长江口近底边界层观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近底水沙垂向混合运动,在河口产生变异而造成水沙垂向分布的不连续性,是河口海岸泥沙运动的重要特点和研究的难点。河口底部边界层和细颗粒泥沙过程是海洋学家、港口航道与海岸工程师和环境流体力学乃至生物地球化学研究人员共同感兴趣的研究课题。长期以来,长江河口水沙运动规律的研究都基于常规“六点法”取得的水文观测资料,而对近底床面层水沙运动资料的获取和规律分析尚不多见。因此,以长江口为主要研究区域,研究其垂向乃至近底水流结构特征和泥沙交换过程具有重要的理论意义,对港口选址、航道治理、河口综合开发和整治都具有极为重要的应用价值。
     ■ 高频声学多普勒流速剖面仪近底有效单元数据提取
     本文首先对近底边界层(Bottom Boundary Layer,BBL)数据获取方法和观测仪器进行了总结。在当前野外观测条件下,应用了海流计近底加密观测法和船载高频声学多普勒流速剖面仪((?)coustic(?)oppler Current (?)rofiler,ADP)近底流速观测法,进行垂向和近底流速的观洲。通过分析声强垂向剖面分布的特征,利用数学极值定理,确定了床面位置,进而将ADP处理软件“丢弃”的那部分近底流速数据或由于底跟踪丢失而损失的流速数据提取出来。利用同步“六点法”电磁海流计所得到的最底层流速数据对提取出来的ADP近底单元数据进行验证。结果表明提取出来的那部分ADP近底流速数据是可用的。
     ■ 近底边界层结构
     近底边界层的研究主要侧重于流速垂向分布和动力特征(摩阻流速、糙率长度)及悬浮泥沙浓度垂向分布。流速的垂向分析结果表明:流速垂向结构可以分为三段,即上段、中段和下段。这种分段是由水流和外边界阻力共同作用产生的结果。憩流期阶段或低流速阶段,垂向流速分布不尽符合对数流速分布。非憩流阶段,在观测站点(徐六泾和七丫口)流速垂向分布基本上符合对数流速分布。近底流速垂向分布要比流速垂向分布更符合对数流速分布,它们普遍符合对数分布。
     从流速结构的角度出发,得到了两类不同的BBL厚度变化。一类是BBL厚度随水深变化没有规律性趋势,另一类BBL厚度随水深变化过程呈正相关。但是,这两类BBL厚度随流速大小的变
    
    华东师范大学硕士伦久
    长江。近底边界层魂侧研究
    化都出现了相应的变化。前者和流速变化关系为止相关,后者为负相关。对两类BBL厚度的成因分
     心廿
    从调
    析表明,BBL厚度所旱现出的不同的变化规律是由底形作用和动力作用(土要是径、潮流作用)相
    的综合结果。
     底部剪切应力或摩阻流速是影响泥沙运动的关键参数。近底动力参数的分析结果表明:摩阻流
    速和流速的关系为正相关,而糙率长度和流速的关系为负相关。徐六径和七’‘口两个测站所得到的
    摩阻流速变化范围分别为1.82一14.71c耐S和0.71一11.41c耐S:糙率长度变化范围分别为002一26.20cm
    不1 1 0.04一16.49em。
     ,悬浮泥沙浓度垂向分布的分析结果表明在一个潮周期内悬浮泥沙浓度垂向结构将出现不同的
    刑式。在憩流期及其前后SSC垂向分布呈“L’,型分布:随着涨、落潮过程,悬沙浓度的垂向结构发
    生有规律的变化,即中上层悬沙浓度逐渐增人,垂向结构由憩流期的“U,型分布逐渐过渡到指数分
    布:涨、落急及其前后流速较人,悬沙浓度垂向分布趋于更加均匀,表层和底层悬沙浓度差别逐渐
    变小:涨落潮变化过程中,由于悬浮泥沙沉降起动及垂向的掺混作用,悬沙浓度垂向分布发生调整,
    表现为悬沙浓度垂向梯度的变化。本文对Rouse公式在长江口的适用条件也进行了分析。结果表明,
    在落急及其前后时段,水流速度持续较人且较稳定的情况卜,Rouse公式能够较好的反映悬浮泥沙
    浓度垂向分布。在该时段内,采用Rouse公式拟合求解得到的悬沙沉降速度为0.19~o.24cl布S,平
    均为O.ZO5c耐S;而在涨潮过程及憩流前后,由于流速变化较大,没有一段持续较稳定的流速过程,
    Rouse公式不能够很好反映悬浮泥沙浓度垂向分布。在基本满足
    即落急及其前后时段,
    利用表层实测悬沙浓度值为参考浓度能够得
    应用的水动力条件卜,
    底层悬浮泥沙浓度为参
    考浓度同样好的结果。这一认识为人面积利用遥感资料反演泥沙浓度场及相关研究提供了可用的依
    据。
The variations that are produced by the mixing of fluid and sediment of near bed lead to the discontinuity of velocity distribution and suspended sediment concentration distribution, which is an important and difficult aspect for the research on estuarine and coastal sediment transport. The bottom boundary layer (BBL) refers to those portions of sediment column and water column which are influenced directly by the presence of the sediment-water on the distribution of their properties and processes. It is the very zone of great importance to the biology, chemistry, geology and physics in the oceans, seas, lakes even rivers, and it is also a transportation intensive zone in both of vertical and lateral sides for the solutes and (re)suspended particles, while the reactivity of chemical and biological materials are quite strong as well . Both of the estuarine bottom boundary layer and cohesive fine sediment transport processes interest the oceanographer, engineers of port, environmental hydrodynamics and biogeoc
    hemistry researchers.
    For a long time, the data for researching the mechanics of fluid and sediment transport are mainly from regular hydrology geology investigations. However, the data near the bed are limited and the results about the mechanics of the water-sediment movement near the bed are also in deficiency. The exchange between the suspended sediment and bed load occurs frequently in Changjiang estuary, which is a typical mesotidal one. Therefore, there is a great theoretic significance to research the vertical velocity characteristics and the processes of sediment exchange, even of the near bed region. These jobs can make up the disadvantage in the estuarine and coastal science research and enrich the contents of hydrodynamics and sediment transport. They also have very important applied value in the selection of port site, regulation of navigation channel, integrated development and management for estuary etc.
     Data acquirement of valid cells of 1.5 MHz ADP near bed
    This paper firstly gives a brief introduction to the data aquirement methods and the observation instruments. The author proposes two new methods to measure the velocity near bed, which are velocity measurement near bed with small distance by electric current meter and velocity measurement near bed with mounted ADP with high frequency, respectively. Then, the paper gives an instruction in detail on the
    
    
    data acquirement of valid cells of ADP near bed. According to the analysis of the vertical distribution of signal amplitude with using extremum theorem, the location of the bed is fixed and the velocity data are extracted which once lost due to the disadvantage of ADP software and the errors of bottom track algorithm. The validity of the extracted data is verified by using the synchronous data with the same depth of electric current meter.
     The structure of BBL
    The researches of BBL mainly set focus on the vertical structure (vertical distribution of velocity and suspended sediment concentration) and dynamics characteristics (shear friction velocity and roughness length) in BBL. The analytical results of vertical distribution of velocity show that: the vertical structure of velocity can be divided into three sections, i.e. upper section, middle section and bottom section. Such vertical distribution of velocity is caused by the interaction between the current and the outside force or resistance; the vertical distribution of velocity at the observation stations (one is Xuliujing and another is Qiyakou) doesn't correspond with the log-distribution velocity formula during the slack water or the period with low current speed; the whole profile distribution of velocity accords with the log-distribution velocity formula during the non-slack water; and the distribution of velocity near bed is more accordant with the log-distribution velocity formula than that of the whole velocity profile.
    From the velocity vertical structure perspective, two types of variations of the thickness of BBL are obtained. One type is that the thickness of BBL do
引文
陈吉余,沈焕庭,恽才兴等着,1988.长江河口动力过程和地貌演变.上海:上海科学技术出版社,91-101,80-90.
    陈永宽,1984.悬移质含沙量沿垂线分布.泥沙研究,(1):31-39.
    程鹏,高抒,2001.ADCP测量悬沙浓度的可行性分析与现场标定.海洋与湖沼,Vol.32(2):168-176.
    董礼先,1998.椒江河口高浑浊水混合过程分析.海洋与湖沼,Vol.29(5):p535-541.
    郭纪捷,任来法,李允武,1998.声学悬浮泥沙观测数据现场定标研究.海洋学报,20(5):120-125.
    贺松林,孙介民,1996.长江河口最大浑浊带的悬沙输移特征.海洋与湖沼,27(1):pp60-66.
    黄坚,2003.长江口波流作用下悬沙输移特性研究.华东师范大学河口海岸国家重点实验室硕士毕业论文.
    黄胜,1986.长江河口演变特征.泥沙研究,(4):p1—12.
    匡翠萍,1993.长江口拦门沙冲淤及悬沙沉降规律研究和水流盐度泥沙数学模型[D].南京:南京水利科学研究院.
    李丹勋,王兴奎,王殿常,2000.流速梯度对悬浮颗粒脉动强度的影响.泥沙研究,6(3):30-35.
    李九发,何青,徐海根,2001.长江口浮泥形成机理及变化过程.海洋与湖沼,Vol.32,No.3;p302-310.
    练继建,赵子丹,1994.波流共存场中全水深流速分布.海洋通报,13(3):p1~9.
    刘应中,时钟,2001.河口波流相互作用的数学模型.海洋科学,25(5):p42~46.
    倪晋仁,惠遇甲,1988.浑水流速分布与悬移质浓度分布的关系.泥沙研究,6(2):17-27.
    钱宁,谢汉祥,周志德,李光炳,1964.钱塘江河口沙坝的形成过程.地理学报,30(2):p124-142.
    沈承烈,阮文杰,1986.长江口河床冲淤特性的试验研究.泥沙研究,(3):p62-72.
    沈焕庭,贸松林,1992.长江河口最大浑浊带研究.地理学报,47(5):p472-479.
    沈焕庭,潘定安着,2001.长江河口最人浑浊带.北京:海洋出版社,20-21.
    沈焕庭,朱慧芳等,1986.长江河口环流及其对悬沙输移的影响.海洋与湖沼,17(1):p26-35.
    时伟荣,1993.长江口浑浊带含沙量的潮流变化及其成因分析.地理学报,48(5):p412-420.
    时钟,2000a.长江口底部边界层细颗粒泥沙过程.海洋科学,Vol.24(4):p56
    时钟,2000b.河口海岸底部边界层和细颗粒泥沙过程.海洋科学,Vol.24(11):p27-34
    时钟,陈伟民,2000.长江口北槽最大浑浊带泥沙过程.泥沙研究,(1):p28-29.
    
    
    时钟,朱文蔚,周洪强,2000.长江口北槽口外细颗粒悬沙沉降速度.上海交通大学学报,Vol.34,No.1,p18-23.
    时钟、凌鸿烈,1999.长江口细颗粒悬沙浓度垂向分布.泥沙研究,1999(2),p59-64
    汤毓祥,1990.潮流垂直结构的研究概况.黄渤海海洋,Vol.8(4):59-69.
    汪亚平,高抒,贾建军,2000.海底边界层水流结构及底移质搬运研究进展.海洋地质与第四纪地质,Vol.20(3):p101-106.
    汪亚平,高抒,李坤业,1999.用ADCP进行走航式悬沙浓度测暈的初步研究.海洋与湖沼,Vol.30(6):758-763.
    王沫然编着,2001.MATLAB 6.0与科学计算.北京:电子工业出版社.
    王云,2002.海岸波流底部边界层的数值模拟.上海交通大学硕士学位论文.
    王云天,伊辉延,1997.东、黄海波浪的统计特征及谱分析.大连水产学院学报,Vol.12(3).
    文圣常,余宙文,1984.海浪理论与计算原理.科学出版社.北京.
    武汉水利电力大学(张瑞瑾主编),1998.河流泥沙动力学(第二版).北京:中国水利水电出版社.
    谢饮春、李伯根、夏小明、李炎,1998.椒江河口悬沙浓度垂向分布和泥跃层发育.海洋学报,Vol.20(6):58-69.
    徐正凡主编,1992.水力学.武汉水利电力大学出版社.
    臧启运,2000.粉沙淤泥质海岸近岸海区悬浮泥沙分布的初步研究.第四届全国泥沙基本理论研讨会论文集.
    詹义正,1985.以流速为参数的悬沙沿垂线分布公式及其应用.泥沙研究,3(1):80-84.
    张红武,1995.挟沙水流流速的垂线分布公式.泥沙研究,6(2):1-9.
    张俊华,王严平,尚爱亲,张柏山,1998.挟沙水流指数分布规律.泥沙研究,12(4):73-78.
    张瑞瑾主编,1998.河流泥沙运动力学.第二版.北京:中国水利水电出版社,11-14.
    张锁平,周长兴,2001.60m船用多功能ADCP悬浮泥沙浓度测量及比测数据分析.海洋技术,Vol.20(1):83-87.
    张韵华,奚梅成,陈长松编着,2000.数值计算方法和算法.北京:科学出版社.
    张正惕,杨世伦,1998.双频回声测深仪在航道沙波研究中的应用.实验室研究与探索,No.6:56-57.
    周济福,李家春,2000.河口混合与泥沙输运.力学学报,32(5):p523-531.
    Adolf Stips, Hartmut Prandke and Thomas Neumann, 1998. The structure and dynamics of the Bottom Boundary Layer in shallow sea areas without tidal influence: an experimental approach. Progress in Oceangraphy 41: 383-453.
    
    
    Bernaud P. boudreau, Bo Barker Jorgensen, 2000. The benthic boundary layer: transport processes and biogeochemistry. Oxford University Pres.
    C.T. Friedrichs, L.D. Wright, D.A. Hepworth, S.C. Kim, 2000. Bottom-Boundary-Layer processes associated with fine sediment accumulation in coastal seas and bays. Continental Shelf Research 20(2000)807-841.
    Cacchinone D.A. and Drake D.E.,1979. A new instrument system to investigate sediment dynamics on continental shelves [J]. Marine Geology, 30:299-312.
    Cacchinone D.A., Grant W.D., Drake D.E., and Gelnn S.M.,1987. Storm dominated bottom boundary layer dynamics on the northern California continental shelves: measurements and predictions [J]. J Geophys Res 92 (C2): 1817-1827.
    Chen Y. et al., 1999. Three-dimensional Numerical Modeling of Cohesive Sediment Transport by Tidal Current in Pearl River Estuary. International Journal of Sediment Research, 14(2): 107-115.
    Cheng R.T., D.A. Cacchione, J.W. Gartner, and G.B. Tate, 1998. Flow and suspended particulate transport in a tidal bottom layer, South San Franscisco Bay, California. In physics of Estuarine and Coastal Seas, edited by J. Dronkers and M.B,A.M. Scheffers, pp. 3-12, Balkema, Rotterdam, Netherlands.
    Cheng R.T., J.W. Gartner, and R.E, Smith, 1997. Bottom boundary layer in South San Francisco Bay, California, J. Coastal Research, SI 25, 49-62.
    Cheng R.T., Ling C.H., Garmer J.W., 1999. Estimates of bottom roughness length and bottom shear stress in south San Francisco Bay, California. Journal of Geophysical research, Vol. 104, c4 7715-7728.
    Chriss T.M. and Caldwell D.R., 1984. Universal similarity and the thickness of the viscous sublayer at the ocean floor [J]. J Geophys Res 89 (C4) 6403-6414.
    Chriss. T.M., and Caldwell. D.R., 1982, Evidence for the influence of form drag on bottom boundary layer flow, J. Geophys. Res., 87, 4148.
    Collins M.B, Ke X.K. and Gao S., 1998. Tidally-induced flow structure over sandy intertidal flats. Estuarine, Coastal and Shelf Science, 46, 233-250.
    D&A, 2000. OBS-3A instruction manual. D&A Instrument Company.
    D.A. Cacchione, D.E. Drake, et al., 1995. Measurements in the bottom boundary layer on the Amazon subaqueous delta. Marine Geology, Volume 125, Issues 3-4, Pages 235-257.
    Dyer K. R., 1988, Fine sediment particle transport in estuary, Physical Processes in Estuaries. New York, Springer-Verlag, 295-310.
    
    
    Dyer K.R. and Soulsby R.L., 1988. Sand transport on the continental shelf [J],Ann Rev Fluid Mech 20,295-324.
    Dyer K.R.,1980.Velocity profiles over a rippled bed and the threshold of movement of sand [J]. Estuar Coastal Mar Sci 10, 181-199.
    Dyer. K. R., 1986, Coastal and Estuary Sediment Dynamics, Wiley-Inter Science, New York,342
    Esima. D., Van der Gaast, S.J., Martin et al, 1978. Suspended matter and bottom deposition of the Orinoco delta: turbidity, mineralogy and elementary composition. Netherlands Journal of Sea Research, 12(2), 224-251
    Gallenne B., 1974. Study of the Loire and its dynamic grading. Estuarine and Coastal Mar. Sci., (2):261-172
    Gao S. and Collins M.B., 1997. Changes in sediment transport rates casued by wave action and tidal flow time-asymmetry. Journal of Coastal Research, 13(1): p198-201.
    Grant, W. D., 1977: Bottom friction under waves in the presence of a weak current: Its relationship to coastal sediment transport. ScD thesis., Mass. Inst. of Technol.,Cambridge, 275 pp.
    Grant. W. D. and Madsen. O. S., 1979. Combined wave and current interaction with a rough bottom, J. Geophys. Res., 84: p1797-1808.
    Grant. W. D. and Madsen. O. S., 1982. Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 87: p469-481.
    Grant. W. D. and Madsen. O. S., 1986. The continental shelf bottom boundary layer, Ann. Rev. Fluid Mech., 18: p265-305.
    Hay A.E., Sheng J., 1992. Vertical profiles of suspended sand concentration and size from multifrequency acoustic backscatter. J Geophys Res, 97(C10): 15 661-15 677.
    HE Qing, L I Ji ufa et al, 2001. Field measurements of bottom boundary layer p rocesses and sediment resuspension in the Changjiang Estuary. SCIENCE IN CHINA(Series B), Vol.44 Supp., page80-86.
    Heathershaw A.D., 1974. Bursting phenomena in the sea. Nature 248,394-395.
    Heathershaw A.D., 1976. Measurements of turbulence in the Irish Sea benthic boundary layer. In: McCave, I.N. (editor), The benthic boundary layer, Penum Press, New York, 11-31.
    Heathershaw A.D., 1979. The turbulent structure of the bottom boundary layer in a tidal current. Geophys J Roy Astr Soc 58, 395-430.
    Humphery J.D., 1987. STABLE-an instrument for studying current structure and sediment transport in the
    
    benthic boundary layer. In Proceedings of Electronics for Ocean Technology Conference, IERE, London.
    Huntley D.A. and Hazen D.G., 1988. Seabed bed stresses in combined wave and steady flow conditions on the Nova Scotia continental shelf - field measurements and predictions. J Phys Oceanogr 18(2) 347-362.
    Huntley D.A., Amos C.L., Williams J.J., and Humphery J.D., 1991. Estimating bed load transport on the continental shelves by observations of ripple migration - An assessment. In Proceedings of Euromech 262 - Sand Transport in Rivers, Estuaries and the Sea, R.L. Soulsby and R. Bettess (eds), Balkema, Rotterdam, 17-24.
    Huntley D.A., Nicholle R.J., Liu C., and Dyer K.R., 1994. Measurements of the semi-diurnal drag coefficient over sand waves. Continental Shelf Research, 4, 437-456.
    J.F. Lynch, T.F. Gross, et al., 1997. Acoustical and optical backscatter measurements of sediment transport in the 1988-1989 STRESS experiment. Continental Shelf Research, Volume 17, Issue 4, Pages 337-366.
    Jiang. J.H. and Wolanski.E., 1998, Vertical mixing by internal wave breaking at the lutocline, Jiaojiang River Esturary, China, J of Coastal Research, 14(4), 1426-1431
    Li J.F. and Zhang C., 1998. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Marine Geology, Volume 148, Issues 3-4, Pages 117-124.
    John M.H., John D.H., Philip J.K., Paul G.C., Laurenz T., Martin W., 2002. Near-bed turbulence measurements, stress estimates and sediment mobility at the continental shelf edge. Progress in Oceanography, 52, p 171-194.
    Jonsson, I. G, 1996. Wave boundary-layer and friction factors. Proceedings of the 10th Conference on Coastal Engineering, Tokyo, Japan, 127-148.
    Kajiura, K.G., 1968. A model of the bottom boundary layer in water waves[J]. Bulletin Earthquake Res., 1968, 46: 75-123.
    KIYOSI KAVANISI and SHOITIRO YOKOSI, 1997. Characteristics of suspended sediment and turbulence in a tidal boundary layer. Continental Shelf Research, Volume 17, Issue 8, July 1997, Pages 859-875.
    Kontar E.A., and Sokov A.V., 1997. On the benthic boundary layer's dynamics. Journal of Marine Systems, Vol. 11, Issues 3-4, 1997, Pages 369-385.
    
    
    Kushnir V. M., 1999. Turbulent diffusion in the near-bottom boundary layer of the Black Sea shelf zone. Journal of Marine System 21: 243-253.
    Lambrakos K.F., 1982. Seabed wave boundary layer measurements and analysis. J Geophys Res 87 (C6) 4171-4189.
    Lambrakos K.F., Myrhaug D., and Slaattelid O.H., 1988. Seabed current boundary layers in wave-plus-current flow conditions. J Waterway Port, Coastal Ocean Eng 114 (2) 161-175.
    Lentz S. J., and Trowbridge J. H., The bottom boundary layer over the northern California shelf, J. Phys. Oceanogr., 21(8), 1186-1201, 1991.
    Li. Y., Wolanski. E. and Xie. Q.C., 1993. Coagulation and Settling of Suspended Sediment in the Jiaojiang River Estuary, China. J. of Coastal Res. 9(2): p390-402.
    Longuet-Higgins, M.S., 1956. The refraction of sea waves in shallow water. J. Fluid Mecb,, 1(2): 163-177.
    Lundgren, H., 1972. Turbulent currents in the presence of waves. Proc. Coastal Eng.Conf., 13th, 623-634.
    Lynch J.F., Gross T.F., Sherwood C.R., et al, 1997. Acoustical and optical backscatter measurement sediment transport in the STRESS experiment. Continental Shelf Research, 17(4):337-366.
    Lynch J.E, Irish J.D., Gross T.E, Wiberg RL., Newhall A.E., Traykovski RA. and Warren J.D., 1997. Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1900-1991 STRESS experiment. Continental Shelf Research, Volume 17, Issue 10, August 1997, Pages 1271-1295.
    Madsen O.S. and Grant W.D., 1976. Sediment transport in the coastal environment. Report No. 209, Palph. M. Parsons Lab., MIT.
    Madsen O.S. and Wikramanayake P. N., 1991. Simple models for turbulent wave-current bottom boundary layer flow. Contract report DRP-91-1. Final Report for the Dredging Research Program. U.S. Army Corps of Engineers, Coastal Engineering Research Center.
    Manning, A.J. and Dyer, K.R., 1999. A laboratory examination of floc characteristics with regard to turbulent shearing. Marine Geology, 160:147-170.
    McCave I.N., 1974. Some boundary layer characteristics of tidal currents bearing sand in suspension. Mere Soc Roy Sci Liege, 6 ser 6, 107-126.
    McCave, I.N., ed. (1976) The Benthic Boundary Layer. Plenum.
    McLean S.R., 1983. Turbulence and sediment transport measurements in a North Sea tidal inlet (The
    
    Jade), in North Sea Dynamics, J Sundermann and W Lenz (eds), Springer - Verlag, Berlin, 436-452.
    Meryer-Peter E. and Mulet R., 1948. Formulas for bed-load transport. Proc. Int. Ass. Hydr. Struct. Res, Stockholm.
    Myrhaug D., Slaattelid O.H., Soulsby R.L. and Lambrakos K.E, 1995. Measurements and analysis of flow velocity and sediment concentration at the seabed. Appl Mech Rev vol 48, no 9: p570-587.
    Nielsen P., 1992. Coastal bottom boundary layers and sediment transport. Singapore: World Scientific.
    O' Brien M.P., 1933. Review of the Theory of turbulent flow and its relation to sediment transportation. Transactions. American Geophysical Union, Washington D.C. April 27-29.
    Ole A. Mikkelsen and Morten Pejrup, 2004. Factors controlling the in situ settling velocity of cohesive sediment in estuaries. Proceedings INTERCOH 2003, eds. P.Y. Maa.
    Palanques A., Puing P., Guillen J., Jimenez J., Gracia V., Sanchez-Arcilla A. and Madsen O., 2002, Near-bottom suspended sediment fluxes on the microtidal low-energy Ebro continental shelf (NW Mediterranean), Continental Shelf Research, 22, 285-303.
    Proni J.R., Rona D.C., Lauter C.A., et al, 1975. Acoustic observations of suspended particulate mater in the ocean, Nature, 254:413-515.
    Rice, S.O., 1944. Mathematical analysis of random noise. Bell System Tecbn. J. (23): 282-332.
    Rice, S.O., 1945. Mathematical analysis of random noise. Bell System Tecbn. J. (24): 46-456.
    Robert W. Houghton, 1995. The bottom boundary layer structure in the velocity of the Middle Atlantic Bight shelfbreak front. Continental Shelf Research, Volume 15, Issue 10, August 1995, Pages 1173-1194.
    Ross. M.A., 1988, Vertical Structure of Estuarine Fine Sediment Suspensions, Ph.D. thesis, University of Florida, Gainesville, Florida, 187p
    Rouse H., 1937. Modem conceptions of the mechanics of turbulence, Trans. ASCE, Vol. 102: p436-507.
    Rouse H., 1938. Experiments on the mechanics of sediment suspension. Proceedings Fifth International Congress for Applied Mechanics, Vol.55: 550-369.
    Schauer U., 1987. Determination of bottom boundary layer parameters at two shallow sea sites using the profile method. Continental shelf Research, Vol.7, p1211-1230.
    Shi Z., Ren L.E and Lin H.L., 1996. Vertical suspension profile in the Changjiang Estuary. Marine Geology, Volume 130, Issues 1-2, Pages 29-37.
    Slaatelid O.H., Myrhaug D., and Lambrakos K.E, 1990. North Sea bottom steady boundary layer
    
    measurements. J Waterway Port, Coastal Ocean Eng, 116 (5) 614-633.
    Sleath J.F.A., 1987. Turbulent oscillatory flow over rough beds. Journal of Fluid Mech., 182: p369-409.
    Sleath, J.F.A, 1990. Bed friction and velocity distribution in combined steady and oscillatory flow[C]. Proc. 22nd Int., Conf. Coastal Eng., Delft, 1990, 450-460.
    Smith, J. D., 1977. Modeling of sediment transport on continental shelves. The Sea, E. D.Goldberg, I. N. McCave, J. J. O'Brien, J. H. Steele, Eds., Vol. 6, Interscience, 538-577.
    SonTek, 1998. SonTek ADPTM Acoustic Doppler Profiler Technical Documenttation.
    SonTek, 2001. SonTek Technical Notes: PC-ADP Principles of Operation.
    Soulsby R.L., 1977. Similarity scaling of turbulence spectra in marine and atmospheric boundary layers. J Phys Oceanogr 7, 934-937.
    Soulsby R.L., 1981. Measurements of Reynolds stress components close to a marine sand bank. Mar Geol 42, 35-47.
    Soulsby R.L., 1983. The bottom boundary layer of shelf seas. In Physical Oceanography of Coastal and Shelf Seas, B Johns (ed), Elsevier, Amsterdam, 189-266.
    Soulsby R.L., and Humphery J.D., 1990. Field observations of wave-current interaction at the sea bed. In Water Wave Kinematics, A Trum and OT Gudmestad (eds), Kuwer, Dordrecht, 413-428.
    Sternberg R.W, Larsen L.H., Miao Y.T., 1983. Near Bottom Flow Condition and associated sediment transport on the East China Sea Continental Shelf. In: Proceedings of International Symposium on Sedimentation on the Continental Shelf, with Special Reference to the East China Sea. Volume 2, p522-535, China Ocean Press.
    Sternberg R.W., Aagaard K., et al., 2001. Long-term near-bed observations of velocity and hydrographic properties in the northwest Barnets Sea with implications for sediment transport. Continental Shelf Research,21:509-525.
    Tennekes H. and Lumley J. L., 1972: A First Course in Turbulence. The MIT Press, pp.300
    Thorne ED., Hardcastle EJ. and Soulsby R.L., 1993. Analysis of acoustic measurements of suspended sediments. J Geophys Res 98 (C1) 89-910.
    Vadim Polonichko, R amon Cabrera, 1999. Bottom Boundary-layer Measurements with SonTek A DPs. IEEE Sixth Working Conference on Current Measurement, San Diego, CA, March 11-13, Proceedings.
    Vanoni, V. A., 1946. Transport of suspended sediment by water, Trans. ASCE, Vol. 111: 67-113.
    
    
    Vincent C.E., Young R.A., Swift D.J.R, 1981. Bedload transport under waves and currents. Marine Geology, 1981, 39:p71-80.
    Vincent C.E., Young R.A., Swift D.J.E, 1983. Sediment transport on the Long Island shoreface, North American Atlantic shelf: role of waves and currents in shoreface maitainance. Continental Shelf Research, 2: p 163-181.
    Von Karman, 1975. Selected works of the Von. Karman. Vol. 11. Paper No.52.
    Von Rijn, L.C., 1993. Principles o sediment transport in rivers, estuaries, coastal seas and oceans [M]. Amsterdan: Aqua. Publications. 1993.
    Wang chi-The, 1946. On the velocity distribution of turbulent flow in pipes and channels of constant cross-section. Journal of Applied Mechanics, Vol. 13, No. 12.
    William H. Snyder and Ian P. Castro, 1999a. Acoustic Doppler Velocimeter Evaluation in Stratified Towing Tank. Journal of Hydraulic Engineering, Vol. 125, No. 6, pp. 595-603.
    Williams J.J., Rose C.P., et al., 1999b. Field observations and predictions of bed shear stresses and vertical suspended sediment concentration profiles in wave-current conditions. Continental Shelf Research 19:507-536.
    Winbush M. and Munk W., 1970. The benthic boundary layer: In: Maxwell, A.E. (editor), The sea (Vol.4), Wiley Interscience, New York, 731-758.
    Winterwerp, J.C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. IAHR Journal of Hydraulic Engineering 36(3):309-326.
    Winterwerp, J.C. (1999). Flocculation and settling velocity. Model Development. Report Z2386 (June 1999), Delft Hydraulics/T.U.Delft, 62 pp.+14 pp. appendices.
    Wolanski. E., Chappell. J. and Ridd. P. et al, 1988, Fluidization of mud in estuaries, J. of Geophysical Research, Vol.93(c3),2351-2361
    Wolanski. E., Gibbs. R.J., Mazda. Y. et al, 1992, The role of turbulence in the settling of mud flocs, J. of Coastal Res., 8, 35-46
    Wright L.D., 1989. Benthic boundary layers of estuarine and coastal environments. Reviews in Aquatic Sciences, Volume 1, Issue 1, p75-94.
    Wright L.D, Sherwood C.R. and Stemberg R.W., 1997. Field measurements of fair-weather bottom boundary layer processes and sediment suspension on the Louisiana inner continental shelf. Marine Geology, Volume 140, Issues 3-4, Pages 329-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700