新型轻质低膨胀高导热电子封装材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于航空航天飞行器领域使用的电子封装材料,在满足低膨胀、高热导等基本要求的同时,还要满足材料气密性与强度的要求,而且轻质是其首要问题。高硅铝合金作为轻质电子封装材料,不但可通过改变合金成分实现材料物理性能设计,而且兼有优异的综合性能。高硅铝合金材料的低膨胀主要通过提高合金中硅含量来实现,但随着硅含量增加,一是加工脆性增大,难以成材,二是热导性能随之降低,这是一对突出的矛盾,从而制约了其应用。本文研究的低密度、低膨胀、高热导高硅铝合金材料是航空航天电子封装材料重要的发展方向,其科学理论与制备技术研究具有重要的科学意义和应用价值。
     论文结合军工项目(低密度低膨胀高热导高硅铝合金电子封装材料)的研究任务,针对高硅铝合金电子封装材料制备与应用中存在的问题,主要做了如下研究工作:
     采用粉末冶金与真空包套热挤压相结合的方法制备了二元高硅铝合金材料,并系统研究了挤压温度、粉末粒度与Si含量对材料组织及性能的影响,结果表明,选择硅含量较低的合金,解决了加工成形及导热系数问题,但材料膨胀系数及抗拉强度不能满足电子封装材料使用要求。
     为了提高合金材料强度,降低材料膨胀系数,通过对二元高硅铝合金基体添加低膨胀系数、低成本的SiC_P与SiO_2颗粒,制备了颗粒增强铝硅基复合材料,研究了热挤压与热压两种工艺所制备的SiC与SiO_2颗粒增强铝硅基复合材料微观组织及性能,引入Turner和Kerner模型及等效粒径EMA模型分别对材料热膨胀系数及导热系数进行了验证计算。二元高硅铝合金添加SiC与SiO_2颗粒后,材料热膨胀系数下降的同时,其导热系数也随之急剧下降,且其成形性较差,无法测定材料抗拉强度,所制备的两种颗粒增强铝硅基复合材料仍不能满足电子封装材料使用要求。
     为了达到低膨胀、高导热与高强度的理想匹配,首次应用高温空气氧化与高能球磨分别对Al-Si合金粉末进行预处理,以提高合金粉末氧含量,再结合包套挤压制备了Al_2O_3与SiO_2弥散强化的复合材料。探讨了Al-Si合金粉末氧化热力学与动力学条件,计算并绘制了合金氧化、择优氧化和无氧化热力学条件区位图,系统深入研究了氧化时间、球磨时间、球料比及硅含量对Al-Si合金粉末氧含量、材料组织及电子封装材料所要求性能的影响。
     通过对高硅铝合金材料的系统研究,论文发现:对Al-Si合金粉末进行高能球磨预处理后所制备材料综合性能最好,所有性能均可满足电子封装材料使用要求,并优化出最佳球磨工艺参数。论文在研究了Al-Si合金粉末氧化热力学的基础上,建立了其氧化、择优氧化和无氧化热力学条件区位图。研制出一种新型的具有低密度、低膨胀、高导热性的电子封装材料。
Electronic packaging materials used in aerospace vehicles should notonly meet the basic need of low thermal expansion coefficient (TEC) andhigh thermal conductivity (TC), but also the need of hermeticity andstrength, and lightweight is the precondition to use. High-siliconaluminum alloys used as lightweight electronic packaging material cannot only realize the design of physical properties by changing thecomposition of alloy, but also have excellent comprehensive properties.Its low expansion coefficient can be obtained by increasing Si content,however, alloy brittleness increases and thermal conductivity decreaseswith the increase of Si content, which restricts its application.High-silicon aluminum alloy materials with lightweight, low thermalexpansion coefficient and high thermal conductivity, studied in this paper,is important developing direction in electronic packaging materials usedin aerospace, the researches on its scientific theory and preparationtechnology have important scientific and practical significance.
     This dissertation based on the study of military industry project:electronic packaging material of high-silicon aluminum alloys withlow-density, low thermal expansion coefficient and high thermalconductivity, in order to solve problems occurred in the preparation anduse of electronic packaging material of high-silicon aluminum alloys, themain researches are as follows:
     Binary high-silicon aluminum alloys were prepared by powdermetallurgy and vacuum canning hot-extrusion process, and the effect ofextrusion temperature, powder size and Si content on microstructure andproperties of material was comprehensively studied. The results show that:binary high-silicon aluminum alloy with lower Si content solves theproblem of brittleness and gains better thermal conductivity, but it dosenot satisfy the need of the TEC and tensile strength of electronicpackaging material.
     In order to improve the tensile strength and decrease the TEC, SiC_pand SiO_2 with low TEC and cost addition were put into binaryhigh-silicon aluminum alloy matrix to prepare particle reinforcing Al-Si matrix composites. The microstructure and properties of SiC and SiO_2particle reinforced Al-Si matrix composites prepared by hot-extrusion andhot-press respectively were studied, TEC and TC were verifiedrespectively by Turner, Kerner and EMA (Effective MediumApproximation) models. The TEC of the composites decreases, at thesame time, the TC of them decreases rapidly and the tensile strength cannot be tested because of the bad formability of materials, they can alsonot meet the using need of electronic packaging materials.
     In order to gaining the best comprehensive properties,high-temperature air-oxidation and high-energy milling pretreatmentprocesses, introduced in this paper for the first time, were applied toincrease the oxygen content of Al-Si alloy powder, combined withvacuum canning hot-extrusion process to fabricate SiO_2 and Al_2O_3dispersion strengthening composites. The oxidation thermodynamics andkinetics condition of Al-Si alloy powder were discussed, thethermodynamics condition of oxidation, priority oxidation andnonoxidation were calculated and drew, the effect of oxidation time,milling time, the ratio of ball to powder and Si content on powder oxygencontent, material microstructure and properties were comprehensivelystudied.
     At last, all processes used in fabricating high-silicon aluminum alloycomposites were synthetically analyzed and compared, It can beconcluded that: the comprehensive properties of the composites preparedby powder after high-energy milling process are the best, all propertiescan entirely meet the need of electronic packaging materials, and theparameters of milling process were optimized. In this paper, thethermodynamics condition of oxidation, priority oxidation andnonoxidation has been established based on the investigation of theoxidation thermodynamics and kinetics condition of Al-Si alloy powder.A novel low-density, low thermal expansion coefficient(TEC) and highthermal conductivity(TC) electronic package material was developed.
引文
[1] 周贤良,吴江晖,张建云等.电子封装用金属基复合材料的研究现状[J].南昌航空工业学院学报.2001,5(1):11~14
    [2] 喻学斌,张国定,吴人洁等.真空压渗铸造铝基电子封装复合材料研究[J].材料工程.1994:(3):64~67
    [3] Jacobson D.M, Powder Metallurgy, 2000; 43 (3): 200~202
    [4] JacobsonD. M, Spray-Formed Silicon-Aluminum[J]. ADVANCED MATERIALS & PROCESSES, 2000 (3): 36~39
    [5] Carl Zweben, Metal-Matrix Composites for Electronic Packaging[J]. JOM, 1992; 44(7): 15~23
    [6] 刘正春,王志法,姜国圣等.金属基电子封装材料进展[J].兵器材料科学与工程,2001:24:49~52
    [7] Jacobson D. M, Andrew Ogilvy. Property Measurements on Osprey Spray-Deposited Al-Si Alloys. MATT, 2002; (5)
    [8] 王志法,姜国圣,张迎九等.新型电力半导体支承板材料一DG合金.电力电子技术,1997,31(3):88~90
    [9] 王志法,刘正春,姜国圣.WCu电子封装材料的气密性.中国有色金属学报,1999,9(2):324~326
    [10] RandallMGermanetc. Powder metallurgy processing of thermal management materials for microelectronic applications. The International Journal Of Powder Metallur-gy. 1994, 30(2): 205~215
    [11] Carl Zweben. Advances In Composite Materials for thermal management in electronic packaging. JOM, 1998, 50(6): 47~51
    [12] Hunt M. Electronic packaging. Materials Engineering. 1991, 108(1): 24~25
    [13] Leatham, et al. United States Patent: 6, 312, 535
    [14] Gupta M, Lavernia E. J, Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic AI-Si alloy[J]. J. Mater. Processing Tech, 1995; 54: 261~270
    [15] 许锋,张建安等.用熔剂法改善铸造铝硅合金组织和性能[J].上海工程技术大学学报.1996:10(3):37~40
    [16] Sumitomo Light Metal Industries Ltd., MPR, 1994; 49(1): 26~31
    [17] Frank J Polese. Heal-dissipating substrate for micro-electronic devices and fabrication method. US Patens 5878332. Mar 2. 1999
    [18] YuYong CHEN, D. D. L. CHUNG. Silicon-aluminium network composites fabricated by liquid metal infiltration[J]. Journal of Materials Science 29(1994): 6069~6075
    [19] 孙宝德,李克等.镧、钇稀土在过共晶铝硅合金中的作用[J].上海交通大学学报.1999:33(7):795~798
    [20] 张忠华,张景祥,边秀房等.新型高效PM磷变质剂[J].特种铸造及有色合金.2000(2):13~15
    [21] 张卫文,尹志民,赵阳等.过共晶高硅铸造铝合金磷—稀土双重变质处理[J].中国有色金属学报.1995;5(1):59~62
    [22] 杨朝聪等.过共晶铝硅合金的细化变质[J].云南冶金.1997:2l(1):40~42
    [23] 李小平,陈振华,曹标等.高硅铝合金悬浮铸造的组织细化[J].特种铸造及有色合金.1999(6):20~21
    [24] 赵浩峰,韩世平等.特种铸造技术在金属基复合材料制造中的应用及发展[J].材料工程.1999(2):30~34
    [25] 黄培云,金展鹏,陈振华.粉末冶金基础理论与新技术,长沙:中南工业大学出版社,151~152
    [26] Isamu Yamauchi, Itsuo Ohnaka, Hot Extrusion of Rapidly Solidified Al-Si Alloy Powder by the Rotating-Water-Atomization Process, Transactions of the Japan Institute of Metals, 1986, 27 (3): 195~203
    [27] Randall M. German, Karl F. Hens, Powder Metallurgy Processing of Thermal Management Materials for Microelectronic Applications, Engineering & Technology, 30 (2): 205~215
    [28] M. Gupta, E. J. Lavernia Effect of processing on the microstructural variation and heat-treatment response of a hypereutectic Al-Si alloy, Journal of Materials Processing Technology, 1995, 54: 261~270
    [29] 张大童,李元元,周照耀等.快速凝固/粉末冶金(RS/PM)高硅铝合金材料的研究[J].材料科学与工艺.1999,7:41~44
    [30] Jacobson D. M, UK Patent 147239,
    [31] Leatham A. G, Lawley A. The Osprey Process: Principles and Applications[J]. The Int. J. of Powder Metallurgy, 1993, 29(4): 321~329
    [32] 喻学斌,张国定,金燕萍,吴人洁,电子封装铝基复合材料线膨胀研究[J].宇航材料工艺,1995,5:31~34
    [33] 刘政,刘小梅,国外铝基复合材料的开发与应用[J].轻合金加工技术,1994,:7~9
    [34] Hoover W. R. Fabrication of Particulates Reinforced Metal Composites Proceedings of an International Conference, 1990, 115~118
    [35] 迁村太朗.铝合金盘形制动器[J].国外机车车辆工艺.1995,4:9~23
    [36] Clyne T W, Withers P J. An introduction to metal matrix composites[J]. Cambridge. Cambridge University Press, 1993, 2(4): 31~36
    [37] 王文龙,吴军华,张国定,等.铝基复合材料的摩擦磨损性能[J].金属学报,1998,34(11):1178~1182
    [38] 齐海波,丁占来,樊云昌,等.SiC颗粒增强铝基复合材料制动盘的研究[J].复合材料学报,2001,(18):62~66
    [39] 张迎九,王志法,吕维洁等.金属基低膨胀高导热复合材料[J].材料导报,1997,11(3):52~56
    [40] 樊建中,姚忠凯,杜善义,等.P/M制备的SiCp/AI复合材料界面结构[J].中国有色金属学报,1998,8(1):20~23
    [41] 傅敏士,肖亚航,赵迎祥.粉末预制块重熔稀释制备SiCp/Al复合材料的研究[J].新技术新工艺,2000,(11):31~32
    [42] 隋贤栋,罗承萍,欧阳柳章,等.铸造SiCp/Al-Si复合材料中的“界面Si”行为.中国有色金属学报,1999,9(S1):20~24
    [43] Lee Konbae etal. Interfacial reaction in SiCp/Al composite fabricated by pressureless infiltration[J]. Scripta. Materialia, 1997, 36(8): 847~852
    [44] 李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001.39~42
    [45] 李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003.5~9
    [46] Newirk M S, Wrguhart A W, Zwicker H R. J. Mater. Res. [J], 1986, 1: 81~86
    [47] Guillard F J A H, Hand R J, Lee WE. Growth of an alumina particulate reinforced Al-Al203 composite by directed metal oxidation [J]. British Ceramic Transactions BritishCeram, 1994, 93: 129~136
    [48] Yang L, Zhu D, Xu C, Zhang J. Metal. Mater. Trans.,1996, 27A: 2094
    [49] Xiao P, Derby D. et al. Characterization of metal/ceramic interfaces using specular neutron reflection: Acta Materialia, 1997, 45(1): 273~279
    [50] Yoshikawa N, Watanade Y, Sugawaka S, Taniguch S, Kikuchi A.日本金属 学会誌(J.Japan Inst.Metals),1998,62(11).1006~1012
    [51] Yoshikawa N, Watanabe Y, Veloza Z M, Taniguchi S, Kikuchi A. 日本金属学会誌(J.Japan Inst.Metals),1999,40(3):312~317
    [52] Smith C S. Min. Met. 1930, Ⅱ: 213
    [53] F. N. Rhines. Trans. Metall. Soc. AIME, 1940, 137~246
    [54] F. N. Rhines. W. A. Jhoneson and W. A. Anderson. Trans. Metall. Soc. AIME, 1942, 147~205
    [55] J. L. Meijering. Trans. Metall. Soc. AIME, 1960, 218~968
    [56] 李红霞,田保红等.内氧化法制备Al_2O_3/Cu复合材料[J].兵器材料科学与工程.2004,27(3):64~68
    [57] 梁淑华,徐磊等.Al_2O_3/Cu复合材料内氧化粉末的制备[J].粉末冶金技术,2003,21(4):201~205
    [58] 梁淑华,徐磊等.Cu-Al预合金粉末中Al内氧化工艺的分析[J].金属学报,2004:40(3):309~313
    [59] 申玉田,崔春翔等.Cu-Al合金内氧化及Cu氧化行为的热力学分析[J].粉末冶金技术,2001;19(1):28~32
    [60] 申玉田,崔春翔等Cu-Al合金内氧化工艺及动力学的研究[J].稀有金属材料与工程,2001,30(1):44~49
    [61] 申玉田,孙建忠等.Cu-Al合金内氧化产物及分布的研究[J].粉末冶金技术,2004,22(3):131~134
    [62] 丁万山,林晓莎等.预合金粉末内氧化生产高性能AgMeO触头材料[J].电工材料,2004,4:12~17
    [63] 邓忠明,吕贤勇等.某些金属元素对Ag-Sn合金内氧化速度的影响[J].电工材料,2001,2:34~36
    [64] Miller, S. A., Murphy, R. J. (1979), Scri. Metall. 13, 673~676
    [65] 陈洪荪等,金属物理性能及测试方法,北京:冶金工业出版社,1987年,187~309
    [66] 张大童.李元元.罗宗强.快速凝固过共晶铝硅合金材料的研究进展,轻合金加工技术,2001,29(2):1~6
    [67] 李克,王俊,周鸣等,过共晶铝硅自生梯度复合材料的组织与性能[J],中国有色金属学报,2002,12(3):521~524
    [68] 王渠东,金俊泽等,离心铸造Al-20wt%Si合金白生表面复合材料的组织与性能[J],航空材料学报,1997,17(2):7~13
    [69] 王渠东,丁文江,金俊泽等,离心铸造铝硅合金初晶自生复合材料的研 究[J],特种铸造及有色合金,1999年增刊,No.1:9~11
    [70] 杨广,堵永国,白书欣等,界面热阻对金刚石/银复合材料导热率的影响[J],国防科技大学学报,1998,20(6):119~122
    [71] 杨伏良,甘卫平,陈招科.包覆轧制过共晶高硅铝合金材料的性能研究.材料导报,2004,18(10):94~96
    [72] 甄子胜,赵爱民,毛卫民等,喷射沉积高硅铝合金亚微组织及形成机理[J],中国有色金属学报,2000,10(6):813~817
    [73] 张强,高体积分数铝基复合材料的微观组织与性能研究,博士论文,2003年
    [74] A. L. Geiger, Michael Jackson. Low-Expansion MMCs Boost Avionics. Advanced Materials&Process. 1989, 136(7): 23~28
    [75] 奚同庚,王梅华.固体热物理性质导论一理论和测量,中国计量出版社,1987:280~303
    [76] 耿林,温丙先,姚忠凯.压铸SiCw/Al复合材料的热物理性能研究.复合材料学报.1996,13(3):48~52
    [77] D. Gamota, C. Melton. Advanced Encapsulant Systems for Flip Chip. Proceedings 3rd International Symposium on Advanced Packaging Materials, Braselton, GA, USA, 1997: 46~49
    [78] D. P. H. Hasselman, Kimberly Y. Donaldson, Alan L. Giger. Effect of Reinforcement Particle Size on the Thermal Conductivity of Particulate-Silicon Carbide-Reinforced Al Matrix Composite. J. Am. Ceramic. 1992, 75(11): 3137~3140
    [79] A. L. Giger, D. P. H. Hasselman, K. Y. Donaldson. Elect of Reinforcement Particle Size on the Thermal Conductivity of a Particulate-Silicon Carbide-Reinforced Aluminum Matrix Composite. Journal of Materials Science Leters. 1993, 12: 420~423
    [80] 陈招科,低密度低膨胀高热导电子封装材料的研制,[硕士学位论文],长沙:中南大学,2004
    [81] D. K. White, I. S. Smith, A. Silzars. New Ground in Hybrid Packaging. Hybrid Circuit Technology. 1990, 12(1): 14~19
    [82] 周正,SiO_2玻璃在原位反应合成Al-Al_2O_3复合材料中的作用研究,[博士学位论文],重庆:重庆大学,2002
    [83] 黄岳山,吴效明,蒙继龙,(Al_2O_3-SiO_2)sf/Al-Si复合材料的界面反应,金属学报,1996,6:668~672
    [84] 胡明.金属基复合材料的热膨胀[J].佳木斯大学学报(自然科学版),2004,22(1):94~100
    [85] A. Fahmy etc. Thermal-Expansion Behavior of Two-Phase Solids[J]. J. Appl. Phys., 1970, 41: 5108~5111
    [86] 奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981
    [87] Rajendra U. Vaidy and K. K. Chawla. Thermal, expansion of metal-matrix composites[J]. Comp. Sci. and Tech., 1994, (50): 13~22
    [88] Sharma S C. Effect of albite particles on the coefficient of thermal expansion behavior of the Al6061 alloy composites. Metal -lurgical and materials transa -ctions, 2000, 31A (3): 773~780
    [89] 姜传海.SiC_w/LD2复合材料零错配应力温度及其调整.材料研究学报,1997,11(4):411~414
    [90] 钟涛兴.压渗SiC_p/Al电子封装复合材料的研究.铸造技术,1997,6:42~43
    [91] Takako Takei and Hiroshi Hatta. Thermal expansion behaviors of particulate-filled composites Ⅱ: Multi-reinforcing phasee(Hybrid Composites)[J]. Mater. Sci. Eng. A, 1991, 131: 145~152
    [92] Zakako Takei and Hiroshi Hatta. Thermal expansion behaviors of particulate-filled composites Ⅰ: Single reinforcing phase[J]. Mater. Sci. Eng. A, 1991, 131: 133~143
    [93] 沈军,谢壮德,董寅生等.快速凝固铝硅合金的性能、应用和发展趋势.粉末冶金技术,2000,18(3):208~210
    [94] Liang Y J. Physical Chemistry. Beijing: Metallurgy Industry Press, 1983: 236~258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700