comparatively effective, and is the control technology and device of dust re-entrainment which is suitable for China.
     The paper mainly studies on butterfly and sand-interception porous fences, to research the influence of setting different parameters to the characteristics of flow field in the sheltering place behind butterfly and sand-interception porous fences by wind tunnel experiment device, and to provide reliable experiment data for optimal design of porous fence’s structure. What is more, the paper makes force analysis and results verification for two kinds of steel framework applied to projects by the project group. The results of the study are significant to optimize the design and guarantee safety operation for the dust control engineering equipment of porous fences.
     Firstly, generally review the current state and development of porous fences with consideration of on-site test, numerical simulation and experimental research at home and abroad. And briefly introduce several representative dust control engineering of porous fences.
     Secondly, establish a wind tunnel experiment platform, conduct experimental study on the influence of setting different parameters to the characteristics of flow field in the sheltering place behind planar,butterfly and sand-interception porous fences in different working conditions. And the conclusions are as follows:
     ①Different types of porous fences have different optimal porosity. The best porosity is 26.4% for planar porous fences, with wind reduction rate 68.44%; Butterfly porous fences for 27.3%, with wind reduction rate 63.39%; the shelter will be most effective as the porosity of sand-interception porous fences is 27.1%, with wind reduction rate 63.01%.
     ②As three types of porous fences have similar porosity, butterfly and sand-interception porous fences’shelter effect is a little lower than planar porous fences’, but their intensity is much larger than planar porous fences’, which are suitable to be used in engineering construction and promotion.
     ③As the wind speed is 3m/s, butterfly porous fences with different hole diameters will have the best shelter effect to wake zone; the shelter effect will be reduced sequentially with the wind speed of 5, 7.5 and 10m/s.
     ④Planar and butterfly porous fences, with porosity of 26.4% and 27.3%, will have the biggest wind reduction rate of 68.81% and 66.84% respectively as their bottom gap is 0.15H. Under the same condition, they are respectively higher than wind reduction rates of 68.44% and 63.39%of planar and butterfly porous fences as both of them have no bottom gap.
     Finally, make force analysis for both upright-parallel and upright-oblique supporting steel framework by finite element analysis software, as well as have results verification. The conclusions show that both two kinds of steel framework meet the requirements of intensity, rigidity and stability. After the comparison is made between two kinds of steel framework, the structure of upright-oblique supporting steel framework is more reasonable.
引文
[1]王东霞,李健,高崇等.大气污染与人体健康[J].北方环境,2010,22(5):102-104
    [2]任廷泽,赵智勇,张松.山西大气污染的现状及对策[J].山西科技,1999,(3):44-45
    [3]郭珊,詹水芬,张斌斌等.煤炭港粉尘污染防治技术综述[J].水道港口,2006,27(1):40-44
    [4]段振亚,石文梅,郑文娟等.防风网抑尘机理研究及工程应用进展[J].石油化工设备,2010,39(3):40-44
    [5] E.F. Bradly, P.J. Mulhearn. Development of velocity and shear stress distributions in the wake of a porous shelter fence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, (15): 145-156
    [6]赵海珍,梁学功,马爱进.防风网防尘技术及其在我国大型煤炭港口的应用与发展对策[J].环境科学研究,2007,20(2):67-71
    [7] C. Nokkentved. Investigation of shelterbelts and estimation of types of shelterbelts[J]. Hedeselskabets Tidsskr, 1938, 59(4): 75-142
    [8]祁有祥,程复,武烽东等.防风网防风效能初步研究[J].水土保持研究,2007,14(1):190-195
    [9]王元战,孙熙平,詹水芬等.防风网结构设计研究综述[J].港工技术,2008,(3):16-19
    [10]沈熹.防风网防尘技术在露天煤堆场的应用研究现状及对我国发展防风网防尘技术的建议[J].交通环保,1995,16(3):22-25
    [11]邢志刚,胡晋明.模拟防尘网控制物料堆起尘的基本要求[J].云南环境科学,2004,23(2):48-50
    [12]段振亚,张俊梅,宗润宽.大型露天堆场防风网抑尘机理研究与工程应用进展[C].兰州:石油化工设备杂志社,2008:71-74
    [13]程健敏.挡风网技术应用在张家浜码头的可行性论证[J].交通环保,1998,19(4):39-41
    [14]李树华.我国水道港口科学研究的几个重要进展[J].科学观察,2009,(1):73-75
    [15] Lee Sang-Joon, Kim Hyoung-Bum. Laboratory measurements of velocity and turbulence field behind porous fences[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, (80): 311-326
    [16] Park Cheol-Woo, Lee Sang-Joon. Verification of the shelter effect of a windbreak on coal piles in POSCO open storage yards at the Kwang-Yang works[J]. Atmospheric Environment, 2002, (36):2171-2185
    [17]陈廷国,辛庚华.防风网防风防尘效果现场实测研究[J].中国新技术新产品,2010,(13):28
    [18] F. Durst, A. K.Rastogi. Turbulent flow over two dimensional fences[J]. Turbulent Shear Flows 2, 1980: 218-232
    [19] J. D.Wilson, C. J.Mooney. Numerical study of flow through a windbreak[J]. Journal of Wind Engineering and Industril Aerodynamics, 1985, (21): 119-154
    [20] L.Hagen. Simulation of effect of wind barriers on airflow[J]. Trans. ASME, 1981, (24): 1002-1008
    [21] G.Patton Edward, H.Shaw Roger, J.Judd Murray. Large-eddy simulation of windbreak flow[J].Boundary-Layer Meteorology, 1998, (87): 275-306
    [22] T. Maruyama. Large eddy simulation of turbulent flow around a windbreak[J]. Journal of Wind Engineering and Industril Aerodynamics, 2008, (96): 1998-2006
    [23]任怡旻,张旭,沙高原.上海地区露天堆料场内设置挡风墙的效果数值模拟[J].应用科学学报,2004,22(3):402-406
    [24]胡晋明.风障控制物料堆粉尘颗粒扬起的数值模拟及应用[D].南京:东华大学,2003:10-49
    [25]张光玉,詹水芬,赵宏鑫.防风板抑尘效果数值模拟与风洞实验对比研究[J].水道港口,2007,28(4):286-288
    [26]丛晓春,詹水芬.防风网多孔动力效应的应用研究[J].中国矿业大学学报,2009,38(2):193-196
    [27] Lee Sang-Joon, Lim Hee-Chang. A numerical study on flow around a triangular prism located behind a porous fence[J]. Fluid Dynamics Research, 2001, (28): 209-221
    [28] J.K.Raine, D.C. Stevenson. Wind protection by model fences in a simulated atmospheric boundary layer[J]. Journal of Wind Engineering and Industril Aerodynamics, 1977, (2): 159-180
    [29] J.Gandemer. Wind Shelter[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1979, (4): 371-389
    [30] M.D.A.E.S. Perera. Shelter behind two-dimensional solid and porous fences[J]. Journal of Wind Engineering and Industril Aerodynamics, 1981, (8): 93-104
    [31] R.K.G.Ranga, R.J.Garde, S.K.Singh, N.Singh. Experimental study on characteristics of flow past porousfences[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, (29): 155-163
    [32] Mulati, Yusaiyin, Norio Tanaka. Effects of windbreak width in wind direction on wind velocity reduction[J]. Journal of Forestry Research, 2009, 20(3): 199-204
    [33] A.R.Borges, D.X.Viegas. Shelter effect on a row of coal piles to prevent wind erosion [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, (29): 145-154
    [34] C.Subhas, H.S.Yaragal, R.Govinda, et.al. An experimental investigation of flow fields downstream of solid and porous fences[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997(66): 127-140
    [35] W. M. Cornelis, D. Gabriels. Optimal windbreak design for wind-erosion control[J]. Journal of Arid Environments, 2005, (61): 315-332
    [36] M. J. Judd, M. R. Raupach. A wind tunnel study of turbulent flow around single and multiple windbreaks[J]. Boundary-Layer Meteorology, 1996, (80): 127-165
    [37] I.J.Taylor. Wind Pressure on a Hemispherical Dome[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1991(40): 199-213
    [38] B.Tahouri, N.Toy. Wind loading of sheltered semi-cylindrical structure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, (41-44): 1811-1812
    [39] Lee Sang-Joon, Park Cheol-Woo. Surface-pressure variations on a triangular prism by porous fences in a simulated atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, (73): 45-58
    [40] Lee Sang-Joon, Park Cheol-Woo. Surface pressure characteristics on a triangular prism located behind a porous fence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999,(80): 69-83
    [41] Lee Sang-Joon, Kim Hyoung-Bum. Velocity field measurements of flow around a triangular prism behind a porous fence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, (77-78): 521-530
    [42] Kim Hyoung-Bum, Lee Sang-Joon. Hole diameter effect on the characteristics of wake behind porous fences having the same porosity[J]. Fluid Dynamics Research, 2001, (28): 449-464
    [43] Park Cheol-Woo, Lee Sang-Joon. The effects of a bottom gap and non-uniform porosity in a wind fence on the surface pressure of a triangular prism located behind the fence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, (89): 1137-1154
    [44] Kim Hyoung-Bum, Lee Sang-Joon. The structure of turbulent shear flow around a two-dimensional porous fence having a bottom gap[J]. Journal of Fluids and Structures, 2002, 16(3): 317-329
    [45] John D. Wilson. Deposition of particles to a thin windbreak: The effect of a gap[J]. Atmospheric Environment, 2005, (39): 5525-5531
    [46] Lee Sang-Joon, Park Ki-Chul. Wind tunnel observations about the shelter effect of porous fences on the sand particle movements[J]. Atmospheric Environment, 2002, (36): 1453-1463
    [47] Lee Sang-Joon, Park Cheol-Woo. The shelter effect of porous fences on coal piles in POSCO open storage yard[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, (84): 101-118
    [48]林官明,叶文虎.防风网泄流区湍流的子波分析[J].北京大学学报(自然科学版),2003,39(5):732-735
    [49]陈凯,朱凤荣,钮珍南.防风网作用效果的风洞实验评估[J].北京大学学报(自然科学版),2006,42(5):636-640
    [50]张光玉,陈立,王奇志等.秦皇岛港煤堆场防风网风洞试验研究[J].交通环保,2003,24(1):4-6
    [51]张光玉,詹水芬,张斌斌等.高强度的防风网[P].中国,ZL200620025966.1,2007-5-2
    [52]沈永生,曹兆宏.塑料挤出型防风网的开发研制[J].水运科学研究所学报,2001,45(3):34-39
    [53]焦炳生,潘小军,康国义等.防风抑尘栅[P].中国,ZL200620127244.7,2007-8-22
    [54]王洪,田巍.防风抑尘墙在邯钢原料场的应用[J].冶金动力,2006,(5):86-87
    [55]赵庆久.煤场挡风抑尘墙的应用[J].华北电力技术,2004,(10):30-32
    [56]张光玉,李明水,詹水芬等.大型煤堆场防风网风洞试验研究[J].实验流体力学,2008,22(4):58-62
    [57]韩桂波.防风网板开孔率对防风效果影响的数值模拟研究[J].科学观察,2009,(2):74-75
    [58]郭勤芳,张斌,辛正宇等.蝶形防风抑尘网防风强度试验分析[J].科技情报开发与经济,2009,19(21):166-167
    [59]陈建华,詹水芬.港口散货堆场防风网防尘技术研究和应用[J].珠江水运,2008,(3):44-46
    [60]董纪鹏.强风流过散堆料场的流场模拟与抑尘研究[D].青岛:青岛科技大学,2009:19-56
    [61]李建隆,董纪鹏,陈光辉等.防风抑尘网开孔形式对流场的影响[J].环境工程学报,2009,3(9):1726-1728
    [62]陈光辉,李建隆,王伟文等.露天散状物料堆放场的防风抑尘方法及其防风抑尘网和用途[P].中国,ZL200810249627.5,2010-9-1
    [63]耿宇.防风网尾流区内风速度和湍流度实验研究[D].天津:天津大学,2002:27-34
    [64]张亚青,詹水芬,彭士涛等.秦皇岛港防风网结构动力特性研究分析[J].水道港口,2008,29(4):294-295
    [65]刘现鹏,王元战,洪宁宁等.秦皇岛港煤堆场防风网结构风振响应分析[J].港工技术,2008,5:15-17
    [66]孙熙平,王元战.防风网结构风振疲劳特性研究[J].港工技术,2009,46(2):30-33
    [67] Yukio Tamura, Takeshi Ohkuma, Hisashi Okada, et.al. Wind loading standards and design criteria in Japan[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, (83): 555-566
    [68]矫江.日本防风网的开发利用[J].国外农学农业气象,1989,(1):1-3
    [69]董治保,王涛,屈建军.风沙物理学学科建设的若干问题[J].中国沙漠,2002,22(3):205-209
    [70]刘贤万,崔志刚.特大风区防翻车挡风墙工程设计的风洞实验研究[J].中国沙漠,1994,14(3):38-46
    [71]郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2006:338-341
    [72] H. Zhang, J.R. Brandle, G.E. Meyer, et.al. The relationship between open windspeed and windspeed reduction in shelter[J]. Agroforestry Systems, 1995, (32): 297-311
    [73] Shiau Bao-Shi. Experimental study of a turbulent boundary layer flow over a windbreak of semi-circular section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(2): 247-256
    [74] Hagen L.J., Skidmore, et.al. Turbulent velocity fluctuations and vertical flow as affected by windbreak porosity[J]. Trans. ASAE, 1971a, 14(4): 634-637
    [75]张朝晖.ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社,2005:29-60
    [76]任重编著.ANSYS实用分析教程[M].北京:北京大学出版社,2003:30-45
    [77]王国强.实用工程数值模拟技术及其在上的实践[M].北京:中国铁道出版社,2001:20-34
    [78] GB50009-2001,建筑结构载荷规范[S]
    [79] GB50017-2003,钢结构设计规范[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700