粉末热挤压制备高性能镁合金研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有高比强度、比刚度,良好的阻尼减震性,优良的机加工性能和易于回收利用等优点,被誉为“21世纪绿色金属结构工程材料”,是近年来国内外材料界研究的热点之一。进一步提高镁合金的综合性能,满足某些结构件“以镁代铝”甚至“代钢”的性能要求;改善镁合金的塑性、减少各向异性,显著改善其塑性成形能力;简化镁合金制品的制备工艺,降低其生产成本,扩大镁合金的应用范围,是国内外研究的主要方向。
     本课题从细化晶粒提高镁合金力学性能角度出发,采用离心雾化法制备ZK60及AZ91合金粉末,显著细化粉末组织,减少成分偏析,扩展合金元素在基体中的固溶度;针对快速凝固/粉末冶金(RS/PM)制备工艺繁琐、成本高昂等不足,结合粉末特性及粉末热挤压数值模拟结果,提出一种短流程、适于工业化生产的快速凝固/粉木冶金(RS/PM)简化工艺,并成功制备出超细晶ZK60及AZ91高性能镁合金。在此基础上,系统地研究了挤压温度对超细晶材料组织及性能(如强度、塑性、耐腐蚀性等)的影响,并分别对合金细化机制、热稳定性、氧化粒子引入及强化机制等进行细致研究。
     离心雾化法所得ZK60及AZ91合金粉末球形度高、表面光洁,冷却速度高达104~105K/s。研究结果表明,合金粉末的组织主要为等轴晶,晶界上分布着细小的第二相,快速凝固的急冷作用致使合金粉末的晶粒度及第二相尺寸比传统铸锭法的组织更为细小,分布均匀性显著改善,同时基体处于过饱和固溶态。RS合金粉末表面自然氧化膜主要由2nm MgO膜及0.5nm污染层构成,在100~200℃下短时加热,氧含量变化不大。在空气气氛下双向温压5~10min可制备出相对密度0.8~0.9的ZK60、AZ91粉末生坯,有效地回避了包套、真空除气等工序,降低能耗及制备成本。
     采用粉末挤压有限元数值模拟对模具结构和挤压工艺参数进行优化,结果表明,凹模塑性变形区和缩颈区对粉末起同样致密化作用,前者使粉末发生大塑性变形,后者则使粉末完全焊合;模具入口角θ=60°,凹模过渡角半径r=2mm时试棒在保持较高的变形量时应变分布均匀;适量的摩擦对获得均匀应变并保持较大变形量是积极有利的;大挤压速度(≥10mm/s)、高挤压温度会导致挤压件表面出现缺陷;生坯的初始相对密度对挤压致密效果无明显的影响。
     RS/PM简化技术制备所得ZK60及AZ91合金,晶粒度0.3~2.11μm,其中ZK60合金拉伸强度高达348~424MPa,延伸率9-22%;而AZ91合金中存在弥散第二相“钉扎”晶界,拉伸强度更佳(363-516MPa)。随挤压应变增加,粉木发生宏观变形并最终焊合,粉末表面氧化膜被破碎成纳米氧化粒子弥散分布于焊合部位,对合金起到一定复合强化作用;微区细化机制以连续动态再结晶为主,旋转动态再结晶为辅,镁合金中第二相的细化机制主要为机械破碎。同时发现超细晶ZK60合金的热稳定性与挤压温度密切相关,低于挤压温度保温1h时,组织发生回复及再结晶,但晶粒长大甚微;随着退火温度提高,则晶粒长大明显;RS/PM合金的强化来源于晶粒细化、织构强化和第二相强化三种机制的叠加效应。
     通过浸泡试验和电化学试验首次研究了超细晶ZK6O及AZ91合金的腐蚀性能。在NaCl溶液浸泡及电化学腐蚀试验中,RS/PM合金平均腐蚀速率略高于铸锭AZ91D合金。超细晶RS/PM合金由于晶界比例提高,缺陷增多,致使表层各处的化学活性高,腐蚀性能降低,此外,RS/PM AZ91合金中第二相沿晶界弥散分布,微电池腐蚀严重,因此其抗腐蚀能力最差。相比于腐蚀速率变快的劣势,均匀腐蚀成为RS/PM合金腐蚀性能的最主要的优势。
Magnesium alloys, as "21st century green metallic structural materials", have the most promising development in material filed, for their high specific strength and specific stiffness, good damping capacity, excellent machinability and high recycling rate. The principal focus on enhancing integrated properties of magnesium alloys is to satisfy the requirements of some structural materials, such as aluminum, or even steel. Researches which aim to increase the elongation, decrease the anisotropy and improve the plastic deformation capability, simplify fabrication techniques, reduce manufacturing cost and expand the application of magnesium alloy also receive global attention.
     It is well known that the mechanical properties increase rapidly with refining on grain size for magnesium alloys. Centrifugal atomization, which can effectively refine grain and second-phase size, reduce segregation, and expand solid solubility of matrix, was initially employed to prepare ZK60 and AZ91 alloy powders.Combination of powder characteristics and powder extrusion simulation results, this paper proposed a high cost-effective process to promote wide application of rapid solidified/powder metallurgy (RS/PM) magnesium alloys. Finally, ultrafine grained ZK60 and AZ91 bars were successfully prepared.Based on laboratory scale, the effect of extrusion temperature on properties (such as strength, toughness and corrosion resistance, etc) were investigated. The refinement mechanism, thermal stability, oxidation particles and strengthening mechanism were also discussed in detail.
     Spherical-shaped ZK60 and AZ91 powders with smooth surface were prepared by centrifugal atomization technology. The average cooling rate was calculated to be 104~105K/s. These powders essentially exhibit an equiaxed grain morphology with fine intermetallic compounds along grain boundaries. Due to higher cooling rate, the grain size of RS powders is much smaller than that of conventional cast alloys; second phase particles distribute more uniformly; and quenching effect keep supersaturated solid solution state in matrix. In other ways, the native oxide layers of RS powders are composed of 2nm MgO film and 0.5nm contamination film.When exposure to air at 100~200℃for short time, the increase in oxygen content can be negligible. Therefore, powder compacts with relative density of 0.8~0.9 can readily prepared in double compression for 5-10min at low temperature, without aid of canning, vacuum degassing and other steps.
     The die structure and extrusion process parameters were optimized by FEM simulation. The result shows that there are similar densification behaviors to powders from deformation area and necking region of concave die. However, the former induces severe plastic deformation of powders, while the latter generates complete welding between powders. In order to keep a relatively uniform distribution and maintain high level in effective plastic strain, the entrance angle of die and the radius of transition angle are suggested to choose 60°and 2mm, respectively. Moreover, the normal friction is benefit to obtain the above function. The surface defects could be found under high extrusion speed(≥10mm/s) or higher extrusion temperature. Besides, the initial relative density of powder compacts shows less significant influence on extruded bars.
     The grain refinement is significant by simplified RS/PM process, and the mean grain size of ZK60 and AZ91 alloys can be refined to 0.3-2.1μm with different extrusion temperature. To ZK60 alloys, the tensile strength and elongation are 348-424MPa and 9-22%,while AZ91 alloys show higher strength (363-516MPa) due to more dispersion of second phase particles inhibiting grain movement. With strain increasing, interparticle mechanical interlock combined with mass transfer across the boundaries, develops a good adhesive bonding. The nano-oxide particles, broken from oxide layer of powder, locate at welding position, which enhances the strength of alloys further. During extrusion, the refining mechanism is dominated by continuous dynamic recrystallization (CDRX) and assisted by rotation dynamic recrystallization (RDRX). For the second phase, it is mechanical cracking refining mechanism. The thermal stability of ultrafine ZK60 alloy is closely related with the extrusion temperature. When annealing temperature lower than extrusion temperature, recovery and recrystallization happen, but no grain coarsens. In present work, the strengthening mechanisms of RS/PM ZK60 and AZ91 alloys are originated from overlapping effect of grain refinement, texture and second phase strengthening.
     Through immersion corrosion tests and electrochemical tests, the corrosion properties of ultra-fine grained ZK60 and AZ91 alloys were researched for the first time. During both tests in NaCl solution, the mean corrosion rate of RS/PM alloys is higher than that of cast AZ91D alloy. The reasons is attribute to the increase of boundary fraction, internal energy and defects in material after RS/PM process, all of which would result in high chemical activity throughout the surface. Moreover, because of abundant second phase particles discontinuously pinning grain boundaries in RS/PM AZ91 alloys, which introduces serious micro-cell corrosion, the worst corrosion resistance was found in RS/PM AZ91 alloys extruded at 210℃. However, as compared with the disadvantage of higher corrosion rate, the uniform corrosion is the most prominent advantage for corrosion properties of RS/PM magnesium alloys.
引文
1.张津,章宗和.镁合金及应用.北京:化学工业出版社,2004;
    2. Schumann S, Friedrich H. Current and future use of magnesium in the automobile industry. Materials Science Forum,2003,419-422:51-56;
    3.陈振华,严红革,程吉华,等.镁合金.北京:化学工业出版社,2004;
    4. Mordike BL, Ebert T. Magnesium:Properties-applications-potential. Materials Science and Engineering A,2001,302(1):37-45;
    5.Polmear IJ. Recent development in light alloys. Materials Transactions, JIM,1996,37(1): 12-31;
    6. Agnew SR, Duygulu O. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. International Journal of Plasticity,2005,21(6):1161-1193;
    7. Barnett MR. Twinning and ductility of magnesium alloys:Part Ⅰ:"Tension" twins. Materials Science and Engineering A,2007,464(1-2):1-7;
    8.Barnett MR. Twinning and ductility of magnesium alloys:Part Ⅱ:"Contraction" twins. Materials Science and Engineering A,2007,464(1-2):8-16;
    9.《工程材料实用手册》编辑委员会.工程材料实用手册,第3卷,铝合金,镁合金(第2版).北京:中国标准出版社,2002;
    10. Michael MA,Baker H.ASM Specialty Handbook:Magnesium and magnesium alloys. OH: Metal Park,1999;
    11.Davis J.ASM Handbook, Vol.2:Properties and selection non-ferrous alloys and special purpose materials. ASM International,2005;
    12.Cahn RW, Haasen P, Kramer EJ.Materials Science and Technology, Vol.8.New York:VCH Publishers Inc.,1996;
    13.Das SK, Chang CF. High strength magnesium alloys by rapid solidification processing. In: Rapidly Solidified Crystalline Alloys. The Metallurgy Society, Warrendale, Pa.,1985;
    14. Das SK, Chang CF, Raybould D. Rapidly solidified Mg-Al-Zn-Rare earth alloys. In:Rapidly Solidified Materials. ASM, Metals Park, Ohio,1986;
    15.Das SK, Chang CF, Raybould D.The effect of heat treatment on the properties of rapidly solidified Mg-Al-Zn-RE-alloys. In:Processing of Structural Metals by Rapid Solidification. ASM, Metals Park, Ohio,1987;
    16. Das SK, Chang CF. Rapidly solidified high strength corrosion resistant magnesium base metal alloys, US Patent 4765954,1988;
    17.Kojima Y. Platform science and technology for advanced magnesium alloy. Materials Science Forum,2000,350-351:3-18;
    18.Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn,Y2 alloys with excellent tensile yield strength above 600MPa. Materials Transactions, JIM,2001, 42(7):1172-1176;
    19. Cahn RW.丁道云(译).非铁合金的结构和性能.北京:科学出版社,1999;
    20.陈洪美,Kang SB,于化顺,等.钙对AZ451变形镁合金组织和性能的影响.特种铸造及有色合金,2008,28(3):397-402;
    21.Lee YC, Dahle AK, StJohn DH.The role of solute in grain refinement of magnesium. Metallurgical and Materials Transactions A,2000,31(11):2895-2906;
    22.Buha J.Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V. Acta Materialia,2008,56(14):3533-3542;
    23.Yoshida Y, Arai K, Itoh S, et al. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Science and Technology of Advanced Materials, 2005,6(2):185-194;
    24.Perez-Prado MT, del Valle JA, Ruano OA. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scripta Materialia,2004,51(11):1093-1097;
    25.Viswanathan V, Laha T, Balani K, et al.Challenges and advances in nanocomposite processing techniques. Materials Science and Engineering R,2006,54(5-6):121-285;
    26. Wang Y, Liu G, Fan, Z. Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Materialia,2006,54(3):689-699;
    27.张新建,乐启炽,崔建忠,等.近液相线半连续铸造AZ91D镁合金微观组织研究.材料与冶金学报,2002,1(3):218-221;
    28.Chen HM, Kang SB, Yu HS, et al. Microstructure and mechanical properties of Mg-4.5Al-1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling. Materials Science and Engineering A,2008,492(1-2):317-326;
    29. Makoto S, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A,1997,47(2):84-89;
    30.Garboggini A, McShane HB.A rapidly solidified Mg-Al-Zn-Y alloy:Properties, structure and corrosion resistance. Journal of Materials Science Letters,1994,13(15):1118-1120;
    31.Govind, Suseelan Nair K, Mittal MC, et al. Development of rapidly solidified (RS) magnesium-aluminum-zinc alloy. Materials Science and Engineering A,2001,304-306: 520-523;
    32.Friedrich HE, Mordike BL. Magnesium technology:Metallurgy, design data, applications. Germany. Springer-Velag,2006;
    33.Guo XF, Shechtman D. Reciprocating extrusion of rapidly solidified Mg-6Zn-l Y-0.6Ce-0.6Zr alloy. Journal of Materials Processing Technology,2007,187-188:640-644;
    34. Srivatsan TS, Vasudevan S, Petraroli M. The tensile deformation and fracture behavior of a magnesium alloy. Journal of Alloys and Compounds,2008,461(1-2):154-159;
    35.Nakashima K, Iwasaki H,Mori T, et al. Mechanical properties of a powder metallurgically processed Mg-5Y-6Re alloy. Materials Science and Engineering A,2000,293(1-2):15-18;
    36. Sheng SD, Chen D, Chen ZH.Effects of Si addition on microstructure and mechanical properties of RS/PM (rapid solidification and powder metallurgy) AZ91 alloy. Journal of Alloys and Compounds,2009,470(1-2):L17-L20;
    37. Sugamata M,Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A,1997,226-228:861-866;
    38.Mora E, Garce G, Onorbe E, et al. High-strength Mg-Zn-Y alloys produced by powder metallurgy. Scripta Materialia,2009,60(9):776-779;
    39. Kumar S. Some studies on hot extrusion of rapidly solidified Mg alloys. Journal of Materials Engineering and Performance,2006,15(1):41-46;
    40. Cho SS, Chun BS,Won CW, et al.Structure and properties of rapidly solidified Mg-Al alloys. Journal of Materials Science,1999,34(17):4311-4320;
    41.陈振华,夏伟军,严红革,等.变形镁合金.北京:化学工业出版社,2005;
    42.丁文江.镁合金科学与技术.北京:科学出版社,2007;
    43.程天一,章守华.快速凝固技术与新型合金.北京:宇航出版社,1990;
    44.胡壮麒,宋启洪,张海峰,等.亚稳态金属材料.北京:科学出版社,2006;
    45.Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters,1984,53(20):1951-1953;
    46.李金富,杨根仓,周尧和.深过冷Ni-50%Cu合金的晶粒细化.金属学报,1998,34(2):113-118;
    47. Lu K. Nanocrystalline metals crystallized from amorphous solids:Nanocrystallization, structure, and properties. Materials Science and Engineering R,1996,16(4):161-165;
    48.李月珠.快速凝固技术和材料.北京:国防工业出版社,1993;
    49. Chisholm DS.Dow Chemical Co.:Atomizing magnesium and its alloys, US Patent 2676359, 1954;
    50. Chisholm DS, Hershey GF.Dow Chemical Co.:Apparatus for atomizing (Mg) metal, US Patent 2752196,1956;
    51.Busk RS, Leontis TE. Dow Chemical Co.:Improvement in making alloy extruded forms by powder metallurgy, US Patent 2657796,1953;
    52.Foerster GS. Method of extrusion and extrusion billet thereof, US Patent 3219490,1965;
    53.Colby NR,Hershey GF. Dow Chemical Co.:Method of forming non-spherical atomized particles of magnesium and its alloys, US Patent 2934787,1960;
    54.盛绍顶,陈鼎,陈振华,等.快速凝固/粉末冶金AZ91/SiCp镁基复合材料的相组成及界面.中国有色金属学报,2008,18(7):1185-1190;
    55.Grant NJ. Spray Forming. Progress in Material Science,1995,39(4-5):497-545;
    56. Laverina EJ, Grant NJ. Spray deposition of metals:a review. Material Science and Engineering,1988,98,381-394;
    57. Faure JF, Nussbaum G, Regazzoni G.Process for obtaining magnesium alloys by spray deposition, US Patent 5073207,1991;
    58.徐河,刘静安,谢水生.镁合金制备与加工技术.北京:冶金工业出版社,2007;
    59. Garces G, Dominguez F, Perez P, et al.Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92. Journal of Alloys and Compounds,2006,422(1-2): 293-298;
    60. Garces G, Maeso M, Perez P, et al.Effect of extrusion temperature on superplasticity of PM-WE54. Materials Science and Engineering A,2007,462(1-2):127-131;
    61.Watanabe H, Mukai T, Mabuchi M, et al.Superplasticity deformation mechanism in powder metallurgy magnesium alloys and composites. Acta Materialia,2001,49(11):2027-2037;
    62.冯瑞.金属物理学(第三卷).北京:科学出版社,1999;
    63.Barnett MR, Keshavarz Z, Beer AG, et al.Influence of grain size on the deformation of wrought Mg-3Al-1Zn. Acta Materialia,2004,52(17):5093-5103;
    64. Barnett MR, Beer AG, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-lZn. Scripta Materialia,2004,51(1):19-24;
    65.Kumar KS,Swygenhoven HV, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia,2003,51(19):5743-5774;
    66. Okamoto H.Phase diagrams for binary alloys. Ohio:ASM International Metal Park,2000;
    67. Clark CR, Suryanaryana C, Froes FH. Solid solution extension in binary aluminum and magnesium alloys by mechanical alloying. In:Advances in powder metallurgy and particulate materials,1995;
    68.Juarez-Islas JA. Rapid solidification of Mg-Al-Zn-Si alloys.Materials Science and Engineering A,1991,134:1193-1196;
    69. Gjestland H,Nussbaum G, Regazzoni G, et al.Stress-relaxation and creep behavior of some rapidly solidified magnesium alloys. Materials Science and Engineering A,1991,134: 1197-1200;
    70. Sanchez C, Nussbaum G, Azavant P, et al.Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths. Materials Science and Engineering A,1996, 221(1-2):48-57;
    71.Nie JF, Muddle BC. Precipitation in magnesium alloy WE54 during isothermal ageing at 250 ℃.Scripta Materialia,1999,40(10):1089-1094;
    72.Vogel M., Kraft O.,Dehm G, et al. Quasi-crystalline grain-boundary phase in the magnesium die-cast Alloy ZA85.Scripta Materialia,2001,45(5):517-524;
    73.Bae DH, Kim SH, Kim WT, et al. High strength Mg-Zn-Y alloy containing quasicrystalline particles. Materials Transaction,2001,42(10):2144-2147;
    74. Shechtman D, Lang C. Project of NIST national institute of standards and technology-high specific strengthen magnesium alloy produced by RSP.1999;
    75.Kawamura Y, Morisaka T, Yamasaki M. Structure and mechanical properties of rapidly solidification Mg97Zn,RE2 alloys. Materials Science Forum,2003,419-422:751-756;
    76. Inoue K, Kawamura Y, Nishida M.Rapidly solidified Mg-(Ag, Sc)-X alloys with high strength. Materials Science Forum,2003,419-422:757-762;
    77. Kawamura Y, Hayashi K, Koike J, et al.High strength nanocrystalline Mg-Al-Ca produced by rapidly solidified powder metallurgy processing. Materials Science Forum,2000, 350-351:111-116;
    78. Ping DH, Hong K, Kawamura Y, et al. Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy. Philosophical Magazine Letters,2002,82(10):543-551;
    79. Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-lat.%Zn-2at.%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Materialia,2002,50(15):3845-3857;
    80. Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultra-high strength of magnesium solid solution in the Mg-Zn-Y system. Journal of Material Research,2001, 16(7):1894-1900;
    81.Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A,2005,393(1-2): 269-274;
    82. Itoi T, Seimiya T, Kawamura Y, et al. Long period stacking structures observed in Mg97ZnjY2 alloy. Scripta Materialia,2004,51(2):107-111;
    83.Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Material Transactions,2006, 47(4):959-965;
    84. Amiya K, Ohsuna T, Inoue A. Long-period hexagonal structures in melt-spun Mg97Ln2Zn1 (Ln=Lanthanide Metal) alloys. Material Transactions,2003,44(10):2151-2156;
    85.Matsuura M, Konno K, Yoshida M, et al.Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a melt-quenched Mg9gCu1Y1 alloy. Material Transactions,2006,47(4):1264-1267;
    86. Wu YJ, Zeng XQ, Lin DL, et al. The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773K. Journal of Alloys and Compounds,2009,477(1-2):193-197;
    87. Koike J, Kawamura Y, Hayashi K, et al. Mechanical properties of rapidly solidified Mg-Zn alloys. Materials Science Forum,2000,350-351:105-110;
    88.Hondo K, Sugamata M, Kaneko J, et al. Structures and mechanical properties of rapidly solidifed Mg-Ag based alloy. Journal Institute of Light Metals,2002,52(6):276-281;
    89. Mabuchi M, Kubota K, Higashi K. Development of Mg-Si alloys by I/M and R/S routes. Proceedings of Light Weight Alloys for Aerospace Applications Ⅲ,1995,463-470;
    90. Watanabe H, Mukai T, Mabuchi M, et al. High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scripta Materialia,1999,41(2): 209-213;
    91.Watanabe H, Mukai T, Mabuchi M, et al. Realization of high-strain-rate superplastic at low temperatures in a Mg-Zn-Zr alloy. Materials Science and Engineering A,2001,307(1-2): 119-128;
    92.Kubota K. Review processing and mechanical properties of fine-grained magnesium alloys. Journal of Materials Science,1999,34(10):2255-2262;
    93.Ballerini G, Bardi U, Bignucolo R, et al. About some corrosion mechanisms of AZ91D magnesium alloy. Corrosion Science,2005,47(9):2173-2184;
    94. Feliu Jr S, Pardo A, Merino MC.Correlation between the surface chemistry and the atmospheric corrosion of AZ31,AZ80 and AZ91D magnesium alloys. Applied Surface Science,2009,255(7):4102-4108;
    95.Wang L, Zhang BP, Shinohara T. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Materials and Design,2010,31(2):857-863;
    96. Liu WJ,Cao FH,Jia BL, et al.Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1:Microstructure characterization and characterization. Corrosion Science,2010,51(2):627-638;
    97.Liu WJ,Cao FH, Jia BL, et al.Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 2:Corrosion product and characterization. Corrosion Science,2010,51(2):639-650;
    98.Pardo A, Merino MC, Coy AE. Corrosion behaviour of magnesium/aluminum alloys in 3.5 wt.% NaCl. Corrosion Science,2008,50(3):823-834;
    99. Krishnamurthy S, Khobaib M, Roberston E, et al. Corrosion behavior of rapidly solidified Mg-Nd and Mg-Y alloys. Materials and Engineering,1988,99(1-2):507-511;
    100.陈吉华,陈振华,严红革.快速凝固镁合金的研究进展.化工进展,2004,23(8):816-822;
    101.Daloz D, Steinmetz P, Michot G. Corrosion behavior of rapidly solidified magnesium-aluminum-zinc alloys. Corrosion science section,1997,53(12):944-954;
    102.Yao HB, Li Y, Wee ATS, et al. The alloying effect of Ni on the corrosion behavior of melt-spun Mg-Ni ribbons. Electrochimic Acta,2001,46(17):2649-2657;
    103.Yamasaki M, Nyu K, Kawamura Y.Corrosion behavior of rapidly solidified Mg-Zn-Y alloy ribbons. Materials Science Forum,2003,419-422:937-942;
    104. Kam CH, LiY, Ng SC, et al. The effect of heat treatment on the corrosion behavior of amorphous Mg-Ni-Nd alloys.Materials Research Society,1999,14(4):1638-1644;
    105.Vostry P, Stulikova I, Kiehn J, et al.Electrical resistometry of Mg-based microcrystalline alloys and Mg-based composites. Materials Science Forum,1996,210(2):635-624;
    106. Ong MS, Li Y, Blackwood DJ, et al.The influence of heat treatment on the corrosion behavior of amorphous melt-spun binary Mg-18at.%Ni and Mg-21at.% Cu alloy. Materials Science and Engineering A,2001,304-306:510-514
    107.Yamasaki M, Hayashi N, Izumi S. Corrosion behavior of rapidly solidified Mg-Zn-rare earth element alloys in NaCl solution. Corrosion Science,2007,49(1):255-262;
    108.Izumi S, Yamasaki M, Kawamura Y.Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates. Corrosion science, 2009,51(2):395-402;
    109. Chino Y, Hoshika T, Mabuchi M.Enhanced corrosion properties of pure Mg and AZ31Mg alloy recycled by solid-state process. Materials Science and Engineering A,2006,435-436: 275-281;
    110. Roberts PR, Ferguson BL. Extrusion of metal powders. International Materials Reviews,1991, 36(2):62-79;
    111.任学平,康永林著.粉末塑性加工原理及其应用.北京:冶金工业出版社,1998;
    112.Lilleby A, Grong Φ, Hemmer H. Experimental and finite element studies of the divergent extrusion process under conditions applicable to cold pressure welding of commercial purity aluminium.Materials Science and Engineering A,2009(1-2),518:76-83;
    113.Jahangirian M, Eldabi T, Naseer A, et al. Simulation in manufacturing and business:A review. European Journal of Operational Research,2010,203(1):1-13;
    114. Lee MG, Kim SJ, Han HN. Finite element investigations for the role of transformation plasticity on springback in hot press forming process. Computational Materials Science,2009, 47(2):556-567;
    115.Tsujikawa M, Chung S W, Somekawa H, et al. Influence of deformation mechanism on the superplastic forging of high-strength Mg alloy by three-dimensional finite volume simulation. Materials Transactions,JIM,2005,46(12):3085-3088;
    116. Santos AD, Duarte JF, Reis A, et al.The use of finite element simulation for optimization of forming and tool design. Journal of Materials processing Technology,2001,119(1):152-157;
    117.Chung SW, Somekawa H,Kinoshita T, et al. The non-uniform behavior during ECAP process by 3D-FVM simulation. Scripta Materialia,2004,50(7):1079-1083;
    118. Takuda H,Fujimoto H, Hatta N.Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures. Journal of Materials Processing Technology,1998,80-81:513-516;
    119. Li Q, Smith CJ, Harris C, et al.Finite element investigations upon the influence of pocket die designs on metal flow in aluminum extrusion. Part Ⅰ:Effect on pocket angle and volume on metal flow. Journal of Materials Processing Technology,2003,135(2):189-196;
    120. Li Q, Smith CJ, Harris C, et al. Finite element modeling investigations upon the influence of pocket die designs on metal flow in aluminum extrusion. Part Ⅱ:Effect of pocket geometry configurations on metal flow. Journal of Materials Processing Technology,2003,135(2): 197-203;
    121.田柱平,郝南海.铝型材挤压模工作带形状的数值设计.模具技术,1999,16(4):561-566;
    122.Chanda T, Zhou J,Duszczyk J. A comparative study on iso-speed extrusion and isothermal extrusion of 6061 Al alloy using 3D FEM simulation. Journal of Materials Processing Technology,2001,114(2):145-153;
    123.Zhou J, Li L, Duszczyk J. Computer simulated and experimentally verified isothermal extrusion of 7075 aluminum through continuous ram speed variation. Journal of Materials Processing Technology,2004,146(2):203-212;
    124. Duan X, Sheppard T. Simulation and control of microstructure evolution during hot extrusion of hard aluminum alloys. Materials science and Engineering A,2003,351(1):282-292;
    125.周飞,彭颖红,阮雪榆.铝型材挤压过程有限元数值模拟.中国有色金属学报,1998,8(4):637-642;
    126. Mori K, Osakada K, Yamaguchi H.Prediction of curvature of an extruded bar with noncircular cross-section by a 3D rigid-plastic finite element method. International Journal of Mechanical Sciences,1993,35(10):879-887;
    127.Shivpuri R, Momin S, Altan T. Computer aided design of dies to control dimensional quality of extruded shapes. CIRP annals,1992,41(1):275-279;
    1. Lavernia EJ, Ayers JD, Srivatsan TS. Rapid solidification processing with specific application to aluminum alloys. International materials reviews,1992,37(1):1-4;
    2.胡汉起.金属凝固原理.北京:机械工业出版社,2000;
    3.Ranz WE, Marshall WR. Evaporation from drops. Chemical Engineering Progress,1952, 48(4):173-180;
    4.张津,章宗和.镁合金及应用.北京:化学工业出版社,2004;
    5.Ozbilen S, Unal A, Sheppard T. Influence of Atomizing Gases on the Oxide-Film Morphology and Thickness of Aluminum Powders,Oxidation of Materials,2000,53(1-2):1-23;
    6.陈振华,严红革,程吉华等.镁合金.北京:化学工业出版社,2004;
    7.潘复生,韩恩厚.高性能变形镁合金及加工技术.北京:科学出版社,2007;
    8.程兰征,章燕豪.物理化学(机械热加工及金属材料专业用).上海:上海科学技术出版社,2005;
    9. Crist BV. XPS handbook of the elements and native oxides. New York:John Wiley & Sons, 2000;
    10.任殿胜,王为,李雨辰等.GaAs(100)表面氧化的XPS研究.化学物理学报,2004,17(1):87-90;
    11.Kurth M, Graat PCJ, Carstanjen HD, et al. The initial oxidation of magnesium:an in situ study with XPS, HERDA and ellipsometry. Surface and Interface Analysis,2006,38(5):931-940;
    12. Czerwinski F. The oxide behaviour of an AZ91D magnesium alloy at high temperatures. Acta Materialia,2002,50(10):2639-2654;
    13.Mora E, Garce G, Onorbe E, et al. High-strength Mg-Zn-Y alloys produced by powder metallurgy. Scripta Materialia,2009,60(9):776-779;
    1.Ng LS, Loh NL, Boey FYC. Cold-hot isostatic pressing of Mar M200 superalloy powders. Journal of Materials Processing Technology,1997,67(1):143-149;
    2. Nagaishi Y, Yamasaki M, Kawamura Y.Effect of process atomsphere on the mechanical properties of rapidly solidified powder metallurgy Al-Ti-Fe-Cr alloys. Materials Science and Engineering A,2007,449-451:794-798;
    3.Iwamoto K, Yamasaki M, Kawamura Y. Vacuum degassing behavior of rapidly solidified Al-Mn-Zr alloy powders. Materials Science and Engineering A,2007,449-451:1013-1017;
    4. Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600MPa. Materials Transactions, JIM,2001, 42(7):1172-1176;
    5.Cho SS, Chun BS, Won C W, et al.Structure and properties of rapidly solidified Mg-Al alloys. Journal of Materials Science,1999,34(17):4311-4320;
    6. Kawamura Y, Morisaka T, Yamasaki M.Structure and mechanical properties of rapidly solidification Mg97Zn1RE2 alloys. Materials Science Forum,2003,419-422:751-756;
    7.Inoue K, Kawamura Y, Nishida M.Rapidly solidified Mg-(Ag, Sc)-X alloys with high strength. Materials Science Forum,2003,419-422:757-762;
    8.Kawamura Y, Hayashi K, Koike J, et al.High strength nanocrystalline Mg-Al-Ca produced by rapidly solidified powder metallurgy processing. Materials Science Forum,2000,350-351: 111-116;
    9. Ping DH, Hong K, Kawamura Y, et al. Local chemistry of a nanocrystalline high-strength Mg97Y2Zn,alloy. Philosophical Magazine Letters,2002,82(10):543-551;
    10. Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at.%Zn-2at.%Y alloy studied by atomic-resolution Z-contrast STEM.Acta Materialia,2002,50(15):3845-3857;
    11.Inoue A, Kawamura Y, Matsushita M, et al. Novel hexagonal structure and ultra-high strength of magnesium solid solution in the Mg-Zn-Y system. Journal of Material Research,2001,16(7): 1894-1900;
    12. Matsuda M,Ii S, Kawamura Y, et al.Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A,2005,393(1-2): 269-274;
    13.Itoi T, Seimiya T, Kawamura Y, et al.Long period stacking structures observed in Mg97Zn1Y2 alloy. Scripta Materialia,2004,51(2):107-111;
    14. Yoshimoto S, Yamasaki M, Kawamura Y. Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure. Material Transactions,2006,47(4): 959-965;
    15.Yamasaki M, Nyu K, Kawamura Y. Corrosion behavior of rapidly solidified Mg-Zn-Y alloy ribbons. Materials Science Forum,2003,419-422:937-942;
    16. Yamasaki M, Hayashi N, Izumi S. Corrosion behavior of rapidly solidified Mg-Zn-rare earth element alloys in NaCl solution. Corrosion Science,2007,49(1):255-262;
    17. Izumi S, Yamasaki M,Kawamura Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates. Corrosion science,2009, 51(2):395-402;
    18.Guo XF, Shechtman D. Reciprocating extrusion of rapidly solidified Mg-6Zn-lY-0.6Ce-0.6Zr alloy. Journal of Materials Processing Technology,2007,187-188:640-644;
    19. Srivatsan TS, Vasudevan S, Petraroli M. The tensile deformation and fracture behavior of a magnesium alloy. Journal of Alloys and Compounds,2008,461(1-2):154-159;
    20. Nakashima K, Iwasaki H,Mori T, et al. Mechanical properties of a powder metallurgically processed Mg-5Y-6Re alloy. Materials Science and Engineering A.,2000,293(1-2):15-18;
    21.Hondo K, Sugamata M, Kaneko J, et al. Structures and mechanical properties of rapidly solidifed Mg-Ag based alloy. Journal Institute of Light Metals,2002,52(6):276-281;
    22. Watanabe H, Mukai T, Mabuchi M, et al. High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scripta Materialia,1999,41(2):209-213;
    23.Watanabe H,Mukai T, Mabuchi M, et al. Realization of high-strain-rate superplastic at low temperatures in a Mg-Zn-Zr alloy. Materials Science and Engineering A,2001,307(1-2):119-128;
    24. Kondoh K, Hamada EA, Imai H, et al. Microstructure and mechanical responses of powder metallurgy non-combustive magnesium extruded alloy by rapid solidification process in mass production. Materials and Design, In press;
    25.Mabuchi M, Kubota K, Higashi K. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars. Mater Trans JIM,1995,36(10): 1249-1254;
    26. Cho JR, Joo YS, Jeong HS. The Al-powder forging process:its finite element analysis. Journal of Materials Processing Technology,2001,111(1-3):204-209;
    27.卫原平,阮雪榆.粉末烧结材料塑性变形过程的有限元分析,中国有色金属学报,1994,4(4):56-61;
    28. Cho JR, Joo YS, Jeong HS. The Al-powder forging process:its finite element analysis. Journal of Materials Processing Technology,2001,111(1-3):204-209;
    29.周明智,薛克敏,李萍.粉末多孔材料等径角挤压热力耦合有限元数值分析.中国有色金属学报,2006,16(9):1510-1516;
    30. Doraivelu SM,Gegel HL,Gunasekera JS,et al. A new yield function for compressible P/M material. International Journal of Mechanical Sciences,1984,26(9-10):527-535;
    31.廖寄乔.粉末冶金实验技术.长沙:中南大学出版社,2003;
    32.林金保.往复挤压ZK60与GW102K镁合金的组织演变及强韧化机制研究.上海交通大学,博士论文,2008;
    33.吴诗淳.挤压理论.北京:国防工业出版社,1994;
    34.谢建新,刘静安.金属挤压理论与技术.北京:冶金工业出版社,2001;
    35.Aour B, Zairi F, Nait-Abdelaziz M, et al. A computational study of die geometry and processing conditions effects on equal channel angular extrusion of a polymer. International Journal of Mechanical Sciences,2008,50(3):589-602;
    36. Djavanroodi F, Sabeghi M, Abrinia K. Analysis of the parameters affecting warping in radial forging process. American Journal of Applied Sciences,2008,5(8):1013-1018;
    37. Medeiros N, Lins JFC, Moreira LP, et al.The role of the friction during the equal channel angular pressing of an IF-steel billet. Materials Science and Engineering A,2008,489(1-2): 363-372;
    38.Oruganti PK, Subramanian PR, Marte JS, et al. Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion. Materials Science and Engineering A,2005,406(1-2):102-10;
    1.Iwanaga K, Tashiro H, Okamoto H,et al.Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy, Journal of Materials Processing Technology, 2004,155-156:1313-1316;
    2.Michael M A, Baker H.ASM Specialty Handbook:Magnesium and magnesium alloys. OH: Metal Park,1999;
    3.Yoshida Y, Arai K, Itoh S, et al.Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Science and Technology of Advanced Materials, 2005,6(2):185-194;
    4. Perez-Prado M T, del Valle J A, Ruano O A. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scripta Materialia,2004,51(11):1093-1097;
    5.Viswanathan V, Laha T, Balani K, et al.Challenges and advances in nanocomposite processing techniques. Materials Science and Engineering R,2006,54(5-6):121-285;
    6. Makoto S,Hanawa S,Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A,1997,47(2):84-89;
    7. Garboggini A, McShane H B. A rapidly solidified Mg-Al-Zn-Y alloy:Properties, structure and corrosion resistance. Journal of Materials Science Letters,1994,13(15):1118-1120;
    8.Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600MPa. Materials Transactions, JIM,2001, 42(7):1172-1176;
    9. Watanabe H,Mabuchi M, Higashii K, et al. High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy. Scripta Materialia,1999, 41(2):209;
    10. Watanabe H, Mukai T, Ishikawa K, et al. Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy. Materials Science and Engineering A,2001, 307(1-2):119-128;
    11.Guo XF, Shechtman D. Reciprocating extrusion of rapidly solidified Mg-6Zn-1Y-0.6Ce-0.6Zr alloy. Journal of Materials Processing Technology,2007,187-188:640-644;
    12. Nishida M, Kawamura Y, Yamamuro T.Formation process of unique microstructure in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A,2004,375-377:1217-1223;
    13.Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-lat%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Materialia,2002,50(15):3845-3857;
    14. Srivatsan TS, Vasudevan S, Petraroli M. The tensile deformation and fracture behavior of a magnesium alloy. Journal of Alloys and Compounds,2008,461(1-2):154-159;
    15.Nakashima K, Iwasaki H,Mori T, et al. Mechanical properties of a powder metallurgically processed Mg-5Y-6Re alloy. Materials Science and Engineering A,2000,293(1-2):15-18;
    16. Mora E, Garces G, Onorbe E, et al. High-strength Mg-Zn-Y alloys produced by powder metallurgy. Scripta Materialia,2009,60(9):776-779;
    17. Maeng D Y, Kim TS,Lee JH,et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys. Scripta Materialia,2000,43(5):385-389;
    18.Kumar S.Some studies on hot extrusion of rapidly solidified Mg alloys. Journal of Materials Engineering and Performance,2006,15(1):41-46;
    19. Cho SS,Chun BS, Won CW, et al. Structure and properties of rapidly solidified Mg-Al alloys. Journal of Materials Science,1999,34:4311-4320;
    20. Sheng SD, Chen D, Chen ZH.Effects of Si addition on microstructure and mechanical properties of RS/PM (rapid solidification and powder metallurgy) AZ91 alloy. Journal of Alloys and Compounds,2009,470(1-2):L17-L20;
    21.Sugamata M, Hanawa S, Kaneko J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering A,1997,226-228:861-866;
    22.熊少敏,张青川,曹鹏涛等.2024铝合金中沉积相对PLC效应的影响.金属学报,2009,45(7):892-896;
    23.Somekawa H, Singh A, Mukai T. Microstructure evolution of Mg-Zn binary alloy during a direct extrusion process. Scripta Materialia,2009,60 (6):411-414;
    24. Somekawa H, Singh A, Mukai T. Effect of precipitate shapes on fracture toughness in extruded Mg-Zn-Zr magnesium alloys. Journal of Materials Research,2007,22(4),965-973;
    25.Ding WJ, Li DQ, Wang QD, et al.Microstructure and mechanical properties of hot-rolled Mg-Zn-Nd-Zr alloys. Materials Science and Engineering A,2008,483-484:228-230;
    26. He YB,Pan QL, Qin YJ, et al. Microstructure and mechanical properties of ZK60 alloy processed by two-step equal channel angular pressing. Journal of Alloys and Compounds,2009, in press;
    27. Chino Y, Mabuchi M. Influences of grain size on mechanical properties of extruded AZ91 Mg alloy after different extrusion processes. Advanced Engineering Materials,2001,3(12):981-983;
    28. Kim WJ, Park JD, Kim WY. Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy. Journal of Alloys and Compounds,2008, 460(1-2):289-293;
    29. Mathis K, Gubicza J, Nam NH. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing. Journal of Alloys and Compounds,2005, 394(1-2):194-199;
    30.石德珂.材料科学基础(第二版).北京:机械工业出版社,2003.
    31.Wang Y, Liu G, Fan Z. A new heat treatment procedure for rheo-diecast AZ91D magnesium alloy. Scripta Materialia,2006,54(5):903-908;
    32.Lilleby A, Grong 0, Hemmer H, et al. Experimental and finite element studies of the divergent extrusion process under conditions applicable to cold pressure welding of commercial purity aluminum. Materials Science and Engineering A,2009,518(1-2):76-83;
    33.Danesh Manesh H,Mashreghi A, Ehtemam Haghighi S, et al. Investigation of cold pressure welding of aluminum powder to internal surface of aluminum tube. Materials & Design,2009, 30(3):723-726;
    34. Horita Z, Smith DJ, Furukawa M, et al. An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. Journal of Materials Research,1996,11(8):1880-1890;
    35.Horita Z, Smith DJ,Furukawa M, et al. Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy. Materials Characterization,1996,37(5):285-294;
    36. Bay B,Hansen N, Wilsdorf DK. Deformation structures in lightly rolled pure aluminum. Materials Science and Engineering A,1989,113:385-397;
    37.Bay B,Hansen N, Hughes DA, et al.Evolution of f.c.c. deformation structures in polyslip. Acta Metallurgica et Materialia,1992,40(2):205-219;
    38. Taylor GI. Plastic strain in metals. Journal of the Institute of Metals,1938,62:307-324;
    39. Igarashi M, Khantha M, Vitek V.N-body interatomic potentials for hexagonal close-packed metals. Philosophical Magazine B,1991,63(3):603-627;
    40. Kaibyshev R, Shipilova K, Musin F, et al.Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion. Materials Science and Engineering A,2005,396(1-2):341-351;
    41.Mazurina I, Sakai T, Miura H, et al. Grain refinement in aluminum alloy 2219 during ECAP at 250℃,Materials Science and Engineering A,2008,473(1-2),297-305;
    42.Kaibshev R, Galiev A, Sitdikov O. On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys. Nanostructured Materials,1995,6:621-624;
    43. Cullity BD. Elements of X-ray difrraction(Third ed). London:Prentice Hall,2001;
    44.于化顺.金属基复合材料及其制备技术.北京:化学工业出版社,2006;
    45.Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Materials Science and Engineering A,1993, 168(2):141-148;
    46. Mulyukov RR, Pshenichnyuk AI. Structure and damping of nanocrystalline metals and alloys prepared by high plastic deformation techniques. Journal of Alloys and Compounds,2003, 355(1-2):26-30;
    47.Su JQ, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering A,2005,405(1-2):277-286;
    48.Kim HS, Estrin Y, Bush MB.Plastic deformation behaviour of fine-grained materials. Acta Materialia,2000,48(2):493-504;
    49.靳丽.等通道角挤压变形镁合金微观组织与力学性能研究.上海通大学,博士论文,2006;
    1. Garces G, Dominguez F, Perez P, et al.Effect of extrusion temperature on the microstructure and plastic deformation of PM-AZ92. Journal of Alloys and Compounds,2006,422(1-2): 293-298;
    2.Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZniY2 alloys with excellent tensile yield strength above 600MPa. Materials Transactions, JIM,2001, 42(7):1172-1176;
    3.Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A,2005,393(1-2): 269-274;
    4. Koike J, Kawamura Y, Hayashi K, et al. Mechanical properties of rapidly solidified Mg-Zn alloys. Materials Science Forum,2000,350-351:105-110;
    5.中国腐蚀与防护协会.腐蚀试验方法与防腐蚀检测技术.北京:化学工业出版社,1996;
    6.蒋金勋,张佩芳,高满同.金属腐蚀学.北京:国防工业出版社,1986;
    7.卫英慧,许并祇.镁合金腐蚀防护的理论与实践.北京:冶金工业出版社,2008;
    8.Song GL, Attrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science,1999,41(2):249-273;
    9. Nordlien JH, Ono s,Masuko N, et al.Morphology and structure of oxide films formed on magnesium by exposure to air and water. Journal of The Electrochemical Society,1995,142(10): 3320-3322;
    10.Song GL, Atrens A, St John D, et al. The electrochemical of pure magnesium in 1N NaCl. Corrosion Science,1997,39(5):855-875;
    11.Song GL, Atrens A, St John D, et al.The anodic dissolution of magnesium in chloride and sulphate solutions.Corrosion Science,1997,39(10-11):1981-2004;
    12.Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behavior of AZ63 magnesium alloy. Materials and Design,2004,25(7): 637-643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700