SBR处理垃圾渗滤液的污泥颗粒化和稳定性及生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥技术具有生物量大、泥龄长、耐冲击负荷能力强、能够同时实现脱氮除磷等特点,是一种具有良好发展潜力的工艺。目前将颗粒污泥SBR(GSBR)应用于垃圾渗滤液处理的研究较少。本文利用实验室规模的SBR反应器处理垃圾渗滤液,研究污泥颗粒化过程、颗粒污泥的耐盐性能及稳定性、进水氨氮浓度对脱氮性能的影响、以及污泥理化性状和微生物种群结构的变化。
     以絮状活性污泥为接种污泥,采用SBR处理垃圾渗滤液。通过逐渐增加反应器体积交换率,经过50天的运行污泥实现颗粒化;形成的好氧颗粒污泥具有优良的沉降性能、高生物活性及较高的耐盐性能。颗粒污泥形成过程中,污泥胞外蛋白(PN)浓度及表面疏水性(SRH)逐渐增加,表明PN及SRH与污泥颗粒化过程有密切的关系。
     处理垃圾渗滤液的GSBR稳定运行一段时间后大量颗粒污泥发生了解体现象,分析认为系统内水力选择压与基质选择压之间的平衡失调,是导致颗粒污泥解体、系统失稳内在诱因;并在此基础上提出了“投加粉末活性炭(PAC)强化好氧颗粒污泥稳定性”的调控措施。通过投加PAC可以强化系统内水力选择压,提高污泥的比重和强度(湿密度达1.070g/cm3),降低污泥生长速率和产率(成熟的颗粒污泥表观产率Yobs仅为0.103mgVSS/mgCOD),调节污泥浓度和粒径大小(平均粒径为0.36~0.60 mm)、降低粒径分布分散化的趋势,避免因传质阻力引起的颗粒内部分裂,保证GSBR持久维持稳定。
     GSBR进水氨氮浓度升高会导致反应器内游离氨(FA)浓度的增加,从而抑制部分污染物降解功能菌,特别是硝化细菌(NOB)的活性,导致系统内亚硝酸盐大量积累;若进水氨氮浓度处于788mg/L左右时,积累的NO2-通过短程反硝化转化为N2,再加上周期进水段进行的厌氧氨氧化反应,周期总氮(TN)的总去除率达58.1%;当氨氮浓度更高时(1165mg/L左右),AOB、NOB的活性均受到抑制,反应器TN和氨氮的去除率仅为35.0和39.3%。通过化学沉淀法对高氨氮垃圾渗滤液进行预处理,预处理后TN和氨氮浓度为399和366mg/L时,GSBR脱氮方式以完全硝化反应为主,还包括短程硝化、反硝化等多种脱氮途径;TN和氨氮的去除率达75.4%和95.6%。
     在稳定运行时,处理垃圾渗滤液GSBR中的颗粒污泥结构密实;细菌以杆菌为主,颗粒表面发现少量钟虫;粒径以0.20~0.60mm的小粒径颗粒为主;污泥SVI5min为38mL/g左右,污泥层区域平均沉降速度(ZSV)为24m/h;污泥密度为28gVSS/L;颗粒污泥强度(以完整性系数计)为96.3%;含水率为97%。污泥内元素分析表明:颗粒状污泥更倾向于选择性结合Ca、Fe、Cu等二价或三价金属,特别是Ca元素以CaCO3化合物的形式在好氧颗粒污泥内核大量沉积。污泥EPS中Na、K和Mg成为了主要的阳离子,Ca所占的比例相对较少。
     通过(Nested)PCR-DGGE技术对处理垃圾渗滤液SBR的污泥颗粒化阶段及不同氨氮负荷运行阶段微生物群落结构演变进行研究。结果表明:在反应器启动初期,总细菌、AOB、NOB的种群多样性较低,反硝化细菌未检出;随着污泥沉降性能的稳定以及颗粒污泥的形成,反硝化细菌出现,且各细菌种群多样性稳步上升,特别是AOB种群多样性的增加以及DGGE图谱中条带f所代表的AOB的出现及大量繁殖对反应器内氨氮转化为亚硝酸盐、保证氨氮的高去除率起着极其重要的作用;当处理高氨氮垃圾渗滤液时,系统内产生的高浓度FA会抑制功能菌的繁殖和活性,各细菌种群多样性有所降低,其中DGGE图谱表明NOB受到的抑制作用最为明显,这与反应器相应阶段的“短程硝化”表现相对应;当对高氨氮垃圾渗滤液进行预处理、GSBR进水氨氮浓度降低后,系统内种群多样性进入较长的稳定期,这为反应器对污染物高效、稳定地去除提供了保证。细菌克隆测序结果表明:总细菌优势菌大部分为未经培养菌种(Uncultured bacterium),部分菌种与弓形杆菌属、苯酚降解菌、降解芳香族污染的功能菌、影响活性污泥沉降性能的菌种等的同源性达91%以上;AOB中的优势菌群主要为β-变形菌纲(Beta-proteobacterium)、亚硝化单胞菌属(Nitrosomonas);NOB的大部分优势菌为未经培养菌种和根瘤菌(Rhizobium sp.),其中某些NOB与已知的耐盐硝酸菌、脱氮除磷菌、商用硝化菌等的同源性高达98%以上;测得的两株反硝化优势菌为Brachymonas denitrificans不动球杆菌。
The technology of aerobic granular sludge has the advantages of high biomass content, high biomass retention, strogent ability to withstand shockloadings, and capacity of simultaneous nitrogent and phosphorus removal; it is a promising option for efficient wastewater treatment. Information on the aerobic granulation with landfill leachate is very limited. Lab-scale SBRs, fed with landfill leachate, were used in this study to investigate the formation, salt-resistance performance, stability of granules, as well as nitrogen removal performance under different influent NH4+-N concentrations. Moreover, the variations of aerobic granule properties and microbial population structure were paid more attention.
     Conventional activated sludge was inoculated in the SBR treating landfill leachate. Through step-rising of volumentic exchange ration from 30% to 50%, granules were cultivated successively in 50 days, and showed excellent settleability, high microbial activity and salt-resistance ability. In addition, the aerobic granulation process was accompanied with increments of extracellular protein content (PN) and surface relative hydrophobicity (SRH), which revealed the close relationships between PN and SRH with aerobic granulation.
     After a while of stable operation period, due to the disorder of balance between hydraulic and substrate selection pressures, a great quantity of aerobic granules began to break down into flocculent sludge. PAC was used to regulate the hydraulic selection pressure and strengthen the stability of aerobic granules. Experimental results showed that PAC addition could enhance granule strength and specific gravity (wet density of mature granules with PAC addition was1.070g/cm3), slow down the sludge growth rate and yield rate (observed yield coefficient Yobs of mature granules was only 0.103mgVSS/mgCOD), moderate the sludge concentration and size (average diameter was 0.36~0.60 mm), and reduce the dispersed tread of size distribution, so as to avoid internal segmentation of granule.
     High concentration of influent NH4+-N led to high concentration of free ammonia (FA) in the GSBR, which could inhibit the activity of functional bacteria, especially nitrite oxidizing bacteria (NOB). It finally resulted in the accumulation of NO2-. When the influent NH4+-N was around 788mg/L, partial accumulated NO2- was transformed to N2. Considering the partial nitrification and denitrification (PND), as well as the anaerobic ammonium oxidation (ANAMMOX) process during feeding time, TN removal efficiency in the whole cycle was 58.1%. When the influent NH4+-N was 1165mg/L, high FA concentration inhibited the activities of both ammonium oxidizing bacteria (AOB) and NOB, TN and NH4+-N removal efficiencies were only 35.0 and 39.3%, repectively. Magnesium ammonium phosphate (MAP) sedimentation process was used as pre-treatment for ammonia-nitrogen removal, and influent TN and NH4+-N of GSBR was greatly reduced. When the influent TN and NH4+-N were 399 and 366mg/L, nitrogen was mainly removed in means of complete nitrification. Coupled with other nitrogen removal pathways, like partial nitrification and denitrification, the TN and NH4+-N removal efficiencies were 75.4% and 95.6%, respectively.
     During the stable period of GSBR treating landfill leachate, aerobic granules were stable with dense structure, SVI5min of 38mL/g, average Zone Settling Velocity (ZSV) of 24m/h, biomass density of 28gVSS/L, sludge strgenth (in terms of integrity coefficient) of 96.3%, and water content of 97%. The granules were mainly composed of bacillus, as well as some protozoa and metazoan, like vorticella. Granules with the size of 0.20~0.60mm were the main part of the sludge. Multi-valence Ca, Fe, and Cu were the main metal elements of granules. Especially, Ca in the form of CaCO3 largely accumulated in the core of granules. While Na, K, and Mg were the main cations in the extracellular polymer substance (EPS), in comparison with the low content of Ca.
     (Nested) PCR-DGGE technologies were used to investigate the microbial community structure of GSBR during granulation process and other operation periods under different influent nigtrogen. The results showed that the biodiversities of total bacteria, AOB and NOB were low during the start-up period, when dinitrfiers were not discovered. With the improvement of sludge settleability and formation of aerobic granules, dinitrfiers appeared, and the biodiversities of each sort of bacteria steadily rose up. Especially the increment of AOB biodiversity and reproduction of AOB represented by Band f in the DGGE profile had significant positive effects on NH4+-N removal. When influent NH4+-N concentration increased, corresponding high FA content in the GSBR inhibited the activity of most functional bacteria, especially NOB. This situation was connected with“partial nitrification”performance. After pre-treatment by MAP, influent NH4+-N concentration decreased, bacteria biodiversity in the GSBR was stable, contributing to the efficient and steady pollutants removal. Most predominant species in the system were uncultured bacteria, the homology of these bacteria were more than 91% compared with Arcobacter butzleri, phenol-degrading bacterium, bacterium response to aromatic contamination and comamonadaceae as determinants of activated sludge settling performance. The main AOB species were Nitrosomonas, Beta-proteobacterium. Most predominant NOB were uncultured bacterium and Rhizobium sp., the homology of these bacteria were more than 98% compared with the halotolerant nitrite oxidizing bacterium, commercial nitrifying inoculum, and bacterium response to simultaneous phosphorus and nitrogen removal. Two isolated denitrifier strains were Brachymonas denitrificans.
引文
[1] Morgenroth E, Sherden T, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor [J]. Water Research, 1997, 31(12): 3191-3194.
    [2] de Bruin L M M , de Kreuk M K, van der Roest H F R, et al. Aerobic granular sludge technology: An alternative to activated sludge? [J]. Water Science and Technology, 2004, 49 (11-12): 1-7.
    [3] Liu Y Q, Tay J H, Moy B Y P. Characteristics of aerobic granular sludge in a sequencing batch reactor with variable aeration [J]. Applied Microbiology and Biotechnology, 2006, 71 (5): 761-766
    [4] Xu H, Liu Y, Tay J H. Effect of pH on nickel biosorption by aerobic granular sludge [J]. Bioresource Technology, 2006, 97 (3): 359-63.
    [5] Xavier J B, de kreuk M K, Picioreanu C, et al. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge [J]. Environmental Science and Technology, 2007, 41 (18): 6410-6417.
    [6] Adav S S, Lee D J, Ren N Q. Biodegradation of pyridine using aerobic granules in the presence of phenol [J]. Water Research, 2007, 41 (13): 2903-2910.
    [7] Li A J, Yang S F, Li X Y, et al. Microbial population dynamics during aerobic sludge granulation at different organic loading rates [J]. Water Resarch, 2008, 42 (13): 3552-3560.
    [8] Adav S S, Lee D J, Lai J Y. Functional consortium from aerobic granules under high organic loading rates [J]. Bioresource Technology, 2009, 100 (4): 3465-3470.
    [9] Bao R L, Yu S L, Shi W X, et al. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature [J]. Journal of Hazardous Materials, 2009, 168 (2-3): 1334-1340.
    [10] de Kreuk M K, van Loosdrecht M C M. Formation of aerobic granules with domestic sewage [J]. Journal of Environmental Engineering-ASCE, 2006, 132 (6): 694-697.
    [11] Liu Y Q, Moy B Y P, Tay J H. COD removal and nitrification of low-strength domestic wastewater in aerobic granular sludge sequencing batch reactors [J]. Enzyme and Microbial Technology, 2007, 42 (1): 23-28.
    [12]迟寒,刘毅慧,杨凤林,等.好氧颗粒污泥处理城市生活污水[J].水处理技术, 2006, 32 (8): 73-77.
    [13]高景峰.沉淀时间及生物膜对实际生活污水形成好氧硝化颗粒污泥的影响[J].环境科学, 2007, 28 (6): 1245-1251.
    [14]高景峰,周建强,彭永臻.处理实际生活污水短程硝化好氧颗粒污泥的快速培养[J].环境科学学报, 2007, 27 (10): 1604-1611.
    [15]卢姗,季民,王景峰,等.颗粒污泥SBR处理生活污水同步除磷脱氮的研究[J].环境科学, 2007, 28 (8): 1687-1692.
    [16]张岩,王永胜,白玉华,等.泳动床/好氧颗粒污泥新技术处理生活污水的特性研究[J].环境科学, 2007, 28 (10): 2249-2254.
    [17]李军,周延年,何梅,等.城市污水处理厂好氧颗粒污泥的特性.应用与环境生物学报[J], 2008, 14 (5): 640-643.
    [18] Schwarzenbeck N, Erley R, Mc Swain B S, et al. Treatment of malting wastewater in a granular sludge sequencing batch reactor (SBR) [J]. Acta hydrochimica et hydrobiologica, 2004, 32 (1): 16-24.
    [19] Arrojo B, Mosquera-Corral A, Garrido J M, et al. Aerobic granulation with industrial wastewater in sequencing batch reactors [J]. Water Research, 2004, 38 (14-15): 3389-3399.
    [20] Schwarzenbeck N, Borges J M, Wilderer P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Applied Microbiology and Biotechnology, 2005, 66 (6): 711-718.
    [21] Su K Z, Yu H Q. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater [J]. Environmental Science and Technology, 2005, 39 (8): 2818-2828.
    [22] Wang S G, Liu X W, Gong W X, et al. Aerobic granulation with brewery wastewater in a sequencing batch reactor [J]. Bioresource Technology, 2007, 98 (11): 2142-2147.
    [23] Wang H L, Yu G L, Liu G S, et al. A new way to cultivate aerobic granules in the process of papermaking wastewater treatment [J]. Biochemical Engineering Journal. 2006, 28 (1): 99-103.
    [24]汪善全,张胜,李晓娜,等.高浓度Vc生产废水培养好氧颗粒污泥的试验研究[J].环境科学, 2007, 28 (10): 2243-2248.
    [25] van Loosdrecht M C M, de Kreuk M K. Method for the Treatment of Waste Water with Sludge Granules [P]. Dutch and International patent: NL1021466C, WO2004024638 (A1), 2004-03-25.
    [26] de Kreuk M K. Aerobic Granular Sludge-Scaling-up a new technology [D]. The Netherlands: Technical University Delft, 2006.
    [27] Carla T. Company introduces new sludge treatment technology [EB/OL]. http://www.engineeringnews.co.za/article/consulting-engineering-company-introduces-new-technology-for-sludge-treatment-2009-03-27.
    [28] Lindsey Berry. Water treatment ?technology showcased ?in the Western Cape [EB/OL].http://www.engineeringnews.co.za/article/new-technology-for-water-treatment-showcased-in-the-western-cape-2009-07-17.
    [29] EcoEngineering Ltd. ARGUS [EB/OL]. http://www.ekoing.hr/in_argus.htm, 2009-12-21.
    [30] Tay J H, Tay S T L, Liu Y, et al. Biogranulation technologies for wastewater treatment [M]. The Netherlands: Elsevier, 2006.
    [31] Lopez A. Innovative and Integrated Technologies for the Treatmen-t of Industrial Wastewater [EB/OL]. http://www.envietech.at/3668_EN-Images-Files-enviet-ech-Dokumente-PDFs-Antonio-Lopez.ppt, 2009-12-21.
    [32] Perbiof Project Newsletter [EB/OL]. http://www.perbiof-europe.com/documents.htm, 2009-12-21.
    [33] Ni B J, Xie W M, Liu S G, et al. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater [J]. Water Research, 2009, 43 (3): 751-761.
    [34]王暄,王景峰,季民,等.聚糖菌颗粒污泥的有机物吸收及胞内储存特性[J].中国环境科学, 2005, 25 (5): 597-601.
    [35]王景峰,王暄,季民,等.聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化[J].环境科学, 2006, 27 (3): 473-477.
    [36]张云霞.颗粒污泥SBR中试研究及颗粒污泥特性研究[D].天津:天津大学环境科学与工程学院, 2008.
    [37]孟了,熊向陨,马箭.我国垃圾渗滤液处理现状及存在问题[J].给水排水, 2003, 29 (10): 26-30.
    [38]闫志明,普红平.垃圾渗滤液的特征及其处理工艺评述[J].昆明理工大学学报(理工版), 2003, 28 (3): 128-132.
    [39]杨拓.汉沽垃圾填埋场渗滤液多级生化处理工艺的运行分析[D].天津:天津大学环境科学与工程学院, 2007.
    [40]孙洪伟,王淑莹,王希明,等.高氨氮垃圾渗滤液SBR法短程深度生物脱氮[J].化工学报, 2009, 60 (7): 1806-1811.
    [41]秦峰,王雷,陈立伟.城市生活垃圾填埋场渗沥水处理技术研究[J].环境污染治理技术与设备, 2001, 2 (9): 24-30.
    [42]周少奇,杨志泉.广州垃圾填埋渗滤液中有机污染物的去除效果[J].环境科学, 2005, 26 (3):186-191.
    [43] Lo I M C, Characteristics and treatment of leachates from domestic landfills [J]. Environment International, 1996, 22 (4): 433-442.
    [44] Wu J J, Wu C, Ma H, et al. Treatment of landfill leachate by ozone-based advanced oxidation processes [J]. Chemosphere, 2004, 54 (7):997-1003.
    [45] Im J H, Woo H J, Choi M W, et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic–aerobic system [J]. Water Research, 2001, 35 (10): 2403-2410.
    [46] Cho S P, Hong S C, Hong S. Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds [J]. Applied Catalysis B: Environmental, 2002, 39 (2): 125-133.
    [47] Henry J G, Prasad D, Young H. Removal of organics from leachates by anaerobic filter [J]. Water Research, 1987, 21 (11): 1395-1399.
    [48] Silva A C, Dezotti M, Sant’Anna Jr. G L. Treatment and detoxication of a sanitary landfill leachate [J]. Chemosphere, 2004, 55 (2): 207-214.
    [49] Lopez A, Pagano M, Volpe A, et al. Fenton’s pre-treatment of mature landfill leachate [J]. Chemosphere, 2004, 54 (7): 1005–1010.
    [50] Frascari D, Bronzini F, Giordano G, et al. Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill [J]. Chemosphere, 2004, 54 (3): 335-343.
    [51] Trebouet D, Schlumpf J P, Jaouen P, et al. Effect of operating conditions on the nanofiltration of landfill leachates: pilotscale studies [J]. Environmental Technology, 1999, 20 (6): 587-596.
    [52] Baumgarten G, Seyfried C F. Experiences and new developments in biological pretreatment and physical post-treatment of landfill leachate [J]. Water Science and Technology, 1996, 34 (7-8): 445-453.
    [53] Bohdziewicz J, Bodzek M, Gorska J. Application of pressure-driven membrane techniques to biological treatment of landfill leachate [J]. Process Biochemistry, 2001, 36 (7): 641-646.
    [54] Timur H, Ozturk I. Anaerobic sequencing batch reactor treatment of landfill leachate [J]. Water Research, 1999, 33 (12): 3225-3230.
    [55] Aziz H A, Yussff M S, Adlan M N, et al. Physicochemical removal of iron from semi-aerobic leachate by limestone filter [J]. Waste Management, 2004, 24(4): 353-358.
    [56] Perrier E R, Gibson A C. Hydrologic simulation on solid waste disposal sites, EPA-SW-868 [M]. Cincinnati: US Enviromental Protection Agency, 1980.
    [57]杨志泉,周少奇.广州大田山垃圾填埋渗滤液有害成分的检测分析[J].化工学报, 2005, 56 (11): 2183-2188.
    [58]李军,王宝贞,王淑莹.生活垃圾填埋渗滤液处理中试研究[J].中国给水排水, 2002, 18 (3): 1-6.
    [59]蒋建国,陈嫣,邓舟.垃圾渗滤液的混凝处理实验研究[J].上海环境科学, 2003, 22 (7): 465-467.
    [60] Tunay O, Kabdasli I, Orhon D, et al. Ammonia removal by magnesium ammonium phosphate in industrial wastewaters [J]. Water Science and Technology, 1997, 36 (2-3): 225-228.
    [61]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学, 1999, 20 (5): 90-92.
    [62] Morawe B, Ramteke D S, Vogelpohl A. Activated carbon column performance studies of biologically treated landfill leachate [J]. Chemical Engineering and Processing, 1995, 34 (3): 299-303.
    [63]赵冰清,陈胜,孙德智,等. Fenton工艺深度处理垃圾渗滤液中难降解有机物[J].哈尔滨工业大学学报, 2007, 39 (8):1285-1288.
    [64] Ahn W Y, Kang M S, Yim S K, et al. Advanced landfill leachate treatment using an integrated membrane process [J]. Desalination, 2002, 149 (1-3): 109-114.
    [65]汪慧贞,沈家杰.固体垃圾填埋场渗滤水的处理[J].给水排水, 1988, 14 (5): 36-38.
    [66]石永,周少奇,张鸿郭. SBR法处理垃圾渗滤液及其同时硝化反硝化生物脱氮研究[J].四川环境, 2006, 25 (2): 21-25.
    [67]蒋彬,吴浩汀.氨吹脱/投炭SBR处理垃圾渗滤液[J].东南大学学报, 2007, 37 (5): 822-825.
    [68]方士,卢航,蓝雪春.两级SBR-PAC吸附混凝法处理垃圾渗滤液的研究[J].浙江大学学报, 2002, 28 (4): 435-439.
    [69]郑金伟,武剑,马国伟. UASBF-SBR工艺处理垃圾渗滤液[J].中国给水排水, 2003, 19 (4): 59-60.
    [70]程洁红,马鲁铭.厌氧/SBR/混凝沉淀耦合工艺处理垃圾渗滤液的研究[J].水处理技术, 2004, 30 (3):176-178.
    [71] Iaconi C D, Ramadori R, Lopez A. Combined biological and chemical degradation for treating a mature municipal landfill leachate [J]. Biochemical Engineering Journal, 2006, 31 (2): 118-124.
    [72] Metcalf E, Eddy H P. Wastewater Engineering Treatment and Reuse [M]. USA: McGraw-Hill Companies, 2003.
    [73] Turk O, Mavinci D S. Selective inhibition: a novel concept for removing nitrogen from highly nitrogenous wastes [J]. Environmental Technology Letters, 1987, 8: 419-426.
    [74]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社, 2004.
    [75] Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiology Ecology, 1995, 16 (3): 177-184.
    [76] van de Graaf A A, Mulder A, de Bruijn P, et al. Anaerobic oxidation of ammonia is a biologically mediated process [J]. Appiled and Environmental Microbiology, 1995, 61 (4): 1246-1251.
    [77] Hippen A, Rosenwinkel K H, Baumgarten G, et al. Aerobic deammonification: a new experience in the treatment of wastewaters [J]. Water Science and Technology, 1997, 35 (10): 111-120.
    [78] Helmer C, Kunst S. Simultaneous nitrification and denitrification in an aerobic biofilm system [J]. Water Science and Technology, 1998, 37 (4-5): 183-187.
    [79] Siegrist H, Reithaar S, Koch G, et al. Nitrogen removal loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon [J]. Water Science and Technology, 1998, 38(8-9): 241-248.
    [80] Kuai L P, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system [J]. Applied and Environmental Microbiology, 1998, 64 (11): 4500-4506.
    [81] Sliekers A O, Derwort N, Gomes J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor [J]. Water Research, 2002, 36 (6): 2475-2482.
    [82] van Loosdrecht M C M, Hao X D, Jetten M S M, et al. Use of anammox in urban waste water treatment [J]. Water Science and Technology: Water Supply, 2004, 4 (1): 87-94.
    [83] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiology Review, 1995, 59 (1): 143-169.
    [84] Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59 (3): 695-700.
    [85] Harms G, Layton A C, Dionisi H M, et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant [J]. Environmental Science and Technology, 2003, 7 (2): 343-351.
    [86] Fischer S G, Lerman L S. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory [J]. Proceedings of the National Academy of Science of USA, 1983, 80 (6): 1579-1583.
    [87] Myers R M, Fischer S G, Lerman L S, et a1. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13 (9): 313l-3145.
    [88] Sanz J L, Kochling T. Molecular biology techniques used in wastewater treatment: An overview [J]. Process Biochemistry, 2007, 42 (2):119-133.
    [89] Wang F, Xia S Q, Liu Y, et a1. Community analysis of ammonia and nitrite oxidizers in start-up of aerobic granular sludge reactor [J]. Journal of Environmental Sciences, 2007, 19 (8): 996-1002.
    [90] Liu Y, Wang F, Xia S Q, et a1. Study of 4-t-octylphenol degradation and microbial community in granular sludge [J]. Journal of Environmental Sciences, 2008, 20 (2): 167-171.
    [91] Zhu L, Xu X, Luo W, et a1. Formation and microbial community analysis of chloroanilines-degrading aerobic granules in the sequencing airlift bioreactor [J]. Journal of Applied Microbiology, 2008, 104 (1): 152-160.
    [92]肖勇,杨朝晖,曾光明,等. PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器( SBBR)中的细菌多样性[J].环境科学, 2007, 28 (5): 1095-1101.
    [93]邢德峰,任南琪,王爱杰. FISH技术在微生物生态学中的研究及进展[J].微生物学通报, 2003, 30(6):114-119.
    [94] Adav S S, Chen M Y, Lee D J, et al. Degradation of phenol by Acinetobacter strain isolated from aerobic granules [J]. Chemosphere, 2007, 67 (8): 1566-1572.
    [95] Shi X Y, Yu H Q, Sun Y J, et al. Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor [J]. Chemical Engineering Journal, 2009, 147 (2-3): 102-109.
    [96]孙寓姣,左剑恶,杨洋,等.好氧亚硝化颗粒污泥中硝化细菌群落结构分析[J].环境科学, 2006, 27 (9): 1858-1861.
    [97] Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Applied Microbiology and Biotechnology, 2001, 57 (1-2): 227-233.
    [98]国家环境保护局.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社, 2003.
    [99]严杰,罗海波,陆德源.现代微生物学实验技术及其应用[M].北京:人民卫生出版社, 1997.
    [100]卢姗.颗粒污泥SBR中污泥稳定性及处理生活污水的试验研究[D].天津:天津大学环境科学与工程学院, 2007.
    [101] Moy B Y P, Tay J H, Toh S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Letters in Applied Microbiology, 2002, 34 (6): 407-412.
    [102] Beun J J, Hendriks A, van Loosdrecht M C M, et al. Aerobic granulation in a sequencing batch reactor [J]. Water Research, 1999, 33 (10): 2283-2290.
    [103]徐亚同,史家梁,张明.污染控制微生物工程[M].北京:化学工业出版社, 2001.
    [104]王景峰.好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究[D].天津:天津大学环境科学与工程学院, 2006.
    [105]宁正祥.食品成分分析手册[M].北京:中国轻工业出版社, 1998.
    [106] Frolund B. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996, 30 (8):1749-1758.
    [107] Wilen B M, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculation properties [J]. Water Research, 2003, 37 (9): 2127-2139.
    [108] Kowalchuk G A, Stephen J R, De Boer W, et al. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments [J]. Applied and Environmental Microbiology, 1997, 63 (4): 1489-1497.
    [109] Cebron A, Coci M, Garnier J, et al. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine river: Impact of Paris wastewater effluents [J]. Applied and Environmental Microbiology, 2004, 70 (11): 6726-6737.
    [110]陈谊.利用PCR-DGGE研究膜生物反应器中微生物的群落结构[D].天津:天津大学环境科学与工程学院, 2009.
    [111] Teske A, Alm E, Regan J M, et al. Evolutionary relationships among ammonia and nitrite-oxidizing bacteria [J]. Journal of Bacteriology, 1994, 176 (21): 6623-6630.
    [112] Degrance V, Bardin R. Detection and counting of nitrobacter population in soil by PCR [J]. Applied and Environmental Microbiology, 1995, 61 (6): 2093-2098.
    [113] Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples [J]. Applied and Environmental Microbiology, 1998, 64 (10): 3769-3775.
    [114]张自杰,林荣忱,金儒霖.排水工程(下册)[M]. 4版.北京:中国建筑工业出版社, 2000.
    [115]王淑莹,崔有为,于德爽,等.无机盐对活性污泥沉降性的影响[J].环境工程, 2003, 21(5): 7-9.
    [116]于德爽,李津,陆婕. MBR工艺处理含盐污水的试验研究[J].中国给水排水, 2008, 24 (3): 5-8.
    [117] Morgenroth E, Sherden T, van Loosdrecht M C M, et al. Aerobic granular sludge in a sequencing batch reactor [J]. Water Research, 1997, 31(12): 3191-3194.
    [118] Zheng Y M, Yu H Q, Liu S H, et al. Formation and instability of aerobic granules under high organic loading conditions [J]. Chemosphere, 2006, 63 (10): 1791-1800.
    [119] Liu Y J, Tay J H. Cultivation of aerobic granules in a bubble column and an airlift reactor with divided draft tubes at low aeration rate [J]. Biochemical Engineering Journal, 2007, 34 (1): 1-7.
    [120]王芳,杨凤林,张兴文,等.好氧颗粒污泥稳定性影响因素分析[J].环境科学与技术, 2006, 29 (1): 47-49, 81.
    [121] Knoop S, Kunst S. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella [J]. Water Science and Technology, 1998, 37 (4): 27-35.
    [122]王强,陈坚,堵国成.选择压法培育好氧颗粒污泥的试验[J].环境科学, 2003, 24 (4): 99-104.
    [123] Liu Y, Yang S F, Liu Q S, et al. The role of cell hydrophobicity in the formation of aerobic granules [J]. Current Microbiology, 2003, 46 (4): 270-274.
    [124] Tay J H, Yang S F, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors [J]. Applied Microbiology and Biotechnology, 2002, 59 (2-3): 332-337.
    [125] Qin L, Tay J H, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors [J]. Process Biochemistry, 2004, 39 (5): 579-584.
    [126] Liu Y, Wang Z W, Qin L, et al. Selection pressure-driven aerobic granulation in a sequencing batch reactor [J]. Applied Microbiology and Biotechnology, 2005, 67 (1): 26-32.
    [127] Wang X H, Zhang H M, Yang F L, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure [J]. Enzyme and Microbial Technology, 2007, 41 (3): 205-211.
    [128] Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor [J]. Biochemical Engineering Journal, 2004, 21 (1): 47-52.
    [129] Erguder T H, Demirer G N. Investigation of granulation of a mixture of suspended anaerobic and aerobic cultures under alternating anaerobic/microaerobic/aerobic conditions [J]. Process Biochemistry, 2005, 40 (12): 3732-3741.
    [130] Toy S K, Tay J H, Moy B Y P, et al. Size-effect on the physical characteristics of the aerobic granule in a SBR [J]. Applied Microbiology and Biotechnology, 2003, 60 (6): 687-695.
    [131] Wang X H, Zhang H M, Yang F L, et al. Long-term storage and subsequent reactivation of aerobic granules [J]. Bioresource Technology, 2008, 99 (17): 8304-8309.
    [132] Chen Y, Jiang W J, Liang D T, et al. Aerobic granulation under the combined hydraulic and loading selection pressures [J]. Bioresource Technology, 2008, 99 (16): 7444-7449.
    [133] de Kreuk M K, van Loosdrecht M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability [J]. Water Science and Technology, 2004, 49 (11-12): 9-17.
    [134] Liu Y, Yang S F, Tay J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria [J]. Journal of Biotechnology, 2004, 108 (2): 161-169.
    [135] Liu Y, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnology Advances, 2006, 24 (1): 115-127.
    [136] Wirtz R, Dague R R. Laboratory studies on enhancement of granulation in the anaerobic sequencing batch reactor [J]. Water Science and Technology, 1997, 36 (4): 279-286.
    [137] Morgan J W, Forster C F, Evison L M. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges [J]. Water Research, 1990, 24 (6): 743-750.
    [138] Schmidt J E, Ahring B K. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors [J]. Applied Microbiology and Biotechnology, 1994, 42 (2-3): 457-462.
    [139] Cammarota M C, Sant’Anna Jr. G L. Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation [J]. Biotechnology Letters, 1998, 20 (1): 1-4.
    [140] Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules [J]. Applied Microbiology and Biotechnology, 2004, 65 (2): 143-148.
    [141]刘壮,杨造燕,田淑媛.活性污泥胞外多聚物的研究进展[J].城市环境与城市生态, 1999, 12 (5): 54-57.
    [142] Houghton J I, Stephenson T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability [J]. Water Research, 2002, 36 (14): 3620-3628.
    [143] Jiang, H.L., Tay, J.H., Liu, Y., et al. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors [J]. Biotechnology Letters, 2003, 25 (2): 95-99.
    [144]郑蕾,田禹,孙德智. pH值对活性污泥胞外聚合物分子结构和表面特征影响研究[J].环境科学, 2007, 28 (7): 1507-1511.
    [145] Li X M, Liu Q Q, Yang Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation [J]. Bioresource Technology, 2009, 100 (1): 64-67.
    [146] Tay J H, Liu Q S, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules [J]. Letters in Applied Microbiology, 2001, 33 (3): 222-226.
    [147]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学, 2004, 24 (5): 623-626.
    [148] Adava S S, Lee D J, Tay J H. Extracellular polymeric substances and structural stability of aerobic granule [J]. Water Research, 2008, 42 (6-7): 1728-1735.
    [149] Azeredo J, Visser J, Oliveira R. Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories [J]. Colloids and Surface B: Biointerfaces, 1999, 14 (1-4): 141-148.
    [150] Liao B Q, Allen D G, Droppo I G, et al. Surface properties of sludge and their role in bioflocculation and settleability [J]. Water Research, 2001, 35 (2): 339-350.
    [151] Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Journal of the Water Pollution Control Federation, 1976, 48 (5): 835-852.
    [152] Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation in batch reactors [J]. Biodegradation, 2001, 12 (5): 359-366.
    [153] Liu Y, Tay J H. Factors affecting nitrite build-up in nitrifying biofilm reactor [J]. Journal of Environmental Science and Health, 2001, 36 (6): 1027-1040.
    [154] Yang F S, Tay J H, Liu Y. Inhibition of free ammonia to the formation of aerobic granules [J]. Biochemical Engineering Journal, 2004, 17 (1): 41-48.
    [155] Ford D L, Churchwell R L, Kachtick J W. Comprehensive analysis of nitrification of chemical processing wastewaters [J]. Journal of the Water Pollution Control Federation, 1980, 52 (11): 2726-2746.
    [156] Isaka K, Yoshie S, Suminoa T. Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures [J]. Biochemical Engineering Journal, 2007, 37 (1): 49-55.
    [157] Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors [J]. Biotechnology and Bioengineering, 1996, 49 (3): 229-246.
    [158] Yang S F, Liu Q S, Tay J H, et al. Growth kinetics of aerobic granules developed in sequencing batch reactors [J]. Letters in Applied and Microbiology, 2004, 38 (2): 106-112.
    [159] Wilen B M, Balmer P. The effect of dissolved oxygen concentration on the structure, size and size distribution of activated sludge flocs [J]. Water Research, 1999, 33 (2): 391-400.
    [160] Liu Y Q, Tay J H. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors [J]. Enzyme and Microbial Technology, 2007, 41 (3): 516-522.
    [161] Yan Y G, Tay J H. Characterisation of the granulation process during UASB start-up [J]. Water Research, 1997, 31 (7): 1573-1580.
    [162] Tay J H, Pan S, He Y X, et al. Effect of organic loading rate on aerobic granulation. I: Reactor Performance [J]. Journal of Environmental Engineering, 2004, 130 (10): 1094-1101.
    [163] Sin G, Guisasola A, de Pauw D J W, et al. A new approach for modeling simultaneous storage and growth processes for activated sludge systems under aerobic condition [J]. Biotechnology and Bioengineering, 2005, 92 (5): 600-613.
    [164]姚涛,蔡伟民,李龙海.磷酸铵镁法处理含氮磷废水研究进展[J].中国给水排水, 2005, 21 (2): 31-33.
    [165]陈徉,陈英文,彭慧,等.磷酸铵镁沉淀法处理氨氮废水及沉淀剂的会用[J].化工环保, 2008, 28 (1): 16-19.
    [166]魏婧娟,王凯,卢宁. MAP法预处理高氨氮垃圾渗滤液的试验研究[J].工业用水与废水, 2009, 40 (3): 27-29.
    [167]陈胜,孙德智,陈桂霞,等.移动床生物膜法处理垃圾渗滤液COD降解动力学[J].化工学报, 2007, 58 (3): 733-738.
    [168] Chiu Z C, Chen M Y, Lee D J, et al. Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels [J]. Water Reseach, 2007, 41 (4): 884-892.
    [169] Chiu Z C, Chen M Y, Lee D J, et al. Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure [J]. Applied Microbiology and Biotechnology, 2007, 75 (3): 685-691.
    [170] Tay J H, Ivanov V, Pan S, et al. Specific layers in aerobically grown microbial granules [J]. Letters in Applied Microbiology, 2002, 34 (4): 254-257
    [171] Carvalho G, Meyer R L, Yuan Z G, et al. Differential distribution of ammonia- and nitrite-oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor [J]. Enzyme and Microbial Technology, 2006, 39 (7): 1392-1398.
    [172]杨麒,好氧颗粒污泥的培养及其实现同步硝化反硝化的研究[D].长沙:湖南大学环境科学与工程学院, 1999.
    [173] Beun J J, Heijnen J J, van Loosdrecht M C M. N-Removal in a granular sludge sequencing batch airlift reactor [J]. Biotechnology. and Bioengineering, 2001, 75 (1): 82-92
    [174] Shao L M, He P J, Li G J. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration [J]. Waste Management, 2008, 28 (6): 1000-1007.
    [175]徐峥勇,杨朝晖,曾光明,等.序批式生物膜反应器( SBBR)处理高氨氮渗滤液的脱氮机理研究[J].环境科学学报, 2006, 26 (1): 55-60.
    [176]张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科学, 2004, 24 (4): 496-500.
    [177] Fux C, Boehler M, Brunner I, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammmox) in a pilot plant [J]. Journal of Biotechnology, 2002, 99 (3): 295-306
    [178]彭赵旭,彭永臻,吴昌永,等.曝气量对SBR工艺同步脱氮除磷的影响研究[J].中国给水排水, 2008, 24 (3): 13-16.
    [179] Wang Z W, Li Y, Liu Y. Mechanism of calcium accumulation in acetate-fed aerobic granule [J]. Applied Microbiology and Biotechnology, 2007, 74 (2): 467-473.
    [180] Ren T T, Liu L, Sheng G P, et al. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity [J]. Water Research, 2008, 42 (13): 3343-3352.
    [181] Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulation during UASB reactor start-up [J]. Water Research, 2001, 35 (4): 1052–1060.
    [182]赵继红,楼燕,余志晟.城市污水厂(A/O工艺)微生物群落结构及其动态变化[J].生态环境, 2008, 17 (3): 898-902.
    [183] LaPara T M, Nakatsu C H, Pantea L M, et al. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE [J]. Water Research, 2002, 36 (3): 638-646
    [184]张斌,孙宝盛,季民,等. MBR中微生物群落结构的演变与分析[J].环境科学学报, 2008, 28 (11): 2192-2199.
    [185]吴春笃,许小红,宁德刚,等.城市污水细菌多样性及其生物安全性研究[J].中国环境安全科学学报, 2008, 18 (1): 119-122.
    [186] Osaka T, Yoshie S, Tsuneda S, et al. Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing [J]. Microbial Ecology, 2006, 52 (8): 253-266.
    [187] DeRito C M, Pumphrey G M, Madsen E L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community [J]. Applied and Environmental Microbiology, 2005, 71 (12): 7858-7865.
    [188]李建婷,纪树兰,刘志培,等. 16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成[J].环境科学研究, 2009, 22(17):1218-1223.
    [189] Ballinger S J, Head I M, Curtis T P, et al. Molecular microbial ecology of nitrification in an activated sludge process treating refinery wastewater [J]. Water Science and Technology, 1998, 37 (4-5):105-108.
    [190] Waki M, Yasuda T, Yokoyama H, et al. Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox [J]. Applied Microbiology and Biotechnology, 2009, 84 (5): 977-985.
    [191] Ward B B, Martino D P, Diaz M C, et al. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences [J]. Applied and Environmental Microbiology, 2000, 66 (7): 2873-2881.
    [192] Daniel L M, Pozzi E, Foresti E, et al. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor [J]. Bioresource Technology, 2009, 100 (3): 1100-1107.
    [193] Stephen J R, McCaig A E, Smith Z, et al. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria [J]. Applied and Environmental Microbiology, 1996, 62 (11): 4147-4154.
    [194]史慧萍.可同时脱硝除磷菌种之筛选及其除磷特性之研究[D].台湾:中兴大学工学院, 2007.
    [195] Hiraishi A, Shin Y K, Sugiyama J. Brachymonas denitrificans gen, nov, sp, an aerobic chemoorgranotrophic bacterium which contains rhodoquinones, and evolutionary relationships of rhodoquinone producers to bacterial speices with various quinine classes [J]. The Journal of General and Applied Microbiology, 1995, 41 (2): 99-117.
    [196] Diamadopoulos E. Characterization and treatment of recirculation stabilized leachate [J]. Water Research, 1994, 28 (12): 2439-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700