金刚石/铜复合材料制备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息化时代的迅速发展,传统的电子封装材料已经不能满足现代集成电路以及各类电器元件电子封装的发展要求。新型的封装材料要求具备轻质、高热导、低膨胀的性能,金刚石/铜复合材料综合了铜和增强体的优良特性而具有较好的导热和可调的热膨胀系数,具有非常广阔的应用前景。但目前有关该体系的理论研究与应用研究尚不成熟,迫切需要进行更多的探索和研究。
     本论文采用粉末冶金工艺(复压复烧工艺、粉末真空包套热锻造工艺及粉末真空包套热挤压工艺)制备以单晶金刚石颗粒为增强体的金刚石/铜复合材料。利用XRD、金相显微镜、扫描电镜对复合材料的微观组织特征进行了研究,并测试了复合材料的热膨胀系数。着重研究了各成形工艺对复合材料致密度的影响,并探讨了热膨胀系数的影响因素。
     对于金刚石粒度40μm,体积含量70%的复合材料采用不同的制备工艺得出:复压复烧工艺制备的复合材料在890℃烧结8小时其致密度达到82.82%,其在50-100℃时热膨胀系数达到6.4~7.5×10-6/K;粉末真空包套热锻工艺制备的复合材料其致密度低至79.584-80.692%,热膨胀系数达到11.315-11.647×10-6/K;粉末真空包套热挤压制备的40gm,体积含量70%的复合材料致密度为70.125%,其热膨胀系数达7.864×10-6/K。
     通过对热膨胀系数的影响因素分析得出:热膨胀系数随温度的升高和金刚石颗粒度的增加而升高,随金刚石体积分数的增加而降低。
     通过对制备出的金刚石/铜复合材料的热膨胀系数进行理论模型计算,发现不同成形工艺所得的复合材料的实验值均高于理论模型的计算值,理论模型中ROM混合规则和Kerner模型的计算值在金刚石体积分数较低的情况下与实测值相对较为接近,当金刚石体积含量增大时模型的计算值低于实测值。
The electronic packaging technology in modern ICs and other electrical components has a specification-advanced demand for packaging materials. Advanced packaging materials demand lightweight, higher thermal conductivity (TC) and lower coefficient of thermal expansion (CTE). Diamond/Cu composites have a promising potential in future application due to their good combination of TC and tailorable CTE. But previous research of Diamond/Cu system is still not satisfied both in the theories and engineering aspects.
     Monocrystalline diamond powder was used in present work, Diamond/Cu composites were prepared by powder metallurgy under the different molding process (repressing and re-sintering technology, vacuum packing hot forging technology, vacuum packing hot extrusion technology). The microstructure of the diamond/Cu composites were observed by XRD, Metallurgical Microscopy and SEM methods. The coefficient of thermal expansion and density of composites were measured. The effect of different molding process technology on the density of samples was analyzed. The effects of volume fraction and powder size of diamond on the coefficient of thermal expansion were also discussed.
     By analying the densiy and the coefficient thernal expansion of the composites of 40μm 70vol.%diamond/Cu prepared by three different technologies, the results showed that the relative density could be gained to 82.82% and the coefficient thernal expansion 6.4-7.5×10"6/K at 50~100℃prepared by repressing and re-sintering technology (singtering temperature:890℃;singtering time:8h);the relative densiy 79.584~80.692% and the coefficient thernal expansion 11.315~11.647×10-6/K prepared by vacuum packing hot forging technology and the relative densiy 70.125%and the coefficient thernal expansion 7.864×10-6/K prepared by vacuum packing hot extrusion technology.
     The coefficient of thermal expansion of the composites were tested and analyzed. The results showed that the coefficient of thermal expansion increased with the temperature lighted, the diamond particle size increased and the volume fraction of diamond reduced
     Through theoretical calculation, the coefficient of thermal expansion reduced with the increasing of the relative density of composites, the volume fraction of diamond and the decreasing of diamond particle size were found. Calculation value is smaller in comparison with measured. The experiment data were more closer ROM and Kerner model with lower diamond volume fraction and were higher than throretical data with higher diamong volume fraction.
引文
[1]张政.谈谈芯片的封装技术[J].电子制作,2008,7:6-7
    [2]李桂云.微电子封装的发展趋势[J].电子与封装,2003,3(10):12-14
    [3]刘胜.微电子装配及封装技术存在的障碍和需求[J].机械与电子,1998,6:38-41
    [4]鲜飞.先进芯片封装技术[J].信息技术与标准化,2003,10:38-41
    [5]鲜飞.芯片封装技术的发展趋势[J].中国集成电路,2006,2:73-76
    [6]黄强,顾明元.电子封装用金属基复合材料的研究现状[J].电子与封装,2003,3(2):34-40
    [7]卢基存.倒装芯片封装研究:[博士学位论文].上海,复旦大学,1998
    [8]Robert Lanzone. Ceramic CSP:options foe a low cost, high density technology[J].Advanced Packaging,1997,(9/10):49-51
    [9]周贤良,吴江晖,张建云,等.电子封装用金属基复合材料的研究现状[J].南昌航空工业学院学报.2001,5(1):11-14
    [10]喻学斌,张国定.真空压渗铸造铝基电子封装复合材料研究[J].材料工程.1994,(6):9-12
    [11]D.M. Jacobson. Lightweight electronic packaging technology based on spray formed Si-A1[J]. Powder Metallurgy,2000,43(3):200-202
    [12]Jacobson, M. David. Spray-Formed Silicon-Aluminum[J]. Advanced Materials & Proceddes, 2000,(3):36-39
    [13]C. Zweben. Metal-Matrix Composites for Electronic Packaging[J]. Journal of the Minerals Metals and Materials Society,1992:44(7):15-23
    [14]M. Hunt. Electronic packaging[J]. Materials Engineering.1991,108(1):24-25
    [15]张海坡,阮建明.电子封装材料及其技术发展状况[J].粉末冶金材料科学与工程,2003,8(3):216-223
    [16]彩霞,黄卫东,徐步陆,等.电子封装塑封材料中水的形态[J].材料研究学报,2002,16(5):507-511
    [17]宋登元.CVD金刚石薄膜及其在器件封装中的应用[J].半导体杂志,1992,17(2):40-43
    [18]童震松,沈卓身.金属封装材料的现状及发展[J].电子与封装,2005,5(3):6.15
    [19]杨会娟,王志法,王海山,等.电子封装材料的研究现状及发展[J].材料导报,2004,18(6):86-87
    [20]姜国圣,王志法,刘正春,等.高钨钨-铜复合材料的研究现状[J].稀有金属与硬质合金,1999, (1):39-42
    [21]E. Kny. Properties and application of binary pseudoalloy of Cu and refractory metal [C]. Proceedings of the 12th international plansee senumae. Plansee AG. Reutte. May 1989
    [22]Qiang Zhang, Guoqin Chen, Gaohui Wu, et al. Property characteristics of an AINp/A1 composite fabricated by squeeze casting technology [J]. Materials Letters,2003,57:1453-1458
    [23]R. Couturier, D. Ducret, P.Merle, et al. Elaboration and Characterization of a Metal Matrix Composite:A1/A1N[J]. Journal of the European Ceramic Society,1997,17:1861-1866
    [24]M. Zhao, G. H. Wu, D. Z. Zhu, et al. Effects of thermal cycling on mechanical Properties of AINp/Al composite[J].Materials Letters,2004,58:1899-1902
    [25]M. Hunt. Aluminum composites come of age[J]. Materials Engineering,1991,108(1):37-40
    [26]刘正春,王志法,姜国圣.金属基电子封装材料进展[J].兵器材料科学与工程.2001,24(2):52-54
    [27]EP P. MCM process combines beryllia substrate [J]. Electronic Packaging and Production. 1996,36(8):81-86
    [28]C. Zweben. Advance in composite materials for thermal management in electronic packaging[J]. Journal of the Minerals Metals and Materials Society.1998,50(6)47-51
    [29]高晓晴,郭全贵,刘朗,等.高导热碳材料的研究进展[J].功能材料,2006,37(2):173-177
    [30]C. Zweben. High performance thermal management materials[J]. Journal of the Minerals Metals and Materials Society,1999,46 (6):47-50
    [31]邹柳娟,范志强,朱孝谦.碳纤维增强铜基(碳/铜)复合材料的研究现状与展望[J]材料导报.1998.12(3):56-59
    [32]T.W.克莱因,P.J威瑟斯,金属基复合材料导论[M].北京,冶金工业出版社
    [33]李春胜,黄德彬.金属材料手册[M].北京:化学工业出版社,2004
    [34]Th. Schubert, B. Trindade, T. Weiβgarber et al. Interfacial design of Cu-based composites pre-pared by powder metallurgy for heat sink applications[J].Materials Science and Engineering A 2008, (475):39-44
    [35]王艳辉,王明智,关长斌.镀W金刚石与金属结合剂界面成分、结构及结合性能[J].人工晶体学报.1993,2(22):68.72
    [36]王艳辉,王明智,关长斌,等.Ti镀层对金刚石-铜基合金复合材料界面结构和性能的作用[J].复合材料学报.1993,2(10):107-112
    [37]王艳辉,王明智,院兴国.镀附钛、钼、钨金刚石与铜基合金结合剂工具的结构性能研究[J].磨料磨具与磨削.1993,2(74):11-4
    [38]王秦生.超硬材料及制品[M].第1版.郑州.郑州大学出版社,2006
    [39]Y. Katsuhito, M. Hideaki. Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability,2004,44:303-308
    [40]马双彦,王恩泽,鲁伟员.金刚石/铜复合材料热导率研究[J].材料热处理技术,36-38
    [41]W. B. Johnson, B. J. Sonuparlak. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process[J]. J Mater. Res,1993,8(3):1169-1173
    [42]Y.L.Shen. Coefficients of Thermal Expansion of Metal-Matrix composites for Electronic Packaging[J]. Metall. Mater. Trands. A,1994,125(4):839-842
    [43]侯亚平.封装用高导热金刚石/铜复合材料的制备及其性能研究:[硕士学位论文].湖南:中南大学,2007
    [44]W. Z. Shao, V. V. Ivanov. A study on graphitization of diamond in copper-diamond composite materials[J]. Materials letters,2003, (58):146-149
    [45]K.Hanada. Kmatsuzaki, Thermal properties of diamond particle-dispersed Cu composites[J] Journal of Materials Processing Technology 2004,153/154:514-518
    [46]Q. Sun, O. T. Inal. Fabrication and characterization of diamond/copper composites for thermal management substrate applications [J].Materials science and engineering,1996:261-266.
    [47]刘辉,赵乃勤.纳米金刚石/铜基复合材料的摩擦磨损性能研究[0L].中国科技论文在线http://www.paper.edu.cn./
    [48]马双彦,王恩泽,鲁伟员.金刚石/铜复合材料中金刚石石墨化的研究[J].热加工工艺,2007,36(20):24-26
    [49]V. Medeliene, V. Stankevic,G. Bikulcviusa The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating[J] Surface and Coatings Technology,2003, (168) 161-168
    [50]王荣.梯度复合材料活塞的挤压铸造研究[C].2001年中国压铸、挤压铸造、半固态加工学术年会,烟台,2001
    [51]O. Beffort, P. W. Ruch, etal. Selective interfacial bonding in Al(Si)-diamond composites and its effect on the thermal conductivity [J]. Composites Science and Technology,2006,66:2677-2685
    [52]O. Beffort, F. A. Khald. Interface formation in infiltrated Al(Si)/diamond composites [J]. Diamond and Related Materials,2005,9:1-11
    [53]Agari Yasuyuki, Inour Kamyu. Thermal conductivity of copper composites dispersed with diamond particles prepared by spark plasma sintering[J], Thermophys Prop,2006,27:328-330
    [54]仁学平,康永林.粉末塑性加工原理及其应用[M].第一版.北京: 冶金工业出版社,1998
    [55]中南矿冶学院粉末冶金教研室编.粉末冶金原理(中册)[M],1978
    [56]株洲硬质合金厂编.硬质合金的生产[M].北京:冶金工业出版社,1974
    [57]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1988
    [58]《高速锤锻造》编写组.高速锤锻造[M].北京:机械工业出版社,1978
    [59]《稀有金属材料加工手册》编写组.稀有金属材料加工手册[M].北京:冶金工业出版社,1984
    [60]美国金属学会.金属手册.成型与锻造[M].北京:机械工业出版社,1994
    [61]贾玉玺,宋志真.SiC颗粒增强铝基复合材料的热挤压工艺研究[J].锻压技术.1999,24(6):9-11
    [62]曾凡文,张绪虎,胡欣华,等.SiCp/2A14A1复合材料的挤压研究[J].稀有金属.1999,23(3):176-180
    [63]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981
    [64]王常春.电子封装用SiCp/Cu复合材料的微观组织与性能研究:[博士学位论文].山东:山东大学,2007
    [65]D. P. H. Hasselman. Effect of Reinforcement Particle Size on the Thermal Conductivity of Particulate Silicon Carbide-Reinforced Al-Matrix Composite[J]. Journal of Materials Science Letters,1993,12(6):420-423
    [66]孙毓超,宋月清.金刚石工具制造理论与实践[M].郑州:郑州化学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700