微纳米晶高Si铝合金材料制备工艺及组织形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了大幅度提高汽车、赛车等的使用性能,对其核心部件----发动机功率密度及自重的要求越来越高。我国几代汽车技术的发展,伴随着发动机功率成倍增长的同时,发动机的体积和重量也越来越大,由此产生了严重的结构超重问题,致使发动机的性能受到影响,成为制约汽车工业发展的关键因素之一。采用新的高性能材料制造发动机零部件,减轻发动机运动部件质量和传动阻力等是提高发动机性能的有效途径。
     铝硅合金作为耐磨材料,在机械工业中得到了广泛应用。特别是含硅量在18%-26wt%的过共晶铝硅合金具有密度小、热膨胀系数低、导热性好、足够的高温强度和耐磨性等特点,是理想的发动机轻质耐磨材料。但是,采用普通铸造工艺生产过共晶铝硅合金时,粗大的硅相严重割裂了基体的连续性,使合金的强度、韧性显著下降。当硅量超过14wt%时,即使变质处理也很难消除硅相的不利影响。随着现代工业的发展,尤其是汽车、航空、航天工业的特殊需要,要求铝硅合金进一步提高耐磨性、耐热性,并大幅度降低线收缩率及密度。在合金成分上表现为高硅含量及合金化。显然,常规的合金材料及铸造工艺远远不能满足要求。近几年研制开发的快速凝固新材料为航空、航天工业用高性能材料开辟了一条新路。
     本文应用快速凝固粉末冶金法(RS/PM)制备了高耐磨超低膨胀系数高硅铝合金材料,对其进行了系统的分析研究,取得了规律性认识,并应用该材料试制了大功率发动机缸套,得到了具有实用价值的研究成果。
     论文自行设计制造了雾化制粉实验装置,以此为基础研究各种工艺参数对粉末材料特性的影响规律,雾化正交实验及验证实验结果表明:各种雾化工艺参数对合金雾化效果有很大影响:喷嘴间隙δ是影响雾化效果的显著因子,气体流量Q是影响雾化效果的第二显著因子,金属液过热度为非显著因子;实验得到最佳喷嘴间隙取δ=0.55mm,较佳的气体流量Q为34 m~3/h,陶瓷管内径值为6.4 mm,最佳喷嘴角度为25°,金属液过热度100℃。
     论文以群体动力学模型为基础,在充分考虑合金的热物性参数,过饱和度以及第二相形核率变化的条件下,提出了一个描述雾化过共晶Al-Si合金液滴快速凝固过程中组织演变的数学模型,并将其与液滴的运动方程与传热方程相耦合,对雾化合金液滴的冷却凝固过程进行模拟分析,并通过实验进行了验证。结果表明:随着合金液滴尺寸的减小,平均冷却速度增加,当熔滴尺寸足够小时,熔滴温度的变化趋势及合金液滴的组织将发生突变,过共晶Al-Si合金液滴发生亚稳共晶组织转变的临界尺寸为:d_(lim)=[6.Nu.K_g(T_x-T_g)/ρ.L.(df/dt)]~(1/2);增加雾化气体的初速度,降低熔体过热度,会使初生相的析出受到抑制,有利于得到亚稳组织。
     论文在快速枝晶及共晶生长理论模型基础上,充分考虑了过冷熔体中等轴凝固的生长特性,借用最高界面生长温度判据,建立了共晶合金等轴凝固界面响应函数模型:IRF(ν)=max(T_(pri)(ν),T_(eut)(ν));通过该模型分析了Al-Si合金系快速等轴凝固过程中的组织竞争生长,绘制了非平衡组织选择图,研究表明:在快速等轴凝固过程中,Al-Si系合金存在着α相、Si相及(α+Si)共晶组织三个生长区,当Si的含量介于12%至25%之间时,将会出现α相及(α+Si)共晶两种亚稳组织,当Si含量大于25%或者小于12%时,只可能形成亚稳的(α+Si)共晶组织;计算结果与实验结果基本吻合,说明所建立的共晶合金等轴凝固界面响应函数模型可以较好地预测Al-Si系合金快速等轴凝固过程中的非平衡组织选择,对其它共晶系合金同样具有一定的指导意义。
     论文以自行设计制造的小型冷压及热挤压模具为基础进行小试样挤压过程物理模拟,研究粉末材料致密化和金属流变规律及热挤压工艺参数对材料微观组织的影响。结果表明:粉末冷压坯的挤压可以分为填充致密、稳定挤压、紊流挤压等三个阶段;粉末颗粒尺寸越大,粉末的冷压制性能越好,越容易获得表面质量高且形状完整的冷压坯料,同时大尺寸粉末颗粒的热挤压棒材质量好,表面光洁无裂纹;但是,粉末颗粒尺寸越小,所获得的热挤压棒材密度越高,材料内部微观组织细小且均匀分布,且挤压棒材的力学性能越好。
     综合考虑粉末的利用率及粉末颗粒内部的组织形态力学性能等因素,使用混合粉末比使用单级粉末挤压具有一定的优势,实验证明,使用颗粒半径小于147μm的混合粉末,选择适当的挤压温度、挤压比、挤压模芯角度等参数可以得到高质量的挤压棒材。
     温度对热挤压制品微观组织影响较大,合金中Si含量越高,初晶硅相随挤压温度升高而长大的趋势越明显。Al-Si合金粉末材料中细小弥散分布的Si相在挤压过程中发生聚集和长大的规律符合LSW粗化动力学理论;挤压变形系数和制品横截面形状主要通过改变粉末变形程度和粉末体结合状态来影响挤压制品的微观组织及力学性能。挤压比为16时,Al-Si合金粉末之间的孔隙已经基本消除,粉末体结合已接近良好状态,较大的挤压比是获得理想微观组织及性能的必要条件。在现有实验条件下,Al-30%Si合金最佳热挤压工艺参数为:挤压温度520℃,挤压比16,模芯角90°。
     总之,使用快速凝固制粉+热挤压工艺制备的Al-Si合金与未经过任何变质处理自由凝固条件下制备的合金相比,力学性能得到了显著提高;随着合金中Si含量的提高,挤压制品的抗拉强度、硬度、耐磨性相应提高,延伸率略有下降;细化初晶硅相使其细小均匀分布,改善初晶硅相的形态使其与基体的结合力进一步提高,将有利于提高材料的力学性能、摩擦磨损性能。
     应用高硅铝合金材料代替传统38CrMoAl材料生产大功率发动机缸套,并采用缸套环向加筋且筋上有径向约束的方法可以使缸套的各种性能满足实际工作要求。其室温抗拉强度大于400 N/mm~2,高温250℃抗拉强度大于300 N/mm~2,520℃挤压制品的平均磨损量为2mg,平均摩擦系数为0.3,室温热导率及热膨胀系数分别达到130 W/m/k及1.5×10~(-5)K~(-1),其力学性能优于有报道的国外技术水平,综合性能优于铸铁及钢制缸套材料。
In order to enhance the operational properties of the automobiles, karts greatly, the power density should be improved and the weight of the engine should be lightened. As the development of the automobiles, the power increase with the increasing of the weight and volume of the engine more and more, which result in overweight and severe weakening operational properties of the automobiles. The efficient way of improving properties of the engine is to manufacture the parts of the engine with new and high-properties material, which can lighten the mass of the moving parts and reduce the power transmission resistance of the engine.
     As a wear-resistant material, the A1-Si alloy was used in the mechanical industry extensively. Being the low density and coefficient of thermal expansion, the high coefficient of heat conductivity , high-temperature strength and well wear-resisting property, the hypereutectic A1-Si alloys, especially the alloys with the percent of Si is 18%-26%, were the ideal light and wear-resisting materials of the engine. But with the ordinary casting process, the properties of the alloys were weakened greatly by the coarsened primary Si phases which make the matrix of the hypereutectic Al-Si alloy be rent severely. When the percent of Si exceed 14%, the properties of the alloys could not be improved even through the modification.
     As the development of modem industry, especially the needs of the motor and aerospace industry ask the A1-Si alloys be improved in the properties of wear resistance, heat resistance, linear expansion coefficient and density, then the composition of the alloys should be high-Si content and high-Alloying. Evidently, the ordinary alloy and casting process could not meet the needs. The rapid solidification materials developed in the recent years offer a new way to meet the needs for the development of the motor and aerospace industry.
     In this paper, the high-silicon aluminum alloys which have the properties of well wear resistance and low-thermal expansion coefficient were prepared by RS/PM. Through systematic research and investigation the regularity knowledge on the alloys was acquired. And the alloy was successfully used to manufacture the cylinder sleeve of the high power engine.
     The gas-atomizer arrangement was designed and manufactured, the influence of the parameters on the character and microstructures of the powder particles was studied with orthogonal experiments. It was discovered that the slot width of the gas nozzle was the key factor to influence quality of the powder particles, the gas flow rate was the second and the degree of the superheat was the third factor. The best combination of the atomization parameters is that——the diameter of the ceramic nozzle was 6.4mm, the angle of gas nozzle was 25°, the gas flow rate was about 34m~3/h and the slot width of the gas nozzle was 0.55mm, the superheat was 100℃.
     Based on the population dynamics model considering the continuous varieties of thermo-physical parameters, supersaturation, nucleation rate, a model which was compiled with both the droplets heat transfer controlling equation and the droplets motion controlling equation has been developed to describe the microstructure evolution of hypereutectic A1-Si alloy during rapid solidification. The results of the solution to the model for the A390 alloy show that with decreasing droplet size, the average cooling rate increases rapidly. And when size of a droplet arrives at enough small, its temperature and microstructure varieties break out. The results also show that the primary Si phases of the powder particles in the microstructure have not been extinct until its size is less than a critical size, which is d_(lim)=[6.Nu.k_g(T_x-T_g)/ρ.L.(df)/(dt)]~(1/2). With increasing the initial gas velocity and decreasing the superheat of the melt droplet, the nucleation and growth of primary phases are suppressed and the microstructure becomes into the metastable state.
     Meanwhile the results of atomization experiments of hypereutectic Al-Si alloys also show a good agreement of the experiments with the theoretical calculations. That is to say, the model can be used to predict satisfactorily microstructures evolution of the hypereutectic A1-Si alloys and the model would be useful for the microstructure predictions to other eutectic alloys.
     On the basis of the model for rapid growth of dendrite and eutectic crystals and the criterion of the highest temperature at the interface growth, a interface response function IRF(v)=max(T_(pn).(v),T_(eut)(v)) for the growth of a crystal of a eutectic alloys during equiaxed rapid solidification was established. With the IRF, the competitive growth between the primary and eutectic phases of Al-Si alloys was investigated. Then a microstructure-selection map of Al-Si during non-equilibrium solidification was drawn. The map shows that there are three growth zone (primaryα-Al、primary Si phase and (α+Si) eutectic zone) in the Al-Si alloy. When the percentage of the Si phase is 12%-25%, the metastable microstructures wereα-Al plus (α+Si), and when the percentage of the Si phase below 12% or exceed 25%, the metastable microstructure was the eutectic of (α+Si) only. The calculation results was shown a good agreement with that of atomization experiments. The IRF model can be used to predict satisfactorily the microstructure selection and the evolution of the microstructures of the Al-Si alloy system during non-equilibrium solidification. Meanwhile the IRF model would be of benefit for the microstructure predictions during the non-equilibrium solidification of other eutectic alloys.
     With moulds of cold compacting and extrusion the extrusion processes of the specimen were simulated. And the regular principles of the densification and rheidity of the powders during the extrusion process were studied. The results show that the extrusion processes of the ingot include three stages, which are the packing densification stage, the stable extrusion stage and the turbulent extrusion stage. The bigger the powder particles, the better the performance of cold compacting. At the meantime, the quality of the alloy bar extruded from bigger powder particles was good enough without cracking. From the point of density, the smaller the powder particles, the higher the density of the alloy bar. On the other hand, the microstructures and mechanical properties of the small powder particles were better than that of the bigger particles.
     For practice application, mixed powders of various sizes (<147μm) were better than the powders of single size. In order to improve the quality of alloy bar, some methods should be used in hot extrusion, such as coating with aluminum film, lubricating, increasing temperature of extrusion, increasing the extrusion area ratio (>16) and so on.
     The experiments show that influence of the extrusion temperatures on microstructures of alloy bar were more greater and the growth tendency of primary Si phases increased with the increasing percent of Si phases. The results of measurements proved that the growth law of the dispersed primary Si phases conformed to the LSW dynamics theory. The extrusion area ratio and the shape of transverse section can change the microstructures and mechanical properties of alloy bar by influencing deforming and combination extent of powder particles. When the extrusion area ratio was 16, most of the porosities among the powder particles were meanly disappeared and the combination of the powders was firm. So the greater extrusion area ratio should be necessary for refine microstructures. For the mixed powders of A1-30%Si alloy, the best extrusion temperature , the extrusion area ratio and the angle of mould were 520℃、16 and 90°respectively.
     To sum up, compared with the alloy prepared by normal casting without any modification the mechanical properties of the alloy prepared by RS/PM increased greatly. The tensile strength, hardness, and the wear resistance of the alloy increased and the extensibility of the alloy decreased with the increasing percentage of Si phases for the alloy prepared by RS/PM. It is by reason of refining and improving morphology of primary Si phases to increase the mechanical properties of the alloy and the lower extensibility of the Si phases.
     The high-silicon aluminum alloy prepared by RS/PM was used to manufacture cylinder sleeve of high power engine. The test measurements show the various properties of the cylinder sleeve including the circumferential reinforcement and the radial restraint could meet the needs of the actual work of the automobile. The tensile strength was over 400N/mm2, high temperature tensile strength was over 300N/mm~2, the mass loss of alloys bar extrusion at 520℃was only 2mg. Its coefficient of friction was 0.3, the thermal conductivity and coefficient of thermal expansion at room temperature were 130 W/m/k and 1.5×10~(-5)K~(-1) respectively. As you seen, the mechanical properties of the alloy were better than that reported by foreign countries and the synthesis properties of the high silicon aluminum alloy prepared by RS/PM were better than that of cast iron and steel materials.
引文
[1] 武凤臣,凌征均.未来主战坦克的发展[J].车辆与动力技术,2002(1):7-9
    [2] 刘福水,张卫正,张幽彤.国外主战坦克动力的现状发展趋势及技术分析[J].兵工学报,1999,(6):15-18
    [3] 袁晓光,张淑英,徐达鸣,李庆春.快速凝固耐磨高硅铝合金研究现状[J].材料导报,1996,(2):10.
    [4] JOHN E·HATCH主编,刘静安,戴玲宝,邓冬桥译.铝的性能及物理冶金[M].科学技术文献出版社重庆分社,重庆,1984
    [5] 汪立亮,徐寅生.活塞材料的应用及新材料的开发[J].汽车工艺与材料,1998(9):22-24
    [6] 赖华清等.过共晶铝硅合金的研究及应用[J].汽车工艺与材料,2001(10):21-24
    [7] 程天一,章守华.快速凝固技术与新型合金[M]北京:宇航出版社,1990
    [8] 李月珠.快速凝固技术与新型合金[M].北京:宇航出版社,1990
    [9] 黄培云,盒展鹏,阵振华.粉末冶金基础理论与新技术[M]湖南:中南工业大学出版社,1995
    [10] Lavemia E J, Ayersand J D, Srimtsan T S. Inter.Mater.Reviews, 1992,37(1)
    [11] C.E Dixon, H.M. Skelly. Int.J.Power Metal.,1965,1(4):28-33
    [12] H.M. Skelly, C.E Dixon. Int.J.Power Metal.,1971,7(3):47-52
    [13] P.Dciss. Metal Power Report, 1983,4:185-189
    [14] N.Amano,Y.odanic,Y.Takeda. Metal Power Report., 1985,(11):640-643
    [15] ISamuYamauchi, ItsuoOhnaka, Satorukawamoto etal. Trans. Japan. Int. Metal., 1986,27(3): 187-203
    [16] N.Amano,Yodami. [J]MetalPowerReport.. 1989,(3): 186-190
    [17] 谢壮德等.快速凝固铝硅合金材料及其在汽车中的应用[J].材料科学与工程,1999,17(4):101-104
    [18] 袁晓光,徐达鸣,李庆春,孙剑飞.快速凝固铝硅合金在汽车工业中应用现状及发展[J]汽车技术,1997,(6):30
    [19] Sumitomo Electric Industries of Osake.Japan.MRP, 1994,49(4)
    [20] Sumitomo Light Metal Industries Ltd. MRP, 1994,49(1)
    [21] H.Jones. A perspective on the development of rapid solidification and nonequibrium processing and its future. [J]Matrerials Science and Engineering. 2001, (A304-306): 11-19
    [22] R.W.卡恩著,雷廷权等译.金属与合金工艺[M].科学出版社,北京,1998.
    [23] 李元元,张大童等.高压水雾化法制备的高硅铝合金粉末特性[J].金属学报,1998,34 (1):95-99
    [24] I Yamauchi, I Ohnaka, S Kawamotoetal. Production of Rapidly Solidified A1-Si Alloy Powder by the Rotating-Water-Atomization Process and its Structure Trans[J].Japan. Inst. Met. 1986, 27: 187-194
    [25] I Yamauchi, I Ohnaka, S Kawamotoetal.Hot Extrusion of Solidified AI-Si Alloy Powder by the Rotating-Water-Atomization Process Trans[J]. Japan. Inst. Met. 1986,27:195-203
    [26] 谢壮德等.快速凝固铝硅合金的制备、组织特征及断裂行为[J].粉末冶金技术,2000,18(2):111-116
    [27] 谢壮德等.超音速气雾化高铝硅合金粉末高温加热组织及性能演变[J].粉末冶金技术2002,20(4):205-208
    [28] 李元元,张大童等.高压水雾化法制备的高硅铝合金粉末特性[J].金属学报,1998,34 (1):95-99
    [29] 袁晓光.快速凝固高硅铝合金的微观组织及力学性能.哈尔宾工业大学博士论文:1997
    [30] 张大童等.快速凝固过共晶铝硅合金材料的研究进展[J].轻合金加工技术,2001,29(2):1-6
    [31] Kita,Kazuhiko,Uozu,Japan. Compacted consolidated high strength, heat resistant aluminum-based alloy. US 5693897. Dec. 2. 1997/Feb. 22. 1996.
    [32] 张大童,李元元等.快速凝固高硅铝合金粉末的热挤压过程[J].中国有色金属学报,2001(11)1:6-9
    [33] 张凤林等.纳米块体材料烧结技术进展[J].硬质合金.2002(19)3:177-181
    [34] 彭金辉,马骏骑等.等离子体活化烧结纳米材料[J].稀有金属.1997(21)6:444-446
    [35] 冯海波,周玉,贾德昌.放电等离子烧结技术的原理及应用[J].材料科学与工艺.2003(11)3:327-331
    [36] 陈立东,王士维.脉冲电流烧结的现状与展望[J].陶瓷学报.2001(22)3:204-207
    [37] WangYucheng,Fu Zhengyi.Study of temperature in spark plasm sintering[J] .Materials Science and Engineering, 2002(B90): 34-37.
    [38] 肖志瑜等.机械零件的粉末冶金成形方法[J].金属成型工艺.1998,16(1):44-47
    [39] 夏玉海等.用粉末锻造法制造高强度机械零部件[J].山东机械.2002(2):5-6
    [40] 柳瑞清,蔡薇.铝合金挤压工艺研究[J].模具工业.1997(12):33-35
    [41] 冯开瑞,李积彬.铝合金挤压模具高温保护润滑剂机理研究[J].深圳大学学报(理工版),1997(14)4:58-63
    [42] 张彦敏,孙爱学.热挤压加工中的摩擦与润滑问题初步探讨[J].锻压机械,2001,5:12-13
    [43] Siger A R E.The principles of spray rolling of metals [J].Metal Materials, 1970,4(6):246-250
    [44] Levi C G, Mehrabian R. Heat flow during rapid solidification of undercooled metal droplets[J].Metallurgical Trans., 1982(13A):221-233
    [45] Chang Keh-Chin,Chen Chih-Ming. Revisiting heat transfer analysis for rapid solidification of metal droplets [J].Int.J.Heat Mass Transfer,2001,44:1573-1583
    [46] Dirk Bergrnann,Udo Fritsching,Klaus Bauckhage,A mathematical model for cooling and rapid solidification of molten metal droplets[J].Int.J.Therm.Sci.,2000, 39:53-62
    [47] Su Y H,Tsao C Y A.Modeling of solidification of molten metal droplet during atomization[]J.Metallurgical and Materials Trans.B, 1997,28:1249-1225
    [48] Trivedi R,Jin F, Anderson I E.Dynamical evolution of microstructure in finely atomized droplets ofA1-Si alloys[J].Acta Materialia,2003,51:289-300
    [49] 傅恒志,柳百成,魏炳波.凝固科学技术与材料发展[M].国防工业出版社,北京,2005:39
    [50] Wang G.-X,Prasad V.Microscale heat and mass transfer and no-equilibrium phase changes in rapid solidification[J].Materials Science and Engineering, 2000,(A292): 142-148
    [51] 胡汉起.金属凝固原理[M].机械工业出版社,北京,2000:263-267
    [52] Kurz W and Fisher D J 1989 Fundamentals of Solidification 3rd edition (SWITZERLAND-GERMANY-UK-USA: Trans Tech. Publications Ltd. 292-293)
    [53] Trivedi R and Kurz W.International Materials Reviews. 1994,39(2):49
    [54] Kurz W and Trivedi R.Matall Trans.. 1991,(22A):3051
    [55] C.Pieker, D.G.Morris, J.Steffen. Mater.Sci.Technol., 1989,(5): 1
    [56] R.Trivedi, W.Kurz. In H.N.G. Wadley and W.E.Eckhart(eds.), Intelligent Processing of Materials,TMS,Warrendale,PA, 1990,. 177.
    [57] D.R.Allen,M.Gremaud,J.H.Perepezko. Nucleation-controlled microstructural development in Al-Si alloys[J]. Materials Science and Engineering, 1997,(A226-228): 173-177.
    [58] 罗镇霖,朱宝康.10t无芯中频感应保温炉的设计和制造[J].工业加热,1998(2):29-34
    [59] 王吉刚,张建华.新型真空熔炼设备的研究[J].真空,2001,10(5):31-32
    [60] 张晓莉,孙德恩.超声气体雾化生产的热喷涂用自熔合金粉末[J].焊接,1999(8):21-22
    [61] 吴胜举,王志刚等.功率超声雾化制备钛金属粉末的实验研究[J].压电与声光,2001,23 (6):490-492
    [62] 麻洪秋,贾成厂等.急冷水雾化工艺对金属粉末性能的影响[J].粉末冶金技术,2002,20(6):346-349
    [63] 李清泉.紧密耦合气体雾化制粉原理[J].粉末冶金工业,1999,9(5):3-17
    [64] 谢明,刘建良等.快速凝固制造贵金属微细粉末[J].贵金属,2000,21(3):12-17
    [65] 李鑫,王永祥.气雾化工艺参数对金属粉末粒度影响的研究[J].江西有色金属,2002,16(8):27-29
    [66] 胡春莲,侯尚林.雾化喷嘴结构对喷焊合金粉末性能的影响[J].材料保护,2002,35(12):53-54
    [67] 黄培云主编,粉末冶金原理[M].冶金工业出版社,北京:1982
    [68] SDRidde, FSBiancaniello, PIEspina and etal. Synthesis and Analysis in Mater. Proc: Characterization and Diagnostics of Ceramic and Metal Particulate Processing, TMS [C].Warrendale,Pennsylvania, 1989,73.
    [69] NDombrowski, WRJohns. Measurement of Mean Particle Sizes of Spray from Diffractively Scatteres Light[J].Chem.Eng. Sic, 1963,18:203.
    [70] AUnal. Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminium Powders[J]. Material Science and Technology, 1987,(3): 1029.
    [71] HLubanska. Correction of Spray Ring Data for Gas Atomization of Liquid Metals [J].Journal of Metals, 1970,22(2):45-49.
    [72] Lavernia E J, Grant N J. Spray deposition of metals[J]. A Review. Mater. Sci. Eng, 1988;98:381
    [73] A.K. Srivastava, R.C. Anandani, A. Dhar, A.K. Gupta.Effect of thermal conditions on microstructural features during spray forming[J]. Materials Science and Engineering A, 2001,304-306:587-591
    [74] 王晓峰,赵九洲,何杰,王江涛.Cu-13.5%Sn合金雾化液滴凝固过程模拟[J].金属学报,2005,41(9):923-928
    [75] 霍光,谢明,陈力等.雾化合金液滴的凝固动力学分析与计算[J].金属成形工 艺,2003(6):103-104
    [76] Grant P S, Cantor B, Katerman L. Modeling of droplet dynamic and thermal histories during spray forming I, Individual droplet behavior[J]. Acta Metal Mater, 1993,41 (11):3109
    [77] M.E.捷依奇.工程气体动力学[M].北京:电力工业出版社,1955
    [78] EON-SIK LEE,AHNS. Solidification progress and heat transfer analysis of gas-atomization alloy droplets during spray forming[J]. Acta Metal Mater, 1994,42(9):3231.
    [79] Clif R, Grace J R, Weber M E. Bubbles, Drops and particles[M] .New York: Academic Press, 1978
    [80] J.P.Hirth. Nucleation, undercooling and homogeneous structure in rapid solidified powders[J]. Metallurgical Transactions A, 1978,9:401
    [81] D.Turbull, R.E.Cech, Microscopic observation of the solidification of small metal droplet[J].Journal of apply physics, 1950,21:804
    [82] 卓宁,孙家庆.工程对流换热(修订本).1991年6月第1版,4
    [83] 玉溪凤,刘祥等.零维液态金属快速凝固过程的热力学和动力学.东北大学学报(自然科学版),1998(19)5:473
    [84] LIU Dong Min,ZHAO Jiu Zhou,YE Heng Qiang.Modeling of the solidification of gas-atomized alloy droplets during spray forming[J].Acta metallurgica sinica.2003,4:39(4),375-380(刘东明,赵九洲,叶恒强.喷射成形中金属液滴凝固过程的计算机模拟[J].金属学报,2003,4:39(4),375-380)
    [85] Lawrynowicz E D, Li B, Lavernia E G. Particle penetration during spray forming and co-injection of Ni_3Al+B/Al_2O_3 intermetallic matrix composite[J]. Metal and Trans B, 1997;28B(10): 877.
    [86] Hyun-kwang, Dong-hunyeo, Kyuhwanoh, etal. A three-dimensional model of the spray forming method[J]. Metal And Mater Trans B, 1998;29B(6):699.
    [87] Mathurp, Apelllan, Lawleya. Analysis of the spray deposition process[j]. Acta Metal,1989;37(2):429.
    [88] Suk M J, Choi G H ,Moon I H. Formation of halo in Sb-InSb and Sn-Bi eutectic alloy systems [J]. Cryst Growth, 1992,123:5-16
    [89] Suk M J, Leonartz K J. Halo growth during unidirectional solidification of camphor-naphthalene eutectic system[J]. Cryst Growth ,2000,213:141-149
    [90] Li S M,Ma B L,Li x L etal.Phases competitive growth 0f eutectic alloys during directional solidification[J].Science in China E(in Chinese),2005,35:479-489(李双明,马伯乐,李晓历等.定向凝固下共晶合金中相的竞争生长[J].中国科学E辑,2005,35:479-489)
    [91] Allen D R, Gremaud M, Perepezko J H. Nucleation-controlled microstructural development in AI-Si alloys[J]. Materials Science and Engineering, 1997,A(226-228): 173-177
    [92] Das S K, Perepezko J H, Wu R I, et al. Undercooling and glass formation in Al-based alloys[J]. Materials Science and Engineering, 2001,A(304-306): 159-165
    [93] Lee E S, Ahns. Solidification progress and heat transfer analysis of gas-atomization alloy droplets during spray forming[J]. Acta Metal Mater, 1994,42(9):3231.
    [94] LIU Bai Cheng,JING Tao.Numerical simulation and Quality control for casting Engineering[M].Beijing:mechanical industry press,2001(柳百成,荆涛.铸造工程的模拟仿真与质量控制.北京:机械工业出版社,2001)
    [95] ZHAO Jiu Zhou, Drees S, Ratke L. Strip casting of A1-Pb alloys - a numerical analysis[J]. Mater Sci Eng, 2000,A(282):262
    [96] ZHAO Jiu Zhou, Ratke L, Feuerbacher B. Microstructure evolution of immiscible alloys during cooling through the miscibility gap[J]. Modelling and Simulation in Materials Science and Engineering, 1998,6(2): 123
    [97] GUO Jing Jie,LIU Yuan,JIA Jun,et al.Coarsening process of minority phase droplets during rapid cooling an immiscible alloy through the miscibility gap[J].Acta metallurgica sinica.2001,4:37(4),363-368(郭景杰,刘源,贾均,苏彦庆,丁宏升.过偏晶合金快速凝固过程中第二相液滴在液-液相变区内的粗化[J].金属学报,2001,4:37(4),363-368)
    [98] ZHAO Jiu Zhou, HE J, HU Z Q, etal. Microstructure evolution in immiscible alloys during rapid directional solidification[J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques,2004,95(5),362-368
    [99] Xu Q, Lavernia E J. Influence of nucleation and growth phenomena on microstructural evolution during droplet-based deposition [J]. Acta Materialia, 2001,49(18):3849
    [100] 耿兴国,傅恒志.亚快速凝固中枝晶.细胞晶转变的理论研究.金属学报,1997,33:7p673
    [101] Trivedi R and Kurz W. Dendritic growth. International Materials Reviews, 1994,39(2):49-74
    [102] kurz W and Trivedi R. Eutectic growth under rapid solidification conditions. Metall Trans,1991,22A:3051-3057
    [103] Kurz W and Gilgien P. Selection of microstructures in rapid solidification processing .Mater Sci Eng, 1994,178A: 171-178
    [104] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification.Acta Materialia, 1986,34:823-830
    [105] Gaumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidification Mater Sci Eng,1997,A226-228:763
    [106] FU Heng-zhi, LI Xin-zhong, LIU Chang, etal. Directional solidification and microstructure selection for Ti2A1 peritectic alloy[J]. The chinese Journal of Nonferrous Metals,2005, 15(4):495-505(傅恒志, 李新中, 刘畅等. Ti_2Al包晶合金定向凝固及组织选择[J]. 中国有色金属学报, 2005, 15(4): 495-505)
    [107] D.R.Allen, M.gremaud, J.H.Perepezko. Nucleation-controlled microstructural development in Al-Si alloys[J]. Materials Science and Engineering, 1997, A(226-228): 173-173
    [108] 李双明,马伯乐,李晓历等.定向凝固下共晶合金中相的竞争生长.中国科学E辑2005,35(5):479-489
    [109] Umeda T, Okane T, Kurz W. Phase selection during solidification of peritectic alloys. Acta Mater, 1996, 44: 4209-4216
    [110] Kurz W and Trivedi R. Banded solidification microstructures. Metall Trans, 1996,27A:625-634
    [111] 黄卫东,林鑫,王猛等.包晶凝固的形态与相选择.中国科学,2002,32E:577
    [112] 刘畅,苏彦庆,李新中等.Ti-(44-50)Al合金定向包晶凝固过程中的组织演化.金属学报,2005,41:260-266
    [113] Magnin P,Trivedi R. Eutectic growth: A modification of the Jackson and Hunt theory. Acta Metall Mater, 1991,39(4):453-467
    [114] Kurz W, Fisher D J. Fundamentals of Solidification 3rd edition [M], Switzerland: Trans Tech. Publications Ltd. 1989
    [115] 黄积荣.铸造合金相图谱.北京:机械工业出版社,1980.11
    [116] Estrade J L, Duszczyk J. Characteristics of rapidly solidified A1-Si-X powders for high performance applications[J]. J. Mater. Sci,1990,25:886
    [117] Kim T S, Hong S J, Kim W T, etal. Microstructure mechanical properties of Al-20Si-xFe(x=3,5,7) alloys manufactured by rapid solidification processing[J]. JIM, 1998, 39(12): 1214
    [118] Mastato Otsuki, Sinichirou Kakehashi, Tohru Kohno. Mechanical properties of powder forged, rapidly solidified Aluminium alloy parts[J].Metal powder report, 1991,(4):30
    [119] Y. Takeda, T. Hayashi, Y. Odani, N. Amano, N. Kuroishi. Modem Dev. Powder Metallo 1988,553:18-21
    [120] K. Morsi, H.B. McShane, M. McLean. Processing defects in hot extrusion reaction synthesis[J]. Materials Science and Engineering A,2000,290:39-45.
    [121] O.N. Senkov, S.V. Senkova, J.M. Scott, D.B. Miracle. Compaction of amorphous aluminum alloy powder by direct extrusion and equal channel angular extrusion[J]. Materials Science and Engineering A, 2005,393:12-21
    [122] Marek Galanty, Pawel Kazanowski, Panya Kansuwan, Wojciech Z. Misiolek. Consolidation of metal powders during the extrusion process[J]. Journal of Materials Processing Technology,2002, 125-126:491-496
    [123] T. Senthilvelan, K. Raghukandan, A. Venkatraman. Development of nomograms for prediction of extrusion stress for P/M copper preforms at warm working temperatures[J]. Journal of Materials Processing Technology,2003, 138:28-33
    [124] O.N. Senkov, D.B. Miracle, J.M. Scott, S.V. Senkova. Equal channel angular extrusion compaction of semi-amorphous A185Ni 10Y2.5La2.5 alloy powder[J]. Journal of Alloys and Compounds,2004, 365:126-133
    [125] G. Abouelmagd. Hot deformation and wear resistance ofP/M aluminium metal matrix composites[J]. Journal of Materials Processing Technology,2004,155-156: 1395-1401
    [126] 谢建新,刘静安主编.金属挤压理论与技术[M].冶金工业出版社,2001:111-112
    [127] R. Mehrabian. Rapid Solidification Processing vol. III[M],Claitor's Publisher, 1977.9
    [128] Soon-Jik Hong, Byong-Sun Chun. Extrusion behavior of gas atomized nanostructured A188.7Ni7.9Mm3.4 alloy powders[J]. Materials Science and Engineering A,2003,348:262-270
    [129] 马怀宪.金属塑性加工学——挤压,拉拔与管材冷轧.冶金工业出版社,1991,北京:1-148
    [130] 肖于德.快速凝固A1FeVSi耐热铝合金组织性能及大规格材料制备工艺的研究,博士论文,2003,11,中南工业大学
    [131]T.Sheppard and MA Zaidi. Hot extrusion of aluminum alloy, Met. Sci., 1984,18(5):236-247
    [132] T.Sheppard. Teperature and speed effects in hot extrusion of aluminum alloy, Metals Technology, 1981,April: 130-140
    [133] E.K.Llannidis,G.L.Marshall,T.sheppard. Microstructure and properties of extruded al-6Mg-3Cralloy prepared from rapidly solidified powder. Materials Science and Technology. 1989,5:56-64
    [134] K.Laue and H.Stenger, Extrusion---Processes,Machinery,Tooling. American society for Metals,Metals Park,Ohio, 1981
    [135] Wang RiCu, Li Wenxian, Li Songrui, etal. Effect of extrusion temperature on properties of Al-Fe-X alloy, Nonfer. Met. Soc. China, 1994,4(1): 97-100
    [136] 曹乃光.金属塑性加工原理,1984,中南矿冶学院:175-180
    [137] Liang Guoxian, Li Wenxian, Wang Erde etal. Hot hydrostatic extrusion and microstructure of mechanically alloyed A1-4.9Fe-4.9Ni alloy. Journal of Materials Processing Technology,55(1995):37-42
    [138] Adolfi S, Jacobson D M, Ogilvy A J W, etal. Property measurements on osprey spray-deposited A1-Si alloys[J]. European Large Scale Facility Aerospace and Space Materials Technology Testhouse (MATT) 2002(5): 1-14
    [139] 甘卫平,陈招科,杨伏良.粉末粒度对高硅铝合金显微组织及性能的影响[J].中国有色金属学报,2005,15(5):721-725
    [140] 胡心彬,李麟,吴晓春.4Cr5MoSiVl热作模具钢热疲劳中碳化物粗化动力学分析[J].材料热处理学报,2005,26(1):57-61.
    [141] Greenwood G W. Mechanism of Phase Transformation in Crystalline Solids[M]. London: Institute of Metals, 1969:103
    [142] 徐祖耀,李麟.材料热力学[M].北京:科学出版社,2000:173
    [143] Paul Shewmon. Diffusion in Solids[M]. A Publication of The Minerals, Metals & Materials Society, 420Common wealth Drive, 1989:31
    [144] 徐祖耀.应力作用下的相变[J].热处理,2004,19(2):1-17.
    [145] 于桂复,戴圣龙,侯淑峨,颜鸣幕.快速投团Al-Li合金粉末的除气作用.材料工程,1995 (5): 23-27
    [146] Young-Won Kim, W M Griffith and F H Foes. Surface oxides in P/M aluminum alloy. Journal of Metals, 1985(8): 27-33
    [147] 杨广,堵永国,白书欣等.界面热阻对金刚石/银复合材料导热率的影响[J].国防科技大学学报,1998,20(6):119-122.
    [148] M.kusy, Egrgac, M.behulova, etal. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy[J]. Materials Science and Engineering, 2004,A(375-377):599-603
    [149] S.K.Das, J.H. Perepezko, R.I.Wu, etal. Undercoling and glassformation in Al-based alloys[J]. Materials Science and Engineering,2001, A(304-306): 159-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700