热挤压Al-Mg-Si-Er合金的循环变形及断裂行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因具有导电性能好、比强度高等优良的综合性能,铝合金已经广泛应用于桥梁建筑、电工电子等工业领域。Al-Mg-Si系铝合金具有良好的热塑性和优良的耐蚀性,近年来已经备受关注。为了改善Al-Mg-Si系铝合金的综合性能,常常在该系合金中添加适量的稀土元素。本文研究了挤压变形Al-0.8%Mg-0.6%Si与Al-0.8%Mg-0.6%Si -0.5%Er的室温低周疲劳行为,明确了稀土元素Er以及固溶+时效(T6)处理对挤压变形Al-0.8%Mg-0.6%Si系合金低周疲劳行为的影响。
     结果表明,稀土元素Er的添加可以细化挤压态和固溶+时效态Al-0.8%Mg-0.6%Si合金的晶粒尺寸。挤压变形Al-0.8%Mg-0.6%Si合金呈现出循环应变硬化、软化和循环稳定;挤压变形Al-0.8%Mg-0.6%Si-0.5%Er合金则表现为循环应变硬化与循环稳定。稀土元素Er的添加可以显著提高挤压态Al-0.8%Mg-0.6%Si合金的循环变形抗力;固溶+时效处理可以显著提高挤压变形Al-0.8%Mg-0.6%Si与Al-0.8%Mg-0.6%Si- 0.5%Er合金的循环变形抗力。对于挤压态和固溶+时效态Al-0.8%Mg-0.6%Si与Al-0.8%Mg-0.6%Si-0.5%Er合金而言,其载荷反向周次与塑性应变幅之间的关系服从Coffin-Manson公式,与弹性应变幅之间的关系则符合Basquin公式。稀土元素Er的添加会降低挤压态Al-0.8%Mg-0.6%Si合金的低周疲劳寿命,但可以提高固溶+时效态Al-0.8%Mg-0.6%Si合金在较高应变幅下的低周疲劳寿命。固溶+时效处理有利于提高挤压变形Al-0.8%Mg-0.6%Si合金在较低外加总应变幅下的疲劳寿命,而可以提高挤压变形Al-0.8%Mg-0.6%Si-0.5%Er合金在各个外加总应变幅下的低周疲劳寿命。不同处理状态的挤压变形Al-0.8%Mg-0.6%Si与Al-0.8%Mg -0.6%Si-0.5%Er合金的循环应力幅与塑性应变幅之间符合指数定律。挤压态和固溶+时效态的挤压变形Al-0.8%Mg-0.6%Si与Al-0.8%Mg-0.6%Si-0.5%Er合金的疲劳裂纹均萌生于疲劳试样表面并以穿晶方式扩展。
Due to such excellent comprehensive properties as good electric conductivity and high specific strength, aluminum alloys have been widely applied in industrial fields such as bridge architecture, electric engineering and electronic engineering. The Al-Mg-Si series aluminum alloys exhibit good thermoplasticity and excellent corrosion resistance, and have received much attention in recent years. In order to improve their comprehensive properties, the rare earth elements with appropriate content are often added into the Al-Mg-Si series aluminum alloys. In this investigation, the low-cycle fatigue behavior of the extruded Al-0.8%Mg-0.6%Si and Al-0.8%Mg-0.6%Si-0.5%Er alloys at room temperature was studied, and the influence of rare earth element Er and solid solution plus aging (T6) treatment on the low-cycle fatigue behavior of the Al-0.8%Mg-0.6%Si series aluminum alloys was determined.
     The results show that the addition of rare earth element Er can refine the grains of the Al-0.8%Mg-0.6%Si alloys with both as-extruded and solid solution plus aging states. The extruded Al-0.8%Mg-0.6%Si shows the cyclic strain hardening, softening and stability. However, the extruded Al-0.8%Mg-0.6%Si-0.5%Er exhibits the cyclic strain hardening and stability. The addition of rare earth element Er can enhance the cyclic deformation resistance of as-extruded Al-0.8%Mg-0.6%Si alloy obviously. The solid solution plus aging treatment can increase the cyclic deformation resistance of the extruded Al-0.8%Mg- 0.6%Si and Al-0.8%Mg-0.6%Si-0.5%Er alloys. For the extruded Al-0.8%Mg-0.6%Si and Al-0.8%Mg-0.6%Si-0.5%Er alloys with both as-extruded and solid solution plus aging states, the relationship between reversals to failure with plastic strain amplitude can be well described by the Coffin-Manson equation, while the relationship between reversals to failure with elastic strain amplitude obeys the Basquin equation. The addition of rare earth element Er will decrease the low-cycle fatigue lives of as-extruded Al-0.8%Mg-0.6%Si alloy, but can prolong the low-cycle fatigue lives of the solid solution plus aging treated Al-0.8%Mg-0.6%Si alloy at higher imposed total strain amplitudes. The solid solution plus aging treatment is beneficial for improving the low-cycle fatigue lives of the extruded Al-0.8%Mg-0.6%Si alloy at lower imposed total strain amplitudes, and can also enhance the low-cycle fatigue lives of the extruded Al-0.8%Mg-0.6%Si-0.5%Er alloy at each imposed total strain amplitude. The relationship between the cyclic stress amplitude and plastic strain amplitude can be described by a power law. For the Al-0.8%Mg-0.6%Si and Al-0.8%Mg-0.6%Si-0.5%Er alloys with both as-extruded and solid solution plus aging states, the fatigue cracks initiate on the surfaces of fatigue specimens, and propagate transgranularly.
引文
[1] Wang W. Aluminum alloys for aircraft application. Journal of the Minerals, Metals and Materials Society, 1993, 45(9): 16~18.
    [2]贾泮江,陈邦峰. ZL205A高强铸造铝合金的性能及应用.轻合金加工技术, 2009, 37(11): 10~12.
    [3]张钰.铝合金在航天航空中的应用.铝加工, 2009 (3): 50~53.
    [4]孙学银,姜建堂,甄良.金属材料在航天领域的应用及其热处理工艺.金属热处理, 2010, 35 (12): 14~20.
    [5]邓小民.挤压温度对2A12铝合金T4状态管材力学性能的影响.轻合金加工技术, 2004, 32(2): 33~34.
    [6]王少卿,于化顺,赵奇等.粉末热挤压Al-Zn-Mg-Cu合金的制备工艺及组织性能研究.航空材料学, 2010, 30(1): 19~25.
    [7]杨迎新,颜建辉. 6063铝合金化学成分的合理选择.铝加工, 2002, 25(5): 45~50.
    [8]张建新,高爱华.合金元素对6063铝合金组织性能的影响.铸造, 2007, 65(6): 642~644.
    [9]黎伯豪,言淑纯. 6063铝合金化学成分的选择.轻合金加工技术, 2001, 29(11): 29~30.
    [10]关业武. 6063合金型材力学性能的影响因素和改善对策.有色金属再生.与利用, 2004(9): 13~14.
    [11]曾渝,尹志民,潘青林等.超高强铝合金的研究现状及发展趋势.中南工业大学学报, 2002, 33(6): 592~596.
    [12]潘青林,李绍禄,邹景霞等.微量Mn对Al-Mg-Si合金微观组织与拉伸性能的影响.中国有色金属学报, 2002, 12(5): 972~976.
    [13] Mrowka-Nowotnik G, Sieniawski J. Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. Journal of Materials Processing Technology, 2005, 163~163: 367~372.
    [14] Lee W B. Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy. Materials Science and Technology, 2003, 19(11): 1513~1518.
    [15]张大新,杨瑞成. 6005铝合金的过烧温度及其组织特性.轻合金加工技术, 2011, 39(4): 39~42.
    [16]李彩文,藩学著,刘露露等.在线淬火对6061、6005铝合金型材组织与性能的影响.金属热处理, 2010, 35(6): 59~62.
    [17] Jogi B F, Brahmankar P K, Nanda VS et al. Some studies on fatigue crack growth rate of aluminum alloy 6061. Journal of Materials Processing Technology, 2007, 201(1~3): 380~384.
    [18]张新宇,王延辉,高飞等. 6063铝合金连续挤压工艺研究.锻压技术, 1999(1): 31~33.
    [19] Moldovan P, Gabriela P. The grain refinement of 6063 aluminum using Al-5Ti-1B and Al-3Ti-0.15C grain refiners. Journal of the Minerals, Metals and Materials Society, 2004, 56(11): 59~61.
    [20]刘楚明,彭大暑.细化处理对6063铝合金组织与性能的影响.铝加工, 1994, 17(3): 38~43.
    [21] Tanihata H, Sugawara T, Matsuda K et al. Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloys. Journal of Materials Science, 1999, 34(6): 1205~1210.
    [22] Birol Y. The effect of homogenization practice on the microstructure of AA6063 billets. Journal of Materials Processing Technology, 2004, 148(2): 250~258.
    [23] Couto K B S, Claves S R, Van Geertruyden W H et al. Effects of homogenization treatment on microstructure and hot ductility of aluminium alloy 6063. Materials Science and Technology, 2005, 21(2): 263~268.
    [24]万仁勇.高挤压性能6063铸锭的生产.铝加工, 1997, 20(6): 17~20.
    [25] Munitz A, Cotler C, Talianker M. Aging impact on mechanical properties and microstructure of Al-6063. Journal of Materials Science, 2000, 35(10): 2529~2538.
    [26]王孟君,王金亮. 6063铝合金时效工艺的研究.金属热处理, 1998(8): 39~41.
    [27] Cabibbo M, Evangelista E, Vedani M. Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy. Metallurgical and Materials Transactions A, 2005, 36(5): 1353~1364.
    [28] Kendig K L, Miracle D B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Materialia, 2004, 50(16): 4165~4175.
    [29] Davydov V G, Rostova T D, Zakharov V V et al. Scientific principles of making and alloying addition of scandium to aluminium alloys. Materials Science and Engineering A, 2000, 280(1): 30~36.
    [30] Norman A F, Prangnell P B, Mcewen R S. The solidification behaviour of dilute aluminium-scandium alloys. Acta Materialia, 1998, 46(16): 5715~5732.
    [31]高爱华,张建新,谢玉芬.微量Sc对6063铝合金组织性能的影响.热加工工艺, 2006, 35(10): 1~3.
    [32]肖代红,宋旼,王守仁.微量Sc及热处理对AA6022合金组织与性能的影响.特种铸造及有色合金, 2011, 31(1): 2145~2150.
    [33]肖代红,巢宏,陈康华等.微量Sc对AA7085合金组织与性能的影响.中国有色金属学报, 2008, 18(12): 8~10.
    [34]季小兰,聂祚仁,邢泽炳.稀土元素Er对Al-5Mg合金铸态组织的影响.轻合金加工技术, 2005, 33(10): 19~28.
    [35]周华,饶茂,游文.微量稀土元素Er、Sc对Al-6.0Mg合金性能的影响.铝加工, 2011(1): 4~12.
    [36]邢泽炳,聂祚仁,邹景霞.微量的稀土元素Er对Al-Mn合金组织与性能的影响.铸造, 2007 56(11): 1207~1210
    [37]胥锴,刘政,刘萍.稀土在铝及铝合金中的应用现状与展望.有色金属加工, 2005, 34(5): 10~14.
    [38]李云涛,刘志义,夏卿坤等.稀土铒对Al-Cu-Mg-Ag-Zr合金微观组织与时效行为的影响.材料热处理学报, 2007, 28(2): 49~53.
    [39]张得恩,卢锦德,张晓燕.稀土元素Ce在新型铸造铝合金中的作用研究.湖南科技大学学报, 2009, 24(3): 39~42.
    [40]杨军军,徐国富,聂祚仁等.微量Er对高强铝合金组织与性能的影响.特种铸造及有色合金, 2006, 26(7): 393~396.
    [41]魏晓伟,曾明.稀土对铸造铝铜合金流动性和热裂倾向性的影响.铸造技术, 1997(3): 46~48.
    [42]李敏,王宏伟,朱兆军等.添加重熔料及稀土钇对ZL205A合金铸态组织、热裂性能及凝固特性的影响.稀有金属材料与工程, 2010, 39(1): 5~10.
    [43] Suresh S.材料的疲劳.王中光译.北京:国防工业出版社, 1999: 20~31.
    [44] Liu Y B, Liu Z Y, Li Y T et al. Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging. Materials Science and Engineering A, 2008, 492(1~2): 333~336.
    [45] Zhou M Z, Yi D Q, Liu W J et al. Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging under influence of electrical field. Materials Science and Engineering A, 2010, 527(16~17): 4070~4075.
    [46] Fujii T, Watanabe C, Nomura Y et al. Microstructural evolution during low cycle fatigue of a 3003 aluminum alloy. Materials Science and Engineering A, 2001, 319~321: 592~596.
    [47] Atxaga G, Pelayo A, Irisarri A M. Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy. Materials Science and Technology, 2007, 17(4): 446~450.
    [48]莫德锋,何国求,朱正宇等. Al-7Si-0.3Mg合金低周疲劳行为及其机理.特种铸造及有色合金, 2008, 28(7): 493~497.
    [49] May J, Dinkel M, Amberger D et al. Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum-magnesium alloys. Metallurgical and Materials Transactions A, 2007, 38(9): 1941~1945.
    [50] Shikama T, Yoshihara S, Aiura T et al. Initiation and propagation behavior of fatigue cracks in 5056 aluminum alloy studied by rotation-bending tests with smooth specimen. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 73(767): 928~937.
    [51] Luo A A, Kubic R C, Tartaglia J M. Microstructure and fatigue properties of hydroformed aluminum alloys 6063 and 5754. Metallurgical and Materials Transactions A, 2003, 34(11): 2549~2557.
    [52]王莉,蒋大鸣.时效对6063铝合金力学性能及阻尼特性的影响.轻合金加工技术, 2003, 31(12): 35~37.
    [53]左秀荣,樊彬彬,仲志国. 6063铝合金热变形行为的研究.特种铸造及有色合金, 2007, 27(1): 19~21.
    [54] Ding X Q, He G Q, Chen C S. Study on the dislocation sub-structures of Al-Mg-Si alloys fatigued under non-proportional loadings. Journal of Materials Science, 2010, 45(15): 4046~4053.
    [55]周昆,李云卿. Al-Zn-Mg-Cu合金应变疲劳行为及位错结构演变.中国有色金属学报, 1997, 7(4): 79~83.
    [56] Srivatsan T S. An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055. Materials and Design, 2002, 23(2): 141~151.
    [57] Hanlon D N,Rainforth W M. Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA7150. Metallurgical and Materials Transactions A, 1998, 29(11): 2727~2736.
    [58] Lertora E, Gambaro C. AA8090 Al-Li alloy FSW parameters to minimize defects and increase fatigue life. International Journal of Material Forming, 2010, 3(1):1003~1006.
    [59] Burzi? Z, Sedmak S, Maksimovi? S et al. Fracture toughness and fatigue crack propagation behavior of 8090 Al-Li alloy. Materials Science, 1996, 31(1): 39~53.
    [60] Nie Z, Jin T, Fu J et al. Research on rare earth in aluminum. Materials Science Forum, 2002, 396-402: 1731-1736.
    [61] Raske D T, Morrow J. Mechanics of materials in low cycle fatigue testing. ASTM STP 465. Philadelphia: American Society for Testing and Materials, 1969: 1~25.
    [62]黄学锋,高原,吴鹏等.稀土铒(Er)改性6063铝合金铸态微观组织与性能.金属热处理, 2011, 36(2): 21~25.
    [63]刘小清,刘伯龙,李红梅等.稀土Er对Al-Mg-Si合金铸态微观组织的影响.热加工工艺, 2008, 37(7): 1~3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700