铁基阀板在烧结过程中的变形规律及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基阀板的主要作用是将制冷压缩机上的气缸和输送管道相互隔离,保证活塞在气缸中做往复运动时不发生气体泄漏。为了保证气缸的密封性,铁基阀板必须具有较高的表面精度。采用粉末冶金法制备的铁基阀板在烧结过程中变形较大,经过整形工序后的平面度≤0.08mm,达不到平面度≤0.05mm的技术要求,还需要经过后续的磨削加工,这就延长了生产周期,增加了生产成本。为了优化铁基阀板的生产工艺,取消磨削工序,缩短生产周期,降低生产成本,本文主要分析了铁基阀板几何尺寸和平面度在各个生产工序中的变形情况,研究了混粉时间、装炉方式以及烧结方式对铁基阀板烧结变形的影响。结果表明:
     1.在实际生产过程中制备的铁基阀板生产工艺为:粉末原料混粉60min,经1120℃×15min烧结后,组织为白色的铁素体基体上弥散分布着黑色的珠光体,晶界上分布着少量的渗碳体,晶粒均匀细小,孔隙率较低;硬度为51.92HRB,密度为6.81g/cm3;经过预成型、烧结、整形工序后铁基阀板的长度和宽度逐渐增大,厚度不断减小;经过整形后铁基阀板的长度、宽度、厚度并分别达到50.06mm、42.03mm、3.55mm,符合铁基阀板几何尺寸要求;从预成型到烧结过程中,铁基阀板的平面度从0.10mm增大到0.16mm,通过整形可以使平面度降低到0.08mm。
     2.随着混粉时间的延长,铁基阀板平面度呈先减小后增加的趋势,当原料粉末混粉时间为90min时,烧结后的铁基阀板平面度达到最小值0.14mm,通过整形可以使平面度降低到0.06mm,硬度为53.3HRB,密度为6.82g/cm3、致密度为84.03%。
     3.采用单排装炉,按阀板凹槽相对并彼此错开顺序摆放,放在炉子中间装炉的装炉方式,烧结后铁基阀板平面度最小,其值为0.14mm,整形可以使平面度降低到0.06mm。
     4.随着烧结压力的增加,铁基阀板平面度呈先减小后增加的趋势,当烧结压力为0.36MPa,即定力矩扳手的力矩为30Nm时,烧结后铁基阀板平面度去最小值0.24mm,经过整形可以使平面度降低到0.06mm,硬度为54.8HRB,密度为6.82g/cm3,致密度为87.55%。
     5.采用真空管式高温炉在实验室中制备的铁基阀板生产工艺为:粉末原料混粉90min,采用单排装炉,按阀板凹槽相对并彼此错开顺序摆放,放在炉子中间装炉的装炉方式,经1150℃×15min烧结后,铁基阀板平面度为0.17mm,经过整形可以使平面度降低到0.06mm,硬度为57.6HRB,密度为6.83g/cm3,致密度84.17%。
The main function of a iron-based valve plate is to separate cylinder and transmission pipeline of the refrigeration compressor, making sure that the gas doesn't leak out when the piston moving reciprocatingly in the cylinder. To ensure the sealing of cylinder, a high level of surface accuracy is required for the plate. Considering that they deforming so much that their flatness being only lower than 0.08 mm, the plates prepared by powder metallurgy need a subsequent grinding process to satisfy the technical requirement that the flatness must be lower than 0.05mm. This thesis focuses on investigating the deformation of size and flatness of the plates during different production process, in order to optimize production process, to cancel grinding, to shorten production cycle and to lower production cost. Thus, The influence of many factors, such as mixing time, charging mode and sintering processing, on the deformation of plates were investigated.
     1. The production process of the iron-based valve plates prepared in the practical production is as follows:the powder mixture undergoing mixing time of 60 min and sitering process of 1120℃×15 min. With black perlite dispersively distributing into the white ferrite matrix and a little cementite existing at the grain boundary, the as-prepared plates had fine grains, low porosity, hardness of 59.5 HRB and density of 6.81 g/cm3. After preforming, sintering and reshaping, the length and the width gradualy increased, while the thickness decreased, reaching to 50.06 mm,42.03 mm and 3.55 mm, respectively. This size satisfies the requirement. From preforming to sintering, the flatness of the plates increased from 0.10 mm to 0.16 mm, then it could be lowered to 0.08 mm by reshaping.
     2. As the mixing time increased, the flatness of the plate firstly decreased and then increased. It reached to a minimum of 0.14 mm after sintering at the mixing time of 90 min and could be reduced to 0.06 mm by reshaping. The hardness was 53.30 HRB, along with density of 6.82 g/cm3 and compactness of 84.03%.
     3. The flatness reached to a minimun of 0.14 mm after sintering when using the following charging mode. The plates were single-row charged with their grooves opposing and staggering to each other and located in the cetre of the furnace. By reshaping, the flatness reduced to 0.06 mm.
     4. As the sintering pressure increased, the flatness of the plate firstly decreased and then increased. The minimun value appeared at the pressure of 0.36MPa, namely 30 Nm of the moment of the fixed moment spanner, and could be could be reduced to 0.06 mm by reshaping. The hardness was 66.67 HRB, along with density of 6.82 g/cm3 and compactness of 84.09%.
     5. The production process of the iron-based valve plates prepared using vaccum tube furnace in the lab was that the plates were single-row charged with their grooves opposing and staggering to each other and located in the cetre of the furnace, with powder mixture mixing time of 90 min, then sintered at 1150℃×15min. The flatness of the as-prepared plate was 0.17 mm and could be reduced to 0.06 mm. The hardness was 57.60 HRB, along with density of 6.83 g/cm3 and compactness of 84.17%.
引文
[1]张贤明,牟瑛等.空调制冷压缩机技术发展研究及其展望[J].压缩机技术.2009,(6):58-61.
    [2]董飞.全封闭制冷压缩机的发展趋势[J].机械管理开发.2009,24(3):48-49.
    [3]姜尔宁.世界制冷压缩机发展趋势(一)[J].制冷技术.2009,(2):46-53.
    [4]H.Cho,J.T.Chung,Y.Kim,Influence of liquid refrigerant injection on the performance of an inverter-driven scroll compressor[J].Int. J. Refriger.2003, (26):87-94.
    [5]M.Cui Michael,Comparative study of the impact of the dummy port in a scrollcompressor[J].Int. J. Refriger.2007, (30):912-925.
    [6]K.T. Ooi,Design optimization of a rolling piston compressor for refrigerators [J].Appl. Therm. Eng.2005,(25):813-829.
    [7]桑俊勇,程艳霞,李荣洪.全封闭活塞式制冷压缩机阀板改造可靠性实验研究[J].压缩机技术.2007,2(2):7-9.
    [8]申小平.空气压缩机用粉末冶金阀板模具设计及应用[J].粉末冶金工业.1998,8(3):33-36.
    [9]杜桂江,赵彦启.压缩机阀板精冲复合成形工艺的研究[J].压力加工.2003,(3):54-55.
    [10]张建国,李新东.粉末流动温压近净成形新技术[N].郑州铁路职业技术学院学报.2006,18(3):26-27.
    [11]韩风麟,马福康,曹勇家.中国材料工程大典[M].北京:化学工业出版社.2006.
    [12]徐胜华,王贤瑞,梁翠.铁基粉末冶金连杆的研制及应用[J].热处理技术与装备.2010,31(3):53-55.
    [13]赵振营.粉末材料的分类及应用[J].河北交通科技.2006,3(3):61-63.
    [14]钟发伦.HC600a高效节能电冰箱压缩机的设计[J].国际压缩机工程会议论文,中国家用电器协会.2000,(11):42-45.
    [15]林梅,吴业正.压缩机自动阀[M].陕西:西安交通大学出版社.1996.
    [16]Joo J M,Oh S K,Kim G K,Kim S H往复式压缩机气阀的优化设计[C].2000家用电冰箱CFC替代技术国际研讨会论文集.2000,(4-6):23-26.
    [17]陈观生,熊百祥等.活塞式冰箱压缩机凹阀板的优化设计[J].压缩机技术.2003,178(2):12-14.
    [18]尹韶辉,曾宪良等ELID镜面磨削加工技术研究进展[J].中国机械工程.2010,21(6):750-755.
    [19]陶建幸,钱志祥等.压缩机阀板的平面珩磨工艺[J].流体机械.1999,27(8):36-38.
    [20]刘咏,黄伯云,龙郑易,贺跃辉.从PM2004看世界粉末冶金的发展现状[J].粉末冶金材料科学与工程.2005,10(1):10-20
    [21]章林,周科朝,刘芳,李志友.铁基烧结合金表面处理技术的研究进展[J].粉末冶金材料科学与工程.2006,11(1):1-6.
    [22]李月英等.激光淬火铁基烧结材料的摩擦与磨损[J].金属热处理.2003,28(6):10-13.
    [23]李月英等.铁基粉末冶金材料的激光宽带淬火[J].粉末冶金技术.2004,22(4):232-235.
    [24]丁厚福等.铁基粉末冶金材料的热处理[J].国外金属热处理.2002,23(3):39-41.
    [25]吴化,徐珊珊.添加纳米铁粉对铁基粉末冶金零件烧结工艺及性能的影响[Z].理化检验-物理分册.2007,43(12):605-641.
    [26]James Brian. W,Recent developments in ferrous powder metallurgy alloys[J].International Journal of Powder Metallurgy.1994,30(2):157-162.
    [27]孙世杰译.采用纳米粉末的粉末冶金工艺的成本分析[Z].金属粉末热挤压.2008,(5):47.
    [28]李文虎,刘福田,黄巍岭,赵正,张英才.烧结温度对利用废钢粉制备铁基粉末冶金制品的影响[J].山东冶金.2006,28(4):40-41.
    [29]陈超伟,铁占续等.活塞压缩机的优化设计及试验研究[J].压缩机技术.2007,(4):7-9.
    [30]孙付伟,桑俊勇等.往复式制冷压缩机增效改造设计的试验研究[N].河南理工大学学报.2008,27(4):429-432.
    [31]滕宏春,贾红杰,林桂霞,王小新,张志强.冲裁工艺优化设计[J].模具工业.2002,11:27-29.
    [32]佟晓静.冲裁工艺及冲模失效分析[Z].机械.2003,30(增刊):226-227.
    [33]魏圣坤.厚板料冲压模具设计及冲裁工艺分析[Z].科技论坛.43.
    [34]杨建华,徐贵勇.厚板料冲裁工艺分析及模具设计[J].冲模技术.2004,(7):34-35.
    [35]李永.浅谈压铸工艺在铸造生产中的应用[Z].技术应用.2010,113.
    [36]张玉梅,阎峰云.压铸工艺对AM60B合金热裂纹的影响[J].铸造设备研究.2007,(6):142-143.
    [37]张玉梅,阎峰云,黄晓锋.AM60B镁合金压铸工艺的研究[J].铸造.2008,(4):114-116.
    [38]刘驰,李庆春,曾松岩.热裂纹的研究进展[J].铸造.2008,(8):156-158.
    [39]阎峰云,张庭凤,王松海.工艺参数对镁合金压铸件热裂纹倾向性的影响[J].轻合金加工技术.2007,(7):163-165.
    [40]林芸.粉末冶金烧结技术的研究进展[N].贵阳金筑大学学报.2004,56(4):106-108.
    [41]Joo J M,Oh S K,Kim G K,Kim S H往复式压缩机气阀的优化设计[C].2000家用电冰箱CFC替代技术国际研讨会论文集.2000,(4-6):23-26.
    [42]夏永红.铁基粉末冶金零件蒸汽处理中常见的质量问题及其解决措施[J].粉末冶金工业.2005,15(4):29-32.
    [43]K.S. Narasimhan,F.J.Semel预混合粉材料烧结[J].粉末冶金工业.2009,19(5):1-11.
    [44]黎明,富源忠.现代制造科学展望[J].中国机械工程.2000,11(3):345-347
    [45]国家自然科学基金委员会工程与材料科学部机械学科2001年项目指南[Z].中国机械工程.2000,11(11):1293
    [46]伍太宾,孔凡新,赵治国.2A12铝金属薄壁壳体的近净成形加工技术研究[J].锻压技术.2000,34(4):105-109.
    [47]薛永春.金属等温变形工艺[M].北京:机械工业出版社.1992.
    [48]罗守靖,田文彤,李金平.21世纪最具发展前景的近净成形技术—半固态加工[C].半固态加工.特种铸造及有色合金(2001中国压铸,挤压铸造,半固态加工学生年会论文集).2001,175-180.
    [49]罗守靖,杜之明.半固态金属加工(SPS)分类及新发展[J].热加工工艺.1999,5:46-49.
    [50]Flenings.M C.Behavior of Metal Alloys in the semi-solid state[J].Met.Trans.1991,22(B):269-293.
    [51]徐萍.半固态金属成形技术的应用[N].十堰职业技术学院学报.2011,24(4):111-112.
    [52]靳彪,游晓红,王录才.半固态金属成形技术的研究现状及应用展望[J].电加工与模具.2009,(增刊):28-32.
    [53]康永林,宋仁伯,杨柳青,张帆.金属材料半固态凝固及成形技术进展[J].2010,29(7):27-41.
    [54]Frederick P S,Bradley N L,Erickson S L,Injection Molding Magnesium Alloys[J].Advanced Material & Processing.1988,134(4):53-56.
    [55]赵鸿.铝在汽车上的应用[J].汽车工艺与材料.1997,(1):19-24.
    [56]Kui Z,Jun X, Likai S et al.Research and applications of SSP in China[J]. Proc of the 6th Int,Conf. On the Semi-Solid Processing of Alloys and Coposites, Torino Italy,Sep,27-29,2000,115-120.
    [57]王军,肖志瑜,邵明,李元元.短流程低成本的粉末流动温压近净成形技术[N].材料导报.2006,20(8):98-100.
    [58]张建国,李新东.粉末流动温压近净成形新技术[N].郑州铁路职业技术学院学报.2006,18(3):26-27.
    [59]尚晓峰,刘伟军,王天然,王志坚.激光工程化净成形技术的研究[J].工具技术.2004,38(1):22-25.
    [60]李荣德,刘敬福.喷射成形技术国内外发展与应用概况[J].铸造.2009,58(8):797-802.
    [61]王晓峰.喷射成形过程及高性能合金材料研究[D].沈阳,中国科学院金属研究所博士学位论文.2007.
    [62]Lawley A.Spray forming of metal-matrix composites[J].Powder Metallurgy.1994,37(2):123-128.
    [63]杨卯生,钟雪友.金属喷射成形原理及其应用[N].包头钢铁学院学报.2000,19(2):175-180.
    [64]Annavarapu S,Doherty R.Evolution of microstructure in spray casting [J].Journal of Powder Metallurgy.1993,29(4):331-343.
    [65]施剑林,固相烧结-Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程[N].硅酸盐学报.1997,V25(5):499-513.
    [66]施剑林,固相烧结H—粗化与致密化关系及物质传输途径[N].硅酸盐学报.1997,V25(6):657-668.
    [67]武建军等.弥散强化铜基复合材料制备工艺[J].粉末冶金技术.1999,V17(3):195-200.
    [68]Jianjun WU,Guobin LI et al. Copper matrix composites reinforced with nanometer alumina particle[J]. J. Mater. Sci. Technol.1999,V15(2):143-146.
    [69]S. Maki,Y. Harada et al. Application of resistance sintering technique to fabrication of metal matrix composite [J]. Journal of Materials Processing Technology.2001,119:210-215.
    [70]Sung-Tag Oh,Tohru Sekino et al. Fabrication and mechanical Properties of 5vol% copper dispersed alumina nanocomposite[J] Journal of European Ceramic Soeiety.1998,18:31-37.
    [71]崔国文编著.缺陷,扩散与烧结[M].清华大学出版社.1990,11.
    [72]武建军等.弥散强化铜基复合材料制备工艺[J].粉末冶金技术.1999,V17(3):195-200.
    [73]韩凤麟主编.粉末冶金零件实用手册[M].北京:兵器工业出版社.1996,1,173-178.
    [74]黄培云主编.粉末冶金原理[M].第二版,北京:冶金工业出版社.1997,1,287-290.
    [75]王才德.复烧工艺对Fe-Cu粉末烧结尺寸变化的影响[J].粉末冶金工业.1998,8(3):23-26.
    [76]郭庚辰主编.液相烧结粉末冶金材料[M].北京:化学工业出版社.2003,1,142-150.
    [77]美国金属学会主编.金属手册[M].粉末冶金中文版第九版七卷.北京:机械工业出版社.1994,1,488-498.
    [78]彭元东,吴海明等.C含量对Fe-Cu-C合金性能的影响[J].金属材料与冶金工程.2007,35(6):15-18.
    [79]徐润泽编著.粉末冶金结构材料学[M].长沙:中南大学出版社.1998,1,81-84.
    [80]曾德麟主编.粉末冶金材料[M].北京:冶金工业出版社.1989,18.
    [81]林文松,李元元,陈维平.镍元素对铁基合金烧结收缩的影响[J].机械工程材料.2003,27(10):11-16.
    [82]李志友,章林,刘芳,周科朝.高温退火和添加Si对仿M10铁基烧结合金显微组织的影响[J].粉末冶金技术.2006,24(3):218-222.
    [83]缪炯.碳,铜,镍含量对铁基粉末也就能材料性能和尺寸变化的影响[J].粉末冶金工业.2005,15(3):10-14.
    [84]Kenichi Takagi,Yuji Yamasaki.Effects of Mo/B Atomic Ratio on the Mechanical Properties and Structure of Mo2NiB2 Boride Base Cermets with Cr and V Addition[J]. Journal of Solid State Chenistry.2000,154(5):263-268.
    [85]Amercian Society for Metals eds. HAN Feng-lin transl. Metals Handbook:Vol.7,9th eds[M].Beijing:Mechanical Industry Press.1994,458-475.
    [86]Sibley A T,Ellison T L.Effects of nitrogen contenton the properties of ferrous compacts sintered in nitrogen containing atmosphere [J].Industrial Heating.1981,48 (12):29-31.
    [87]HAN Feng-lin. Mechanical Parts of Powder Metallurgy,lth ed[M].Beijing:Mechanical Indust ry Press.1987,70-75.
    [88]张雷.气氛NiFe2O4烧结致密化的影响[J].粉末冶金材料科学与工程.2004,(1):65-71.
    [89]Nowotarski M,Gaines G. Improved carbon control in the sintering of structural PM parts[J].Indust rial Heating.1981,48(12):26-27.
    [90]German R M,Powder Metallurgy Science,2th ed[M].Princeton,US:Metal Powder Industries Federation.1994,282-287.
    [91]Bowe D J,Berger K R,Marsden J G,et al.Optimization of nitrogen/hydrogen sintering atmosphere composition for carbon steel [J].The International Journal of Powder Metallurgy.1995,31(1):29.
    [92]陈明忠,徐哲之,虞少.EQ-140气泵阀板的研制[J].粉末冶金技术.1994,12(2):122-125.
    [93]隋永江,王兴庆,何宝山Fe-Cu及Fe-Cu-C合金的烧结特性[J].粉末冶金技术.1998,6(3):135-140.
    [94]Mamedov V.Spark plasma sintering as advanced PM sintering method[J].Power Metallurgy.2002,45(4):322-328.
    [95]刘斌,赖耀轮,华冬梅.PLC在阀板清洗机控制中的应用[N].景德镇高专学报.2006,21(2):33-35.
    [96]赵禹洲,屈铁军等.粉末冶金件的精整方法[J].机械工程.2009,(6):154.
    [97]于洋.烧结钢生产过程中的尺寸变化及其控制(1)[J].粉末冶金技术.2003,21(1):46-52.
    [98]王国栋.硬质合金生产原理[M].北京:冶金上业出版社.1988,200-217.
    [99]阳建宏.YG6长条薄片弯曲变形影响因素的研究[J].硬质合金.2002,19(2):87-90.
    [100]丁来安,黄卫等.罩式炉装炉方式的改进[J].金属制品.2008,34(6):25-26.
    [101]田长乐.硬质合金长条薄片弯曲变形的控制[J].粉末冶金材料科学与工程.2003,8(4):363-366.
    [102]包崇玺,舒正平等.气氛对铁基粉末冶金制品烧结的影响[J].粉末冶金材料科学与工程.2005,10(4):220-224.
    [103]Thomas F.Murph.铁基粉末冶金材料烧结程度的判定[J].粉末冶金技术.2010,28(2):150-154.
    [104]郭瑞金.混合粉组成对烧结汽车零件尺寸稳定性的影响[J].粉末冶金技术.2003,21(3):163-168.
    [105]李辉隆,黄俊辉.烧结对粉末冶金齿轮精度的影响[J].粉末冶金材料科学与工程.2006,11(5):277-280.
    [106]果世驹.粉末烧结理论[M].冶金工业出版社.1998,3.
    [107]R.W.Heekel.An analysis of Powder compaction phenomena [J].Trans. AIME.1961,vol.221:1001-1008.
    [108]Young Do Kim et al.Synthesis of Cu dispersed Al2O3 nanocomosites by high energy ball milling and pulse electric current sintering[J].SeriPtamater.2001,44:293-297.
    [109]Thomas F.Murph.铁基粉末冶金材料烧结程度的判定[J].粉末冶金技术.2010,28(2):150-154.
    [110]吴国昭,白文康,黄焕民.立管箱式炉和环形管室式炉的结构设计[J].石油化工设备技术.1987,8(5):20-25.
    [111]陈文.基于神经网络模糊控制的粉末冶金烧结炉[J].粉末冶金技术.2010,10,28(5):366-375.
    [112]贾佳林.管式炉炉温均匀性的测量方法[J].热处理技术与装备.2010,6,31(3):66-68.
    [113]金家敏.提高我国粉末冶金零件质量的浅见[J].粉末冶金技术.1994,13(3):163-169.
    [114]林志斌,龙文元,尧军平,张磊.烧结温度对放电等离子烧结Nb/Nb5Si3 复合材料显微结构的影响[J].材料热处理技术.2011,40(10):119-121.
    [115]韩小云,丁小芹,梁翠,王贤瑞,游航.徐金富.Ni60有氧烧结工艺的研究[J].兵器材料科学与工程.2010,33(5):72-74.
    [116]郭庚辰.烧结铁基材料的淬火处理[J].粉末冶金技术.1994,12(2):131-138.
    [117]中南矿冶学院粉末冶金教学科研室.铁基粉末冶金[M].长沙:中南矿冶学院出版社.1982.
    [118]F.V. Lenel,T. Pecanha.Observations on the sintering of compacts from a mixture of iron and copper powders [J].Powder Metall.1973,16(32):351-365.
    [119]D.Berner,H.E. Exner,G.Petzow.Swelling of iron-copper mixtures during sintering and infiltration[J].Modern Developments in Powder Metallurgy.1974,(6):237-250.
    [120]B.E.Magee,J.Lund.Mechanisms of liquid-phase sintering in iron-copper powder compacts[J].Zeitschrift fur metallkunde.1976,67(1):596-602.
    [121]S.J.Jamil,G.A.Chadwick.Investigation and analysis of liquid phase sintering of Fe-Cu and Fe-Cu-C compacts [J]. Powder Metall.1985,28(2):65-71.
    [122]Zongyin Zhang.Rolf Sandstrom.Lingna Wang.Modelling of swelling of Fe-Cu compacts sintered at temperatures above the copper melting point[J].Journal of Materials Processing Technology.2004,(152):131-135.
    [123]R.L.Lawcock,T.J.Davies.Effect of carbon on dimensional and microstructural characteristics of Fe-Cu compacts during sintering[J].Powder Metall.1990,33(2):147-150.
    [124]凌国平Nano-Al2O化学镀铜粉末烧结行为的研究[D].浙江:浙江大学材料与化工学院.2004.
    [125]陈焕贤.铁基制品烧结用分解氨气氛的脱碳控制[J].粉末冶金工业.1999,9(6):35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700