W-Cu粉末热挤压致密工艺及塑性变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
W与Cu属于不互溶材料,也称为W-Cu复合材料。传统上一般采取熔渗烧结或液相活化烧结工艺方法制备,但很难获得高致密度和优良的性能(主要为电导率和硬度值)。为了获得具有优良性能的高档W-Cu材料,一般还要采用真空热压或热等静压。由于真空热压与热等静压工艺生产效率低,成本高,难以获得广泛应用。为了寻找一种能够替代热等静压方法的新工艺,本文研究了Cu含量20~50wt.%范围内W-Cu材料粉末热挤压致密化,重点研究了粉末包套液相挤压制备W-Cu材料的工艺。
     由于W相再结晶温度(>1600℃)远高于Cu相熔化温度(1083℃)且两相不互溶,本文提出了两种粉末热挤压塑性变形致密工艺:一种是W-Cu(20~50wt.%)粉末经传统液相烧结制坯后再经热静液挤压致密,另一种是W-Cu(20~50wt.%)粉末压坯不经烧结,在1000~1150℃范围内直接包套热挤压致密,并重点研究了1100℃下的液相挤压工艺。同时,W-Cu属于难变形材料,为了进一步提高材料的性能,也为了使W-Cu产品品种趋于多样化,还对液相挤压工艺制备的W-Cu材料的塑性变形进行了研究。
     复合粉末的均匀程度将严重影响到块体材料的组织性能,本文首先研究了不同的混粉和球磨工艺对W-Cu粉末的影响。相比于机械混粉,低速球磨混粉能够获得细小的钨颗粒均匀分布在铜基体上的复合粉末,为保证W-Cu致密体材料的组织均匀性提供了良好的基础。对W-Cu材料液相烧结热静液挤压工艺进行了实验研究。热静液挤压工艺使液相烧结坯料的相对密度、组织和性能得到了进一步的改善。如:W-40wt%Cu挤压态坯料相对密度达到98%以上,电导率达到48%IACS,硬度值约为140HV。
     本文重点研究了W-Cu粉末包套热挤压致密工艺,通过实验得到了挤压温度、粉末球磨时间、挤压比、包套壁厚、铜含量和热处理工艺等因素对挤压坯相对密度及组织性能影响的基本规律。通过对相对密度、铜含量、边缘铜分布几方面的研究结果表明,1100℃挤压可以实现Cu出现液相的液相挤压工艺,并获得良好的组织性能。1100℃下挤压,坯料内部出现液相铜,大大提高了挤压坯的致密化速度和性能;但再提高挤压温度,如1150℃下挤压,坯料内部液相铜出现外渗,以及Cu相聚集形成大块的网状分布,虽然此时相对密度大幅提高,但坯料导电性能反而大幅降低。如:W-40wt%Cu粉末包套坯料在1100℃液相挤压,铜相分布均匀,钨相尺寸细小(2-3μm),相对密度达到97%以上,电导率达到56%IACS,硬度值高达215HV。对于液相挤压工艺,随球磨时间增加,挤压坯相对密度降低,导电性能也有所下降,挤压比和铜含量的增加都有助于提高挤压坯的相对密度和导电性能,当铜含量在30~50wt.%时,获得了良好的挤压效果。液相挤压在体现其工艺优势的同时,性能指标也已接近同类材料热等静压工艺的水平。
     通过数值模拟研究了粉末包套挤压过程中粉末多孔体和塑性包套的温度、应力应变和速度场的分布规律。讨论了挤压温度、挤压速度、挤压比、包套厚度对坯料内部最高温度及其对应的应力、最大应变以及粉末多孔体和包套流动速度的影响。通过数值模拟获得的坯料形状和挤压载荷值与实验得到的结果有很好的一致性。分复压和稳态流动两个阶段建立了粉末包套挤压的理论模型。推导得到了复压阶段的致密化方程和静水压力表达式,以及稳态流动阶段所需挤压力和挤压比、包套尺寸、多孔体相对密度的关系。
     最后,研究了W-Cu液相挤压致密材料再经不同塑性变形后对坯料相对密度、力学性能和组织性能的影响。结果表明,多道次轧制相对密度提高比镦粗明显,二次挤压相对密度提高最大。镦粗和轧制变形对材料性能提高不明显,多道次轧制电导率值略大于镦粗变形,硬度值相差不大。二次挤压坯料的电导率和硬度提高很显著,W-40wt.%Cu坯料的电导率高达60%IACS,硬度值超过230HV。
     与传统烧结工艺相比,再经热静液挤压能提高W-Cu材料的相对密度和性能;而液相挤压工艺则更进一步,省去了坯料长时间高温真空液相烧结致密过程,包套液相挤压一次致密,无需保护气氛加热,有着工艺简单、生产效率高、成本低廉、节能节时等优点,而且很好的解决了烧结过程中坯料铜相损失严重以及坯料成分难以精确控制等问题,在制备含铜30wt.%以上的W-Cu材料方面体现了极大的优势。本文两种工艺制备的W-Cu材料性能都比较好。特别是液相挤压工艺,其相对密度虽然要略低于热静液挤压,但电导率和硬度要提高很多,有望替代热等静压工艺来制备高档W-Cu材料。
     目前国内外还未查阅到关于热静液挤压和粉末包套热挤压工艺制备W-Cu材料的研究和专利的报导,特别是成功实现了液相铜出现的液相挤压过程。同时,对W-Cu材料塑性变形的研究也很少见。本文创造性的提出了制备不互溶合金的液相挤压新工艺并取得了良好的结果,对促进我国钨、钼合金的开发应用具有重大意义。
W and Cu are liquid phase immiscible materials, also called as W-Cu composite. Generally, it is usually prepared by infiltration or liquid active sintering, but the density and properties (specific conductance and hardness) are usually unsatisfied. In order to obtain W-Cu materials in high-grade, the process such as vacuum hot-pressing or HIP is usually used to increase the relative density. Because of the low productive efficiency and high cost of vacuum hot-pressing and HIP, the application of W-Cu materials is limitted. This paper studied on the densification of W-Cu powders by hot extrusion with the Cu contents between 20~50wt.%, especially foucsed on the liquid phase extrusion process in order to substitute a new process for HIP.
     The recrystallization temperature of W (>1600℃) is much higher than the melting point of Cu (1083℃). Based on this feature, two different processes of powder densification by hot extrusion and plastic deformation are introduced in this paper. One is prepared by liquid sintering and hot hydrostatic extrusion, the other is prepared by canning hot extrusion between 1000~1150℃and particularly in the temperature of 1100℃. W-Cu materials is hard to be processed. So the plastic deformation of W-Cu materials prepared by liquid phase extrusion is also studied in order to diversify the product species of W-Cu as well as improving the properties.
     The uniformity of composite powders effects the properties of block materials severely. In this paper, the mixing and mechanical milling processes are studied. Comparing to machine mixing, the mechanical milling process with low speed can obtain composite powders of copper matrix attached by fine W particles. This structure guarantees the good uniformity of compact W-Cu materials. The liquid sintering and hot hydrostatic extrusion process is studied. After hot hydrostatic extrusion, the relative density and properties of W-Cu sintered billets are apparently improved. The relative density of W-40wt.%Cu is up to 98%, and the specific conductivity reaches 48%IACS with the hardness of about 140HV.
     This paper has payed major attention on the densification of W-Cu powders by canning hot extrusion. The basic regularitys on relative density and properties affected by extrusion temperature, milling time, extrusion ratio, can thickness, contents of Cu and heat treatment are experimentally studied. The relationship of extrusion temperature and the physical state of Cu is explored by the change of relative density, contents of Cu and distribution of Cu element on the edge of W-Cu materials. The result shows that, the liquid phase extrusion which means the compact with liquid Cu inside during extrusion can be achieved when the extrusion temperature at 1100℃. The appearance of liquid Cu is very helpful to improve the densification course and properties of W-Cu. When the extrusion temperature increase to 1150℃, the liquid Cu inside the compact exosmosed and aggregated to building a Cu rich zone. Though the relative density increased a lot, the specific conductivity decreased violently. After 1100℃liquid phase extrusion, the distribution of Cu inside W-40wt.%Cu material is uniform, the particle size of W is fine (2-3μm), the relative density is about 97%, the specific conductivity reaches 56%IACS, and the hardness is up to 215HV. In the liquid phase extrusion process, the relative density and specific conductivity decreased with increasing milling time, and increased with increasing extrusion ratio and contents of Cu. When the contents of Cu is between 30~50wt.%, the W-Cu materials with good properties are obtained by liquid phase extrusion. The liquid phase extrusion process has showed its advantages and obtained W-Cu materials with properties level almost reached the level of HIP process.
     Researched on the distribution of temperature, stress/strain and velocity fields of porous and steel can materials in powder canning extrusion process by numerical simulation. The influence on the highest temperature in the extrusion process and corresponding stress, maximum strain and the velocity of porous and steel can effected by extrusion temperature, extrusion velocity, extrusion ratio and can thickness was studied. The simulation and experimental results had reached a good agreement. Established the theoretical model of powder canning extrusion which was divided in two steps of multiple compress and steady-state flow. The densification equation and hydrostatic-pressure expression in the multiple compress step and the relationship between extrusion force and extrusion ratio, can size, relative density of porous in steady-state flow step were obtained.
     At last, the influence on relative density, mechanical property and structure property effected by different plastic deformation of dense materials prepared by liquid phase extrusion was studied. The increment of relative density of rolling is higher than upset, but is lower than second extrusion. The improvement of properties of W-Cu materials by upset and rolling is little, but remarkable by second extrusion. After second extrusion, the specific conductivity of W-40wt.%Cu materials reaches 60%IACS and the hardness is up to 230HV.
     Compared to the traditional sintering process, hot hydrostatic extrusion process can improve the relative density and properties of W-Cu. And the liquid phase extrusion process disposes the long time, high temperature vacuum sintering course and uses one-time forming technique without special atmosphere protection. It has the advantages of simple process, high productive efficiency, low cost and energy-saving/time-saving, and solves the problem of losing Cu when liquid sintering and precision controlling the percentage composition. It shows the huge priority on preparing W-Cu materials with Cu contents above 30wt.%. Either of the two process mentioned in this paper has obtained W-Cu materials with good properties. The relative density of liquid phase extrusion billet is a little lower than sintering-extrusion billet, but the specific conductivity and hardness are improved a lot. The liquid phase extrusion process is a predictable way to substitute for HIP process in preparing high-grade W-Cu materials.
     Recently, the research and patent reports about hot hydrostatic extrusion and powder canning extrusion of W-Cu materials have not been consulted yet, especially about the achievement of liquid phase extrusion process. At the same time, the study about plastic deformation of W-Cu is also rare. This paper creatively states a new liquid phase extrusion process to prepare immiscible alloy and obtains a good result. It shows the great importance on improving the development and application of W, Mo alloy in our country.
引文
1.吕大铭.钨铜复合材料研究的新进展.中国钨业2000,15(6):27~30.
    2. R. Jedmzik, A. Neubrand, J. Roder. Electrochemical processing and characterization of grade W-Cu composite[A] proceedings of the 14th International planes seminar[C].Reutte, 1997:11~15.
    3.周武平,吕大铭,凌贤野等.真空负荷开关触头材料W-Cu10-15介绍高压电器. 1997,33(6):29~30.
    4. B. Bryskin, E. K. Ohrine. Processing of High-strength High-conductivity W-Cu composite [A]. Processing of the 14thplansee seminar [C]. Reutte. 1997,358~370.
    5. D. L. Houck. The W-Cu composite used for Thermal sink Materials. Proceedings of the 7th International Tungsten symposium[c]. 1996, Goslar 301~310.
    6. G. G. Bondarenko, Y. Y. Udris. Influence of high heat flux loading and irradiation on some promising candidate material for the divertor structure, Fusion Engineering Design. 1998,(39-40):419~426.
    7.张万胜.电触头材料国外基本情况.电工合金. 1995,(1):1~20.
    8.陈文革,丁秉钧.钨铜基复合材料的研究及进展.粉末冶金工业. 2001,11(3):45~50.
    9.张代东,秦亮.电触头材料的应用与制备研究,科技情报开发与经济, 2004,14(10):188~190.
    10.陈文革,丁秉均.W-Cu触头材料的电寿命研究.电工材料,2003,3:21~24.
    11.李震彪,张逸成.真空触头材料的性能比较.低压电器. 1998, 3:15~20.
    12.吕大铭.粉末冶金钨钼材料发展的国内外近况.粉末冶金工业. 1997, 7(3):40~43.
    13.翁桅.我国低压电器用触头材料的现状和发展趋势[J ].低压电器,1995 ,(2) :49 - 52.
    14.石子源,王德庆. Al2O3表面弥散铜基导电材料的制备[J ].功能材料,2002 ,(4) :33 - 36.
    15.吕大铭.钨铜材料的生产、应用与发展.中国钨业.2004(5):69~74.
    16.国标GB/T 8230-2003,铜钨及银钨电触头技术条件.
    17.周武平.钨铜材料应用和生产的发展现状.粉末冶金材料科学与工程. 2005,(1):22~25.
    18.吕大铭.真空开关和电子器件用钨铜材料.粉末冶金工业.1998,(6):32~35.
    19.王志法,刘正春,姜国圣. W-Cu电子封装材料的气密性.中国有色金属学报,1999,9(2):324~326.
    20.张迎九,王志法,吕维洁等.金属及低膨胀高导热复合材料.材料导报1997,11(3):52~56.
    21. Z. Carl. Metal-Matrix composites for electronic packaging. JOM, 1992, 44(7): 15~23.
    22. M. Randall, R. M. German etc. Powder metallurgy Processing of thermal management materials for microeelectronic applications. The International Journal of Powder Metallurgy. 1994,30(2):205~215.
    23.姜国圣等.高钨钨铜复合材料的研究现状.稀有金属与硬质合金,1999, 3:39~42.
    24.王铁军等.电子封装用粉末冶金材料.粉末冶金技术,2005,3: 145~151.
    25.刘正春,王志法,姜国圣.金属基电子封装材料进展.兵器材料科学与工程,2001,24(2):49~53.
    26.吕大铭.我国的钨铜、钨银材料的应用与发展.中国钨业,1999,14(5~6):182~185.
    27.余建芳.钨的应用-从电子材料到军事弹药.中国钨业, 2001, 16(2): 39~41.
    28.宋桂明,周玉等.固体火箭发动机喉衬材料.固体火箭技术,1998,21(2):51~56.
    29.张存信,王凤英,林勇.模塑成型W-Cu合金药型罩的研究.兵器材料科学与工程, 2006, 29(5): 18~22.
    30.高娃,张存信.钨铜合金的最新研究进展及应用.新材料产业. 2006, 1:57~60.
    31.陶应启,王祖平等.钨铜复合材料的制造工艺.粉末冶金技术. 2002,20(1):49~51.
    32.陈文革.影响钨铜系电触头材料的因素.电工合金. 1998,3:35~36.
    33.尹伯扬.铜钨复合材料及在热加工中的应用.南方金属. 2001,12:13~16.
    34. W. A. Kaysser, B. Ilschner.[J]. Mater Research Bull, 1995, 20(1):22.
    35.周张健,葛昌纯,李江涛.热压法制备钨/铜功能梯度材料.[J].材料科学与工艺, 2000, 8(1):52.
    36. J. W. Davis, K. T. Slattery, D. E. Drie Meyer, et al.[J]. J Neul Mater, 1996, 233~238.
    37. Bin Yang and R. M. German. Advances in powder Metallurgy and Particulate Materials-1993. MPIF,Princeton,NJ. 1993,Vol 2 , p203.
    38. I. H. Moon et al. Sintering of mechanically alloyed nanostructured tungsten-copper alloys. Metal Powder Report. 1998, (10):38.
    39. D. L. Houck. W-Cu material used for heat-sink and electric contact parts[J]. China Tungsten Industry, 1997,12(11):21-26.
    40. H. Gleiter. Acta Mater. 48 (1) (2000) 1–29.
    41. C. Suryanarayana. Int. Mater. Rev. 40 (2) (1995) 41.
    42. Qian chong liang. Proceedings of the 13th Inter planes Seminar. 1993(1): 461.
    43.朱心昆等.机械合金化的研究及进展.粉末冶金技术,1999,17(4):291~294.
    44.朱心昆,林秋实.粉末冶金技术, vol. 17, no. 4, 1999:291.
    45. W. S. Wang and K. S. Wang. Metallurgical and materials transcation A vol. 29A ,May 1998- 1509.
    46.梁国宪,王尔德.材料研究学报, vol. 8, no. 4, 1994: 297.
    47.熊曹永,熊永红.中国科技大学学报vol. 26, no. 1,1996: 78.
    48.国家自然科学技术基金委员会自然科学学科发展调研报告-金属材料科学.北京:科学出版社,1995.
    49. J. C. Kim, I. H. Moon. Nanostruct Mater 1998;10: 283–90.
    50. V. Smolej, S. Pejovnik, W. A. Kaysser, Powder Metall. Int. 14 (1982) 35.
    51. Moon-Hee Hong et al. Proceedings of the 13th Inter Plansee seminar. Vol 1, 1993(1):45.
    52. Jin-Chen Kim, Sung-Soo Ryu, Young Do Kim and In-Hyung Moon. Densification Behavior of Mechanically Alloyed W-Cu Composite Powders By the Double Rearrangement Process.Scripta Materilia.1998, 39(6):669~676.
    53. S. S. Ryu, Y.D. Kim, I.H. Moon. Dilatometric analysis on the sintering behavior of nanocrystalline W–Cu prepared by mechanical alloying.Journalof Alloys and Compounds. 2002,335:233~240.
    54. Francine′Alves da Costa, Angelus Giuseppe Pereira da Silva, Uilame Umbelino Gomes. The influence of the dispersion technique on the characteristics of the W–Cu powders and on the sintering behavior. Powder Technology. 2003,134:123~132.
    55.黄伯云,范景莲.纳米钨合金材料的研究与应用.中国钨业,2001,16(5-6):38~43.
    56.刘珍,梁伟.纳米材料制备方法及其研究进展.材料科学与工艺,2000,8(3):103~108.
    57.范景莲等.国内外钨铜复合材料的研究现状.粉末冶金工业, 2003,13(2):9~14.
    58.蔡一湘,刘伯武.钨铜复合材料致密化问题和方法.粉末冶金技术. 1997,17(2):138~144.
    59. K. V. Sebastian. International Journal of Powder Matel&Powder Technical, 15(1):45.
    60. K. V. Sebastian. Properties of sintered and Infiltrated Tungsten-copper Electrial contract Material.International Journal Powder Metal&PowderTech. 1998,(4):297~303.
    61. J. S. Lee, T. H. Kim. Densification and Microstructure of the Nanocomposite W-Cu Powders . Nanostructured Material,1995,(6):691~694.
    62. Yunping Li, Xuanhui Qu, Zhoushun Zheng, Changmin Lei, Zhiqiang Zou, Shu Yu. Properties of W-Cu composite power produced by a thermo-mechanical method, International Journal of Refractory. Metals and Hard Materials.2003,21:259~264.
    63. Dae-Gun Kim, Gil-Su Kim, Sung-Tag Oh, Young Do Kim.The initial stage of sintering for the W–Cu nanocomposite powder prepared from W–CuO mixture.Materials Letters.2004,58:578~581.
    64. K. V. Sebastian. Int. J. Powder Metall. Powder Technol. 17 (4) (1981) 297.
    65. W. J. Huppmann, H. Rigger. Acta Metall. 23 (1975) 965.
    66.梁容海,熊湘君,王伏生.高钨触头合金的熔浸机理探讨.矿冶工程,1997,17(2):73~75.
    67. R. M. German, K. F. Hens, J. L. Johnson. Powder Metallurgy Processing of Thermal Management Materials for Microelectronic Applications.Theinternational Journey Powder Metal.1994,(2):205~215.
    68. Dae-Gun Kim, Kang Wan Lee, Sung-Tag Oh, Young Do Kim. Preparation of W-Cu nanocomposite power by hydrogen-reduction of ball-milled W and CuO power mixture. Materials Letters.2004,58:1199~1203.
    69.赫运涛,贾成厂,樊世民,罗青云,李志刚.机械活化WCu粉末的压力烧结.粉末冶金技术, 2004,22(1):33~36.
    70. J. L. Johnson, R. M. German. Phase Equilibria Effect on Enhanced liquid phase sintering of W-Cu. Metallurgical Transactions A. 1993, 24A(11): 2369~2377.
    71. P. R. Subramanian, D. E. Laughlin. Phase Diagrams of Binary Copper Alloys. ASM International. The Materials Information Society, Materials Park, OH, 1994, p. 475.
    72. J. C. Kim, S. S. Ryu, Y. D. Kim, I. H. Moon. Scr. Mater. 39 (1998): 669.
    73. E. N. Hodkin, M. G. Nicholas, D. M. Poole, J. Less Common Met. 20 (1970) 93~103.
    74. F. Dore, C. L. Martin, C. H. Allibert. Mater. Sci. Eng. A 383 (2004): 390~398.
    75. R. M. German. Metall. Trans. 1993, 24A: 02369.
    76. R. M. German. Metall. Trans. 24A(1993):1745~1752.
    77.李益民,黄伯云,曲选辉.当代金属注射成形技术.粉末冶金工业, 2000, 10(1):14~18.
    78. J. L. Johnson, R. M. German. Adv. Powder Metall. Paric. Matter 4 (1993): 201~213.
    79. J. L. Johnson, R. M. German. Chemically cativated liquid phase sintering of tungsten-copper[J]. Int J of Powder Metall, 1994, 30(1):91~102.
    80. Jin-Chun Kim, Sung-Soon Ryu, Hyok Lee, et al. Metal injection molding of Nanostructrured W-Cu composite powder. International Journal of powder metallurgy, 35(4), 1999:47~55.
    81. B. Yang, R. M. German. Powder Injection Molding and Infiltration Sintering of superfine Grain W-Cu. The international Journal of powder metallurgy, 1997, 33(4):55~63.
    82. T. H. Kim, J. Byeon and J. S. Lee. A new production route for near net shaped full density W-Cu materials. Advances in Powder Metallurgy v 2 Jun 21-26 1992 sponsored by: Metal Powder Industries Federation; AmericanPowder Metallurgy Inst Publ by Metal Powder Industries Federation: 431~438.
    83. Yoon Eui Sikyu, Ji Hun. Densification and microstructure of the PIMed W-15wt%Cu nanocomposite powder. Funtai Oyobi Fummatsu Yakin/Jouranal of the Japan Society of Powder and Powder Metallurgy, 46(8):1999:898~903.
    84. B. K. Kim, S. H. Hong. Densification of W/Cu Nanocomposite. Proceedings of 2000 powder metallurgy world congress, Korea: 1461~1464.
    85. R. M. German. Technological barriers and opportunities in powder injection molding[J]. Powder Metall Int, 1993, 25(4):165~169.
    86.杨森,黄卫东等.定向凝固技术的发展.兵器材料学与工程, 2000, 23(2): 44~49.
    87.陈光等.熔体热历史对Al-Cu合金定向凝固界面稳定性的影响.材料研究学报,1999,5:33~36.
    88. B. Lux, F. G. Haour. Dynamic undercooling of superalloys. Mollard Metall. 1981,35:1235~1239.
    89. C. S. Kiminami, W. Axmann, P. R. Sahm. Sdidfication of a supercooled Pd77.7Cu6Si16.3 bulk sample. Journal of Materials Science Letters, 1989, 8:201~203.
    90. Xie Faqin, Zhang Jun, Mao Xieming, et al. Rapid directional solidification excited from bulk supercooled melt. Journal Materials Processing Technology, 1997, 63:776~778.
    91. W. A. Lud. Limit of absolute stability for crystal growth into undercooled alloy Melts. Acta metal, 1991,39:2795~2798.
    92.李振宇,沈军等.快速凝固铜合金的研究现状.粉末冶金技术, 1998, 16(1):57~67.
    93. J. M. Sainz-Borda, I. Gutierrez, F. C. Fernandez, et al. Powder Metallurgy. [J]. 1995, 38(1):31.
    94.谢发勤,张军,毛协民等.深过冷溶体激发快速定向凝固.[J].材料科学与工艺, 1996, 4(3):102.
    95.坚增运,严文,严根仓.深过冷金属溶体中单晶形界条件.[J].自然科学进展, 1999, 2:165.
    96.杨云志,陈治清等.粉末冶金技术在生物梯度材料制备中的应用.粉末冶金技术, 1998, 16(4):290~295.
    97.张伟.功能梯度材料的研究现状及前景. 94秋季中国材料研究会-新型功能材料.北京:化学工业出版社,208~213.
    98. J. B. Holt, I. M. Koizum, T. T. HiYai. Proceedings of the First International Symposium on Functionalloy Gradient Materials, Oct8-9, 1990, sendai, Japan.
    99. M. Takahashi, Y. Itoh, M. Miyazaki, et al.[C]. Proceedings of the 13th Inter Plansee Seminar, edited by Bildstein H and Eck R, Metallweek Plansee, Reutte,1993:17.
    100. R. Jedamzik, A. Neubrand, J. Rodel. Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composies.[J]. Journal of Materials science, 2000, 35:477.
    101. D. E. Jech, J. L. Sepulveda, J. P. Frazier, R. H. Swerden. Functionally graded metal substrate for use in housing a microelectronic component has a functional insert and a surrounding body in the x-y plane that is made from two metal compositions.[P]. US Patent:US6114048-A, 5 Sept.,2000.
    102. M. Kuwabara. Manufacture of inclination function material–involves baking compact formed from two ceramic-metal powder mixtures such that ceramic and metal from respective mixture diffuse to ceramic and metal side compositions respectively.[P]. US Patent: US6248290-B1, 19 Jun., 2001.
    103.凌云汉,周张健,李江涛等.超高压梯度法烧结法制备W/Cu功能梯度材料.[J].中国有色金属学报, 2001, 11(4):576.
    104. Zhang-Jian Zhou, Juan Du, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method. Journal of Alloys and Compouds. 2006,(A):1~5.
    105. Shi-Bo Li, Jian-Xin Xie. Processing and microstructure of functionally graded W/Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders. Composites Science and Technology, 2006, 66:2329~2336.
    106. M. M. Gasik, R. Kaj, et al. Evaluation of properties of W-Cu functional gradient materials by micromechanical model. Computational Materials Science, 1994(3):41~49.
    107.梁淑华,范志康,胡锐.电弧熔炼法制造铜铬系触头材料的组织与性能.[J].特种铸造及有色冶金, 2000, 4:25.
    108. J. Zhang, C. Laird. Cyclic hardening of tungsten monofilament-reinforced nanocrystalline copper matrix composites.[J]. Acta mater, 1999, 4(14):3811.
    109.凤仪,许少凡,颜世钦等.纤维强化金属基复合材料及其应用.[J].机械工程材料, 1995, 19 (1):91.
    110.王盘鑫.粉末冶金技术.冶金工业出版社, 1982.
    111.黄培云.粉末冶金原理.冶金工业出版社, 1998.
    112.姜国圣,王志法,刘正春.高钨钨铜复合材料的研究现状[J].粉末冶金材料科学与工程, 1999,4(1):30~33.
    113.邬荫芳.热等静压技术的新进展.硬质合金, 2000, 17(2):115~119.
    114.吴继红,张斧,扬霖等.钨与铜的热等静压焊接.焊接, 2002, (20):10~14.
    115.汤金芝,王伏生. HIP技术对钨合金材料性能的影响.湖南冶金, 2001,(3):21~24.
    116.周武平.高性能电极材料的等静压技术.新技术新工艺. 1996, (4):27~28.
    117. J. Bohlen, S. B. Yi, J. Swiostek, K. U. Kainer. Scripta Mater. 53 (2005) 259.
    118. S. Kumar, R. Grill. Scripta Mater. 35 (1996) 1047.
    119. N. Inoue, M. Nishara. Hydrostatie Extrusion-theory and Application. Elsevier Applied Science Publisher ltd. 1985:pp 63~71.
    120. A. N.柯布巴什尼可夫著.金属材料的热液体挤压.薛庆春等译.国防工业出版社, 1984.
    121. C. Sausire. Lubricant Problems in the Extrusion Process. Journal of Institute of Metal. 1964~1965, 93:553~559.
    122. Metals Handbook, Vol. 14, 9th edn., ASM (1988), p. 315.
    123.李志民. 2024铝合金(RS,MM)粉末热静液挤压致密化工艺的研究.哈尔滨工业大学博士论文, 1997.3.
    124.于洋. Cu-C合金粉末热静液挤压致密化工艺的研究.哈尔滨工业大学硕士论文, 2001.7
    125. B. Shuzhen, Z. Baosheng. Research of the strengthening technology on the high density tungsten alloy by hydrostatic extrusion. Powder Metall Technol 1995, 13:186~90.
    126. J. J. Bucki, M. K. Ozlowski, Z. Ludynski, A. Mazeer. Study of hydrostatic extrusion of heavy alloys. In: Kneringer G, Rodhammer P, Wilhartitz P,editors. Proceedings of the 14th International Plansee Seminar'97. 1997, 1:339~45.
    127. W. Huanyu, C. Hongnian. Research of the strengthening technology by hydrostatic extrusion for tungsten alloy. Adv Mater Manu Technol 1998, 5:1~5.
    128.许晓丰,刘天丰.热静液挤压工艺对WCu40电极材料组织性能的影响.沈阳航空工业学院学报, 1998, 15(3):34~39.
    129. G. G. Bondarenko, Y. Y. Udris, V. L. Yakushin. On behaviour of W-Cu composition as a candidate divertor material under irradiation by high intensive hydrogen plasma. Fusion Engineering and Design. 51-52,2000:81~84.
    130. B. Bragskin, E. K. Ohnier. Processing of High-strength High-conductivity W-Cu composite [A]. Proceedings of 14th Phase Seminar[C]. 1997, 358~370.
    131. J. A. Belk, M. R. Edwards, W. J. Fanell, et al. Deformation Behaviour of W-Cu Composites.[J]. Powder Metallurgy, 1993,36(4):293~296.
    132.刘美芬等.压缩变形对钨渗铜合金显微组织及性能的影响.兵器材料与工程. 2005:11~13.
    133.张全孝等.机械合金化铜-钨药型罩材料的研究.兵器材料与工程. 2000:44~50.
    134.丁秉均.钨铜基复合材料的研究及进展.粉末冶金工业.2001:45~50.
    135. A. K. Bhalla, J. D. Williams. A Comparative assessment of explosive and other methods of compaction in the production of tungsten-copper composite[J]. Powder Metall, 1976, 1:31-37.
    136.马福康.等静压技术.冶金工业出版社, 1992:25~53.
    137. J. C. Y. Koh, A. Fortini. Inter Heat Mass Trans, 1973, 16:2013~2022.
    138.曹顺华,林信平,李炯义.纳米晶W-Cu复合粉末烧结行为.中国有色金属学报, 2005, 15(2):248~253.
    139.林信平,曹顺华,李炯义.Cu含量对纳米晶W-Cu复合粉末烧结行为的影响.电工材料,2004,3:10~14.
    140.王仲仁等.锻压手册锻造卷[M],北京:中国工业出版社, 2002: 98.
    141. H. A. Kuhn, C. L. Downey. Int. J. Powder. Met, 1977, Vol.7, No.1:15.
    142. R. J. Green. Int. J. Mech. Sci, 1972, Vol.14:215.
    143.大矢根守哉等.日本机械学会论文集(A),昭48-1, Vol.39, No.317:86.
    144.赵仲治等.烧结体屈服准则.武汉工学院科研报告, 1982.8.
    145.大矢根守哉等. ibid, 1974-1, Vol.15, No.156:43.
    146.岛进等.塑性加工, 1977-4, Vol.18, No.195:263.
    147.岛进等. ibid, 1975-8, Vol.16, No.175:660.
    148.森谦一郎等. (日)机论(A),昭54-8, Vol.45, No.396:955.
    149.田瑞强等.塑性加工, 1975-4, Vol.16, No.171:279.
    150.汤浅纮二. ibid, 1976-5, Vol.17, No.184:364.
    151.大内清行等.日本金属学会志, 1983, Vol.47, No.3:258.
    152.林志平编著.锻压变形力的工程计算[M],北京:机械工业出版社, 1986.
    153. R. Blake, J. Smith. Solidification Technology in the Foundry and Casthouse: London, The Institute of Metals, 1980:83~88.
    154.刘相法等.金属学报, Feb. 1996, 32(2):149~153.
    155. I. Maxwell, A. Hellawell. Acta Metall, 1975, 23:901~909.
    156. C. Zener, J. H. Hollomon. J Appl Phys, 1944, 15(1):22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700