川南天然常绿阔叶林人工更新后土壤生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从林地枯落物层水文生态功能、土壤水源涵养功能、土壤肥力特征、土壤碳库变化、土壤分形特征以及枯落物对土壤肥力的影响等方面,系统地研究了川南林区天然常绿阔叶林及其人工更新成檫木林、柳杉林和水杉林后土壤生态特性的变化,其结果如下:
     ①天然常绿阔叶林及其人工更新成檫木林、柳杉林和水杉林后林下枯落物层蓄积量,天然常绿阔叶林(25.68t/hm~2)>水杉林(18.14t/hm~2)>檫木林(9.95t/hm~2)>柳杉林(1.13t/hm~2)。天然常绿阔叶林枯落物层自然含水量分别是檫木林、柳杉林和水杉林的3.18、41.33和1.53倍。在整个持水过程中,前2h内各林分枯落物层持水作用较强。林下枯落物层持水量与浸泡时间之间的关系式为Q=a ln t+b,吸水速率与浸水时间之间的关系式为V=k t~n。枯落物层最大持水量、最大拦蓄量和有效拦蓄量均为天然常绿阔叶林>水杉林>檫木林>柳杉林。
     ②天然常绿阔叶林人工更新后土壤容重增加和孔隙度降低导致林地土壤持水量、排水能力和渗透性降低;3种人工林中,土壤持水量、排水能力和渗透性檫木林较好,水杉林次之,柳杉林最差;相关性分析发现,土壤有机质、容重、孔隙度、持水量、排水能力和渗透性之间的相关系数均达到显著水平。
     ③天然常绿阔叶林人工更新后各季节土壤自然含水率以及有机质、全氮、碱解氮、铵态氮、硝态氮、全磷、速效磷、全钾、速效钾、有效硫含量均降低,且3种人工林中,檫木林>水杉林>柳杉林;各林分土壤自然含水率和养分含量均为秋季>春季>冬季>夏季,而土壤碳/氮比的变化恰好相反,夏季>冬季>春季>秋季。土壤养分含量与土壤物理性质之间存在显著相关性。
     ④天然常绿阔叶林人工更新后各季节土壤微生物量碳、微生物量氮含量以及微生物总数、细菌、真菌、放线菌数量均降低,且3种人工林中,檫木林>水杉林>柳杉林;各林分土壤微生物生物量和微生物数量均为秋季>春季>冬季>夏季。土壤微生物生物量、微生物数量与土壤物理性质、养分含量之间存在显著相关性。
     ⑤天然常绿阔叶林人工更新后各季节土壤蔗糖酶、尿酶、磷酸酶和过氧化氢酶活性均降低,且3种人工林中,檫木林>水杉林>柳杉林;各林分土壤酶活性均为秋季>春季>冬季>夏季。土壤酶活性与土壤物理性质、养分含量、微生物生物量、微
This paper systematically studied on the change of soil ecological characteristics which include eco-hydrological benefits of forest litter layer, soil's water conservation, soil fertility feature, change of soil carbon pool, soil fractal feature, and effects of litter on soil fertility under natural evergreen broadleaved forest and three artificial plantations, Sassafras tzumu, Cryptomeria fortunei and Metasequoia glyptostroboides forests, which formed by artificial regeneration of natural evergreen broadleaved forest in southern sichuan province. The results as follows:
    CD The amount of litter layer was natural evergreen broadleaved forest(25.68 t/hm~2) >Metasequoia glyptostroboides plantation(18.14 t/hm~2)>Sassafras tzumu plantation(9.95 t/hm~2)> Cryptomeria fortunei plantation(1.13 t/hm~2). The natural water content of whole litter layer in natural evergreen broadleaved forest was 3.18, 41.33, 1.53 times of that in Sassafras tzumu, Cryptomeria fortunei and Metasequoia glyptostroboides plantations, respectively. During the process of water holding of litter layer, the water holding capacity and absorption speed of the first 2 h were superior to the rest of time. The equation between the water holding capacity of the litter layer and the immerse time was Q = a ln t + b, the equation between the water absorption speed of the litter layer and the immerse time was V = k f. The maximum water holding capacity, the maximum interception and the modified interception of litter layer were natural evergreen broadleaved forest > Metasequoia glyptostroboides plantation > Sassafras tzumu plantation > Cryptomeria fortunei plantation.
    ② The bulk density increase and porosity decrease are the main factors which resulted in the decrease of soil water storage and drainage capacity and infiltration after natural evergreen broadleaved forest artificial regeneration; Among the three artificial plantations, Sassafras tzumu plantation soil had higher water storage and drainage capacity and better infiltration, followed by soils with Metasequoia glyptostroboides plantation and Cryptomeria fortunei plantation; Correlation analysis indicated that the correlation coefficient between the soil organic matter, bulk density, porosity, water storage and drainage capacity and infiltration reached significant level.
引文
[1] 盛炜彤.天然林的保护与管理[J].世界林业研究,2000,13(2):7~13
    [2] 黄晓春.天然林生物多样性保护与可持续发展[J].江西林业科技,1999(6):1~5
    [3] 唐守正.中国森林资源及其对环境的影响[J].生物学通报,1998,33(11):2~6
    [4] 唐守正,刘世荣.我国天然林保护与可持续经营[J].中国农业科技导报,2000,2(1):42~46
    [5] 朱教君.次生林经营基础研究进展[J].应用生态学报,2002,13(12):1689~1694
    [6] Crau H R, Arturi M F, Brown A D, et al. Floristic and structural patterns along a chronosequence of secondary forest succession in argentinean subtropical montane forests[J]. For Ecol Manag, 1997, 95: 161~171
    [7] Finegan B. Pattern and process in Neotropical secondary rain forests: The first 100 years of succession[J]. Trends Ecol, 1996, 11: 119~124
    [8] Nelson B W, Mesquita R, Pereira, J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. For Ecol Manag, 1999, 117: 149~167
    [9] 张佩昌,王庆礼.天然林保护工程[M].北京:中国林业出版社,2000.11~26
    [10] 刘国华,傅伯杰,陈利顶,等.中国生态退化的主要类型、特征及分布[J].生态学报,2000,20(1):13~15
    [11] 李锋.我国天然林资源保护的景观生态原则[J].林业资源管理,2000(5):30~33
    [12] 《天然林保护的对策研究》课题组.天保工程实施中的问题与对策建议[J].林业经济,2002(6):19~22
    [13] 庄作峰.中国天然林资源保护工程——世纪之交的重大生态工程[J].世界林业研究,2001,14(3):47~54
    [14] 陈炳浩,陆静娴.我国主要林区天然林资源保护与可持续经营[J].林业资源管理,1999(1):4~12
    [15] 陶建平,张炜银.我国天然林资源保护及其研究概况[J].世界林业研究,2003,15(6):61~68
    [16] 张秀丽,魏建祥,徐济德,等.森林分类经营、天然林保护与可持续发展若干问题的探讨[J].内蒙古林业调查设计,1999(3):81~85
    [17] 黄鹤羽,王志学.中国林情[M].北京:开明出版社,2000.22~24.
    [18] 中华人民共和国林业部.全国森林资源统计(1989~1993).1994
    [19] 中华人民共和国林业部.中国林业年鉴(1996)[M].北京:中国林业出版社,1997
    [20] 马世骏主编.中国生态学发展战略研究[M].北京:中国经济出版社,1991
    [21] 《中国森林》编委会编著.中国森林(第一卷)[M].北京:中国林业出版社,1997
    [22] Rodger W A. Patterns of loss of forestry biodiversity-a global perspective[R], Volume 2: 23~40. Proceedings of the Ⅺ World Forestry Congress, 13~22, October, 1997, Antalya
    [23] Sanders G E, Clark A G, Collsm J J. The influence of open-top chambers on the development of field bean[J]. New Phytol, 1991(1): 439~447
    [24] Houghton J T. Intergovernmental panel for climate change[A]. The supplementary report to IPCC scientific assessment[C]. London: Cambridge University Press, 1992. 1~200
    [25] 王淼,代力民,韩士杰,等.高CO_2浓度对长白山阔叶红松林主要树种的影响[J].应用生态学报,2000,11(5):675~679
    [26] WGI.Climate Change[R]. Eds, By Honghton J, Jenkins G J, Ephraums J J. Cambridge: Cambridge University Press, 1990
    [27] 贺庆棠.森林对地气系统碳素循环的影响[A].森林与环境中国高级专家研讨会文集[C].中国林业出版社,1993,96~99
    [28] 徐德应,刘世荣.温室效应、全球变暖与林业[J].世界林业研究,1992,5(1):25~32
    [29] 徐德应,张小全.森林生态系统管理科学——21世纪森林科学的核心[J].世界林业研究,1998(2):1~7
    [30] 孙凤玲,于海洪,王毅军,等.论国有林区天然林保护工程的实施[J].吉林林学院学报,1999,15(2):122~126
    [31] Lieth H, Whittaker R H. Primary productivity of the biosphere[M]. Springer-verlag, Berlin, Heidelberg, New York. 1975
    [32] 方精云,刘国华等.中国陆地生态系统的碳循环及其全球意义[A].现代生态学的热点问题研究(上册)[C].北京:中国科学技术出版社,1996.240~250
    [33] 刘世荣,蒋有绪.中国暖温带森林生物多样性研究[M].北京:中国科学柱术出版计出版,1998
    [34] 李育才.面向21世纪的林业发展战略[M].北京:中国林业出版社,1996
    [35] IUCN. Conservation Monitoring Centre Conservation and Biodiversity[J]. Threatened Plants Newsletter, 1988(19): 2~4
    [36] 赵彤堂,董晓刚.21世纪森林生态系统经营与天然林保护工程[J].林业勘查设计,1998(4):6~9
    [37] 普建明.试论天然林资源保护与国家生态安全[J].林业调查规划,2002,27(3):80~83
    [38] 谭俊.充分认识国有林区天然林资源保护工程的重大意义[J].科技导报,1998(5):52~54
    [39] 唐小平,李荣玲,李晖.保护国有天然林资源实现林区可持续发展[J].林业经济,1998(1):56~62
    [40] 刘兴双,郑可歆,张辉.天然林保护是实现可持续发展的重要途径[J].辽宁林业科技,1999(5):25~27
    [41] 孙继华.浅谈实施天然林保护工程的战略意义[J].林业科技情报,1997(3):12~14
    [42] 刘世荣,温远光等.中国森林生态系统水文生态功能规律[J].北京:中国林业出版社.1996
    [43] 彭少麟.中国南亚热带退化生态系统的恢复和重建[A].见:陈灵芝,陈伟烈等主编.中国退化生态系统研究[C].北京:中国科学技术出版社,1995.94~113
    [44] 孙树德,王忠友.保护和发展天然阔叶林的对策[J].辽宁林业科技,1997(6):41~42,44
    [45] 谭凤梧,吴家兵,裴铁璠.天然林保护与东北地区水患治理方略[J].自然资源学报,2001,16(5):462~466
    [46] 马雪华.森林水文学[M].北京:中国林业出版社,1993
    [47] 彭镇华,江泽慧.从长江中下游“兴林灭螺”和“低丘、滩地”开发两项目谈整治与开发相结合[A].见:王志宝主编.森林与环境——中国高级专家研讨会文集[C].北京:中国林业出版社,1993.28~32
    [48] 孙铁珩.洪涝灾害分析及其防治策略[J].中国减灾,1996,6(3):35~38
    [49] 王礼先,解明曙.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版社.1997
    [50] 周晓峰.中国森林与生态环境[M].北京:中国林业出版社,1999
    [51] 杜丽君.森林自然疗养因子在疗养医学中的应用[J].中国疗养医学,2000,9(4):6~8
    [52] 代永彬.大雪山自然保护区森林生态功能及价值评估初探[J].林业调查规划,2004,29(2):83~87
    [53] 高显恩.现代疗养学[M].北京:人民军医出版社,1988.145
    [54] 周卫芬,马青江.浅谈森林的生态效益[J].青海环境,2000,10(3):134~136
    [55] 肖寒,欧阳志云,赵景柱,等.海南岛生态系统土壤保持空间分布特征及生态经济价值评估[J].生态学报,2000,20(4):552~558
    [56] 肖寒,欧阳志云,赵景柱,等.森林生态系统服务功能及其生态经济价值评估初探——以海南岛尖峰岭热带森林为例[J].应用生态学报,2000,11(4):481~484
    [57] 关文彬,王自力,陈建成,等.贡嘎山地区森林生态系统服务功能价值评估[J].北京林业大学学报,2002,24(4):80~84
    [58] 孙建平,孙根年.陕西佛坪自然保护区森林生态服务价值测评[J].陕西师范大学学报(自然科学版),2004,32(3):107~111
    [59] 马新辉,孙根年,任志远.西安市植被净化大气物质量的测定及其价值评价[J].干旱区资源与环境,2002,16(4):83~86.
    [60] 黄键屏,吴楚才.与城区比较的森林区微生物类群在空气中的分布状况[J].林业科学,2002,38(2):173~176
    [61] 周兆喜,蔡丽艳.实施天然林保护工程的意义存在问题及对策[J].林业资源管理,1999(1):1~4
    [62] 陈涛.遏制土地沙化,促进西部水土保持生态环境建设[J].水土保持学报,2002,16(5):28~31,53
    [63] 朱震达.中国北方沙漠化现状及发展趋势[J].中国沙漠,1985,5(3):3~11
    [64] 朱震达,陈广庭,等著.中国土地沙质荒漠化[M].北京:科学出版社,1994
    [65] CCICCD. China Country Paper to Combat Desertification[M]. Beijing: China Forestry Publishing House, 1997
    [66] 郭安,胡慧蓉,楚永兴.森林可持续经营与天然林保护[J].云南林业调查规划设计,1999,24(2):45~48
    [67] 冯林,王立明.关于森林可持续经营与天然林保护若干问题的探讨[J].内蒙古林学院学报(自 然科学版),1998,20(3):22~25
    [68] 王迪海,唐德瑞,李根前.陕南马尾松次生林经营技术探讨fJ].陕西林业科技,1995(4):52~54
    [69] 李德志,李广祥,孙淑燕.东北东部山区天然次生林群落中主要树木种群生态位的测度与分析[J].吉林林学院学报,1995,11(2):69~74
    [70] 黄世能,王伯荪.热带次生林群落动态研究:回顾与展望[J].世界林业研究,2000,13(6):7~13
    [71] 张萍,刘宏茂,陈爱国,等.西双版纳热带山地利用过程中的土壤退化[J].山地学报,2001,19(1):9~13
    [72] 陈明智.菠萝园土壤肥力退化的调查[J].土壤肥料,2002(6):29~31
    [73] 刘世梁,傅伯杰,陈利顶,等.卧龙自然保护区土地利用变化对土壤性质的影响[J].地理研究,2002,21(6):682~688
    [74] 田昆,莫剑锋,陆梅,等.澜沧江上游山地典型区不同利用方式的土壤肥力性状[J].山地学报,2004,22(1):87~91
    [75] 潘洪泽,聂媛.混交林土壤养分效益的初步分析[J].辽宁林业科技,1997(6):57~60
    [76] 杜平,高运茹,张恩生,等.冀北山地华北落叶松人工林对土壤肥力的影响[J].河北林业科技,1999(2):6~8
    [77] 刘义,关继义,葛建平.不同森林类型土壤肥力的差异分析[J].东北林业大学学报,2002,30(3):76~78
    [78] 黄承标,杨茂好,牙美华,等.桂西北红椎次生林生长及土壤的理化性质[J].南京林业大学学报(自然科学版),2004,28(2):54~56
    [79] 郑华,欧阳志云,王效科,等.不同森林恢复类型对南方红壤侵蚀区土壤质量的影响[J].生态学报,2004,24(9):1994~2002
    [80] 张萍,冯志立.西双版纳热带雨林次生林的生物养分循环[J].土壤学报,1997,34(4):418~426
    [81] 周厚诚,任海,向言词,等.南澳岛植被恢复过程中不同阶段土壤的变化[J].热带地理,2001,21(2):104~107,112
    [82] 沙丽清,邓继武,谢克金,等.西双版纳次生林火烧前后土壤养分变化的研究[J].植物生态学报,1998,22(6):513~517
    [83] Mc Donald M A, Healey J R. Nutrient cycling in secondary forests in the Blue Mountains of Jamaica[J]. For Ecol Manag, 2000, 139: 257~278
    [84] Keeney D R. Prediction of soil nitrogen availability in forest ecosystems: a literature review[J]. Forest Science, 1980, 26: 159~171
    [85] Vitousek P M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests[J]. Ecology, 1984, 61: 285~298
    [86] Montagnini F, Buschbacher R. Nitrification rates in two undisturbed tropical rain forests and three slash-and-bum sites of the Venezuelan Amazon[J]. Biotropica, 1989, 21: 9~14
    [87] Montes R A, Christensen N L. Nitrification and succession in the piedmont of North Carolina[J]. Forest Science, 1979, 25: 287~297
    [88] Matson, P A, Vitousek P M. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier National Forest, Indiana[J]. Forest Science, 1981,27: 781~791
    [89] Rosswall T. Microbiological regulation of the biogeochemical nitrogen cycle[J]. Plant and Soil, 1982, 67: 15~34
    [90] Haines B I. Nitrogen Uptake: apparent pattern during old field succession in southeastern U. S. [J]. Oecologia, 1977, 26: 295~303
    [91] Odum E P. The strategy of ecosystem development[J]. Science, 1969, 164: 262~270
    [92] Robenson G P. Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America[J]. Oecologia, 1984, 61: 99~104
    [93] Jordan C F, Todd R L, Escalante G. Nitrogen conservation in a tropical rainforest[J]. Oecologia, 1979, 39: 123~129
    [94] Jordan C F, Caskey W, Escalante G. Nitrogen dynamics during conversion of primary Amazonian rain forest to slash and bum agriculture[J]. Oikos, 1983, 40: 131~139
    [95] Vitousek P M, Gosz J R, Grier C C, et al. Nitrate losses from disturbed ecosystems[J]. Science, 1979, 204: 469~474
    [96] Matson P A, Vitousek P M, Ewell J J. Nitrogen transformations following tropical forest felling and burning on a volcanic soil[J]. Ecology, 1987, 68: 491~502
    [97] Robertson G P, Tiedje J M. Deforestation alters denitrification in a lowland tropical rain forest[J]. Nature, 1988, 336: 756~759
    [98] 沙丽清,孟盈,冯志立,等.西双版纳不同热带森林土壤氮矿化和硝化作用研究[J].植物生态学报,2000,24(2):152~156
    [99] 李贵才,韩兴国,黄建辉.哀牢山木果柯林及其退化植被下土壤无机氮库的干季动态特征[J].植物生态学报,2001,25(2):210~217
    [100] Davidson E A, Galloway L F, Strand M K. Assessing available carbon: comparison of techniques across selected forest soils[J]. Communications in Soils Science and Plant Analysis, 1987, 18: 45~64
    [101] Robertson G P, Wedin D, Groffman P M, et al. Soil carbon and nitrogen availability[A]. In: Robertson G P, Bledsce C S, Coleman D C, et al, eds. Standard soil methods for long-term ecological research[C]. New York: Oxford University Press, 1999. 258~271
    [102] Carter M R, Gregorich E G. Methods to characterize and quantify organic matter storage in soils fractions and aggregates[A]. In: Carter M R, Stewart B A, eds. Structure and organic matter storage in agricultural soils[C]. Boca Raton, Florida: CRC Press, 1996. 449~466
    [103] Feller C, Beare M H. Physical control of soil organic matter dynamics in the tropics[J]. Geoderma, 1997, 79: 69~116
    [104] Collins H P, Paul E A, Paustian K, et al. Characterization of soil carbon relative to its stability and turnover[A]. In: Paul E A, Paustian K, Elliott, E T, et al, eds. Soil organic matter in temperate agroecosystems, long-term experimems in North America[C]. Boca Raton, Florida: CRC Press, 1997.51 -72
    
    [105]Paul E A, Morris S J, Bohm S. The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers[A]. In: Lal R, Kimble J M, Follett R F, et al, eds. Assessment methods for soil carbon[C]. Boca Raton, Floria: Lewis Publishers, 2001. 193 ~ 206
    [106]Motavalli P P, Palm C A, Parton W J, et al. Comparison of laboratory and modeling simulation methods for estimating carbon pools in tropical forest soils[J]. Soil Biology & Biochemistry, 1994, 26: 935 -944
    
    [107]Hassink J. Density fractions of soil macroorganic matter and microbial biomass as predictions of C and N mineralization[J]. Soil Biology & Biochemistry, 1995, 27: 1099 ~ 1108
    
    [108]Christensen B T. Carbon in primary and secondary organomineral complexes[A]. In: Carter M R, Stewart A B, eds. Structure and organic matter storage in agricultural soils[C]. Boca Raton, Florida: CRC Press, 1996.97-165
    
    [109]Ross D J, Tate K R, Feltham, C W. Microbial biomass, and C and N mineralization, in litter and mineral soil of adjacent montane ecosystem in a southern beech(nothofagus) forest and a tussock grassland[J]. Soil Biology & Biochemistry, 1996,28: 1613- 1620
    
    [110]Wang Y, Amundson R, Trumbore S. The impact of land use change on C turnover in soils[J]. Global Biogeochemical Cycle, 1999, 13: 47 ~ 57
    
    [111]Ross D J, Tate K R, Scott N A, et al. Landuse chang: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. Soil Biology & Biochemistry, 1999, 31: 803-813
    
    [112]Motavalli P, Discekici P H, Kuhn J. The impact of land clearing and agricultural practices on soil organic C fractions and CO_2 efflux in the Northern Guam aquifer[J]. Agriculture Ecosystems and Enviroment, 2000, 79: 17 ~ 27
    
    [113]Whalen J K, Bottomley P J, Myrold D D. Carbon and nitrogen mineralization from light- and heavy- fraction addition to soil[J]. Soil Biology & Biochemistry, 2000, 32: 1345-1352
    [114]Jobbogy E G, Jackson R B. The vertical distribution soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10: 423 - 436
    
    [115]Giardina C P, Ryan M G, Hubbard R M, et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of American Journal, 2001, 65: 1272 - 1279
    [116]Kanda K, Miranda C H B, Macedo C M. Carbon and nitrogen mineralization in soils under agro-pastoral system in subtropical central Brazil[J]. Journal of Plant Nurition and Soil Science, 2002, 48: 179- 184
    
    [117]Landgraf D, Klose S. Mobile and readily available C and N fraction and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems[J]. Journal of Plant Nutrition and Soil Science, 2002, 165: 9~16
    [118] Rovira P, Vallejo R. Mineralization of carbon and nitrogen from plant debris, as affected by debris size and depth of burial[J]. Soil Biology & Biochemistry, 2002, 34: 327~339
    [119] 吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J].植物生态学报,2004,28(4):530~538
    [120] 黄承才,葛滢,常杰.人为扰动对森林主态系统土壤呼吸的影响[J].浙江林业科技,1999,19(4):18~2l,27
    [121] 邱仁辉,杨玉盛,彭加才,等.杉木人工林与米储次生促进林生产力和土壤肥力比较[J].山地学报,2001,19(1):33~37
    [122] Khanna P K, Ludwig B, Bauhus J, et al. Assessment and significance of labile organic C pools in forest soils[A]. In: Lal R, Kimble J M, Follett R F, Stewart B A, eds. Assessment methods for soil carbon[C]. Boca Raton, Florida: Lewis Publishers, 2001. 167~182
    [123] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33: 141~163
    [124] Loginow W W, Wisniewski W, Gonet S S, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Sciecnce, 1987, 20: 47~52
    [125] Skjemstad J O, Clarke P, Taylor J A, et al. The chemistry and nature of protected carbon in soil[J]. Australian Journal of Soil Research, 1996, 34: 251~271
    [126] Picclo A. Humus and soil convervation[A] In: Picclo A ed. Humic substance in terrestrial ecosystem[C]. Amsterdam: Elsevier Science, 1996. 225~264
    [127] Tisdall J M. Formation of soil aggregates and accumulation of soil organic matter[A]. In: Carter M R, Stewart B A, eds. structure and organic matter storage in agricultural soils[C]. Boca Raton, Florida: CRC Press, 1996. 57~96
    [128] Blair G J, Lefroy R D B. Singh B P, et al. Development and use of a carbon management index to monitor changes in soil C pool size and turnover rate[A]. In: Cadisch G, Giller K E, eds. Drive by nature: plant litter quality and decomposition[C]. Wallingford: CAB International, 1997. 273~281
    [129] Post W M, Kwon K C. Soil carbon sequestration and land use change: processes and potential[J]. Global Change Biology, 2000, 6: 317~327
    [130] Mendham D S, O'Connell A M, Grove T S. Organic matter chamcteristics under native forest, long term pasture, and recent conversion to eucalyptus plantations in western Australia: microbial biomass, soil respiration and permanganate oxidation[J]. Australian Journal of Soil Research, 2002, 40: 859~872
    [131] Camberdella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of American Journal, 1994, 58: 123~130
    [132] Skjemstad J O, Taylor J A, Janik L J, et al. Soil organic carbon dynamics under long-term sugarcane monoculture[J]. Australian Journal of Soil Research, 1999, 37: 151~164
    [133] 吴建国,张小全,徐德应.六盘山林区几种土地利用方式下土壤活性有机碳的比较[J].植物生态学报,2004,28(5):657~664
    [134] Dalai R C, Mayer RJ. Long-term trends in fertility of soil under continuous cultivation and cereal cropping in southern queensland vi loss of total nitrogen from different particle-size and density fractions[J]. Australian Journal of Soil Research, 1987, 25: 83~93
    [135] Conteh A, Blair G J, Macleod D A, et al. Soil organic carbon changes incracking clay soils under cotton production as studied by carbon fractionation[J]. Australian Journal of Agricultural Research, 1997, 48: 1049~1058
    [136] Camberdella C A, Eliiott E T. Methods for physical separation and characterization of soil organic fraction[J]. Geoderma, 1993, 56: 449~457
    [137] Solomond D, Lehmann J, Zech W L. Use effects on soil organic matter properties of chromic luvisols in semiarid northern Tanzania: carbon, nitrogen, lignin and carbohydrates[J]. Agriculture, Ecosystems and Environment, 2000, 78: 203~213
    [138] Bemoux M, Arrouays D, Cerrir C C, et al. Modeling vertical distribution of carbon in oxisols of the western Brazilian amazon(rondonia)[J]. Soil Science, 1998, 63: 94~95
    [139] 吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19~29
    [140] Sedjo R A. The carbon cycle and global forest ecosystem[J]. Water Air Soil Pollut, 1993, 70: 295~307
    [141] Lal R I. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effects[J]. Progr Environ Sci, 1999, 14: 307~326
    [142] IPCC 1995. Climate Change 1995. Working roup 1. IPCC[R]. Cambridge: Cambridge University Press, 1995
    [143] Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis[J]. Global Change Biol, 2002, 8: 345~360
    [144] Detwiler R P. Landuse change and the global carbon cycle: the role of tropical soils[J]. Biogeochemistry, 1986, 2: 67~93
    [145] Lugo A E, Sanchez A J, Brown S. Land use and organic carbon content of some subropical soils[J]. Plant and Soil, 1986, 96: 185~196
    [146] Guggenbrger G, Zech W. Soil organic matter composition under primary forest, pasture, and seconctary forest succession, Region Huetar Norte, Costa Rica[J]. For Ecol Manag, 1999, 124: 93~104
    [147] Knopes J M H, Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology, 2000, 81(1): 88~98
    [148] Johnson D W, Curtis P S. Effects of forest management on soil C and N storage: Meta analysis[J]. For Ecol Man, 2001, 140: 227~238
    [149] Murty D, Kirschbum M U F, Mcmurtrie R E, et al. Dose conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature[J]. Global Change Biol, 2002, 8: 105~123
    [150] 吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国工程科学,2003,5(9):65~71,77
    [151] 吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593~599
    [152] 张萍.西双版纳次生林土壤微生物生态分布及其生化特性的研究[J].生态学杂志,1995,14(1):21~26
    [153] 曾思齐,周国英,奈济云.湘东丘陵区次生林土壤微生物的分布及酶的活性研究[J].中南林学院学报,1998,18(2):20~23
    [154] 张萍,刀志灵,郭辉军,等.高黎贡山不同土地利用方式对土壤微生物数量和多样性的影响[J].云南植物研究,1999(增):84~89
    [155] 张萍,刀志灵,郭辉军,等.高黎贡山自然保护区土壤真菌的组成及其生态分布[J].云南植物研究,1999(增):79~83
    [156] 郑华,欧阳志云,易自力,等.红壤侵蚀区恢复森林群落物种多样性对土壤生物学特性的影响[J].水土保持学报,2004,18(4):137~141
    [157] 郑文教,王良睦,林鹏.福建和溪亚热带雨林土壤活性的研究[J].生态学杂志,1995,14(2):16~20
    [158] 杨玉盛,李振问,俞新妥,等.南平溪后杉木林取代杂木林后土壤肥力变化的研究[J].植物生态学报,1994,18(3):236~242
    [159] 杨玉盛,何宗明,愈新妥,等.杉木林取代杂木林后土壤生物学活性变化的研究[J].应用与环境生物学报,1997,3(4):313~318
    [160] Hassan M M, Majumder A H. Distribution of organic matter in some representative forest soil sof Bangladesh[J]. Indian Journal of Forestry, 1990, 13: 281~287.
    [161] 许炼烽,朱伍坤.热带次生林利用与土壤物理性质变化[J].生态学报,1996,16(6):652~659
    [162] 潘紫文,刘强,佟得海.黑龙江省东部山区主要森林类型土壤水分的入渗速率[J].东北林业大学学报,2002,30(5):24~26
    [163] 郑粉莉,唐克丽,王文龙,等.子午岭林区林地和开垦地土壤侵蚀特征研究[A].子午岭林区土壤侵蚀与生态环境关系的研究内容和方法[C].中国科学院水利部西北水土保持研究所集刊,1993(17):30~36
    [164] 郑粉莉,张成娥.林地开垦后坡面侵蚀过程与土壤养分流失的研究[J].水土保持学报,2002,16(1):44~46
    [165] Sanchez R G, Alvarez-Sanchez J. Litterfall in primary and secondary tropical forests of Mexico[J]. Trop Ecol, 1995, 36: 191~201
    [166] 朱丽晖,李冬,邢宝振.辽东山区天然次生林枯落物层的水文生态功能[J].辽宁林业科技,2001(1):35~37
    [167] 高鹏,李金.刘建民.天然次生林水源涵养效益的研究[J].山西水土保持科技,1998(3):10~12
    [168] 田育新,李锡泉,袁正科,等.湘南红壤区不同林分类型涵水保土效益研究[J].水土保持研究,2002,9(4):80~82,86
    [169] 王勤,张宗应,徐小牛.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3):59~62
    [170] 李锡泉,田育新,袁正科,等.湘西山地不同植被类型的水土保持效益研究[J].水土保持研究,2003,10(2):123~125,157
    [171] 杜晓军,姜凤岐,沈慧,等.辽西油松林水土保持效益评价[J].生态学报,2003,23(12):2531~2539
    [172] 胡建忠,张伟华,李文忠,等.北川河流域退耕地植物群落土壤抗蚀性研究[J].土壤学报,2004,41(6):854~863
    [173] Nugroho J D. Litterfall and soil characteristics under plantations of five tree species in Irian Jaya[J]. Sci New Guinea, 1997, 23: 17~26
    [174] Ogden A E, Schmidt M G. Litterfall and soil characteristics in canopy gaps occupied by vine maple in a coastal western hemlock forset[J]. Can J Soil Sci, 1997, 77: 703~711
    [175] 刘传照,李景文,潘桂兰,等.小兴安岭阔叶红松林凋落物产量及动态的研究[J].生态学杂志,1993,12(6):29~33
    [176] 崔晓阳.东北森林的土壤潜力[M].哈尔滨:黑龙江教育出版社,1995
    [177] 姜培坤,钱新标,余树全,等.千岛湖地区天然次生林地枯落物与土壤状况的调查分析[J].浙江林学院学报,1999,16(3):260~264
    [178] 周厚诚,任海,彭少麟.广东南澳岛植被恢复过程中的群落动态研究[J].植物生态学报,2001,25(3):298~305
    [179] 林波,刘庆,吴彦,等.川西亚高山人工针叶林枯枝落叶及苔藓层的持水性能[J].应用与环境生物学报,2002,8(3):234~238
    [180] 林波,刘庆,吴彦,庞学勇,何海.川西亚高山针叶林凋落物对土壤理化性质的影响[J].应用与环境生物学报,2003,9(4):346~351
    [181] 林波,刘庆,吴彦,等.亚高山针叶林人工恢复过程中凋落物动态分析[J].应用生态学报,2004,15(9):1491~1496
    [182] 杨澄,党坤良,刘建军.麻栎人工林水源涵养效能研究[J],西北林学院学报,1997,12(2):15~19
    [183] Putuhena W M, Cordery I. Estimation of interception capacity of the forests floor[J]. J. Hydrol., 1996, 180: 283~299
    [184] 宋轩,李树人,姜凤岐.长江中游栓皮栎林水文生态效益研究[J].水土保持学报,2001,15(2):76~79
    [185] 张洪江,程金花,史玉虎,等.三峡库区3种林下枯落物储量及其持水特性[J].水土保持学报, 2003,17(3):55~123
    [186] 张洪江,程金花,余新晓,等.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学,2003,39(5):147~151
    [187] 高人,周广柱.辽宁东部山区几种主要森林植被类型枯落物层持水性能研究[J].沈阳农业大学学报,2002,33(2):115~118
    [188] 陈卓梅,黄先华.秃杉混交林水源涵养功能的研究[J].福建林学院学报,2002,22(3):266~269
    [189] 雷瑞德.秦岭火地塘林区华山松林水源涵养功能的研究[J].西北林学院学报,1984(1):19~33
    [190] 陈开伍.杉木毛竹混交林水源涵养功能的研究[J].福建林学院学报,2000,20(3):258~261
    [191] 贾守信,梁志广,梁淑兰,等.长白山北坡原始林采伐对土壤性质影响的研究[J].土壤学报,1984,21(4):426~433
    [192] 谢锦升,杨玉盛,郭剑芬,等.侵蚀红壤人工恢复的马尾松林水源涵养功能研究[J].北京林业大学学报,2002,24(2):48~51
    [193] 王云琦,王玉杰,张洪江,等.重庆缙云山几种典型植被枯落物水文特性研究[J].水土保持学报,2004,18(3):41~44
    [194] 程金花,张洪江,余新晓,等.贡嘎山冷杉纯林地被物及土壤持水特性[J].北京林业大学学报,2002,24(3):45~49
    [195] 周晓峰.帽儿山、凉水森林水分循环的研究,中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.213~222
    [196] 姜文来.水资源价值论[M].北京:科学出版社,1998.1~5
    [197] 王金,车克钧,王艺林,等.干旱半干旱区山地森林的水分调节功能[J].林业科学,2001,37(5):120~125
    [198] 理查德L.森林小气候[M].北京:气象出版社,1986.169~196
    [199] 蒋秋怡.林木地上部分的持水性能及其对林地水文学性质的影响[J].浙江林学院学报,1989,6(2):176-181
    [200] 郑郁善,郭海涛.福建含笑杉木混交林水源涵养功能差异研究[J].福建林学院学报,1997,17(2):126~130
    [201] 孙立达,朱金兆.水土保持林体系综合效益研究与评价[J].北京:中国林业出版社,1995.
    [202] 王佑民.中国林地水土保持功能研究概况[J].水土保持学报,2000,14(4):109~113
    [203] 姜志林.森林生态系统蓄水保土功能[J].生态学杂志,1984,42~47
    [204] 赖仕嶂,李振问.杉木火力楠混交林水文特性的初步研究[J].福建林学院学报,1990,10(3):206~211
    [205] 郑郁善,杨伦增.杉木毛竹混交林水文效应的研究[J].福建林学院学报,1995,15(4):325~330
    [206] 方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389~397
    [207] 郝古庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究[J].应用生态学报, 1998,9(3):237~241
    [208] 王光玉.杉木混交林水源涵养和土壤性质研究[J].林业科学,2003,39(Sp1):15~20
    [209] 陈明福.杉木拟赤杨根际土壤研究[J].福建林学院学报,1998,18(4):369~372
    [210] 何斌,梁伟克,刘运华,等.肉桂林取代杉木林后水源涵养功能的研究[J].福建林学院学报,2001,21(2):161~164
    [211] 黄庆丰,高健,吴泽民.不同森林类型土壤肥力状况及水源涵养功能的研究[J].安徽农业大学学报,2002,29(1):82~86
    [212] 高成德,余新晓.水源涵养林研究综述[J].北京林业大学学报,2000,22(5):78~82
    [213] 洪长福.不同杉木混交类型幼龄林水源涵寨功能研究[J].福建林学院学报,1997,17(2):184~188
    [214] 陈礼光,郑郁善,林金国,等.突脉青冈林分水文效应研究[J].福建林学院学报,1999,19(2):170~173
    [215] 胡海波,张金池.平原粉沙淤泥质海岸防护林土壤渗透特性的研究[J].水土保持学报,2001,15(1):39~42
    [216] 张建辉,李勇,杨忠.云南元谋干热河谷造林区植被生长与土壤渗透性的关系[J].山地学报,2001,19(1):25~28
    [217] 郑郁善,张炜银.观光木杉木混交林水文特征研究[J].福建林学院学报,1998,18(3):215~218
    [218] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    [219] 中国科学院南京土壤研究所.土壤理化分析[M].上海:科学技术出版社,1978
    [220] 中国树木志编委会主编.中国主要树种造林技术[M].北京:农业出版社,1977.29~31,36~38,545~547
    [221] 陈国潮,何振立,祝军,等.红壤微生物量氮的测定研究[J].土壤通报,1998,29(4):185~187
    [222] 谢正苗,卡里德,黄昌勇,等.镉铅锌污染对红壤中微生物生物量碳氮磷的影响[J].植物营养与肥料学报,2000,6(1):69~74
    [223] 许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [224] Powison D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an edey lndicahon of changes in total soil organic matter due to straw incorporation[J]. Soil Biol. Biochem., 1987, 19: 159~164
    [225] Forster S M. Microbial aggregation of sand in an embryo dune system[J]. Soil Biol. Biochem., 1979, 11: 537~543
    [226] Venkateswarlu B, Rao A V. Distribution of microbials in stabilized and unstabilised sand dunes of the Indian desert[J]. Journal of Arid Environments, 1981, (3): 201~207
    [227] Lynch J M. Interactions between biological processes, cultivation and soil structure[J]. Plant Soil, 1984, 76: 307~318
    [228] Lynch J M, Bragg E. microbials and soil aggregate stability[J]. Advances in Soil Science, 1985, (2): 133~171
    [229] Gupta V V S R, Germida J J. Distribution of microbial biomass and its activity in soil aggregate size classes as affected by cultivation[J]. Soil Biol. Biochem, 1988, 20: 777~786
    [230] 邵玉琴,赵吉,包青海.库布齐固定沙丘土壤微生物生物量的垂直分布研究[J].中国沙漠,2001,21(1):88~92
    [231] 陈珊,张常钟,刘东波,等.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系[J],生态学报,1995,19(1):91~94
    [232] 史衍玺,唐克丽.人为加速侵蚀下土壤质量的生物学特性变化[J].水土保持学报,1998,4(1):28~34
    [233] 李世清,李生秀.有机物料在维持土壤微生物体氮库中的作用[J].生态学报,2001,21(1):136~142
    [234] Jimenez M D, Horra A M, Pruzzo L, et al. Soil quality: a new index based on microbiological and biochemical parameters[J]. Biology & Fertility of Soils, 2002, 35(4): 302~306
    [235] Kushwaha C P, Trpathi S K, Singh K P. Variations in soil microbial biomass and N availability due to residue and tillage management in dry land rice agroecosystem[J]. Soil & Tillage Research, 2000, 56: 53~66
    [236] Darrah P R. 1996. Rhizodeposition under ambient CO_2 and elevated levels[J]. Plant Soil, 187: 265~275
    [237] Lamber H. 1987. Growth, respiration, exudation and symbiotic associations: The fate of carbon translocated to the roots[A]. In: Gregory P J, eds. Root Development and Function[C]. Cambridge: Cambridge University Press. 125~146
    [238] 林伟宏,张福锁,白克智,et al.大气CO_2浓度升高对植物根际微生态系统的影响[J].科学通报,1999,44(16):1690~1696
    [239] 王其兵,贺金生,陈伟烈.长江三峡地区退化生态系统土壤微生物的初步研究[J].生物多样性,1997,5(4):241~245
    [240] 杨玉盛,何宗明,邹双全,等.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报,1998,18(2):198~202
    [241] 张萍,郭辉军,杨世雄,等.高黎贡山土壤微生物生态分布及其生化特性的研究[J].应用生态学报,1999,10(1):74~78
    [242] 俞慎,何振立,陈国潮,等.不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响[J].土壤学报,2003,40(3):433~439
    [243] Abdul K S, Katayama A, Kimura. Activities of some soil enzymes in different land use system after deforestation in hilly areas of west Lampung, South Sumatra, indonesia[J]. Soil Sci., 2000, 80: 91~97
    [244] Badiane N N Y, Chotte J L, Pate E, et al. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions[J]. Applied Soil Ecology, 2001, 18(3): 229~ 238
    [245] 张成娥,陈小利.林地砍伐开垦对土壤酶活性及养分的影响[J].生态学报,1998,17(6):18~21
    [246] 侯扶江,南志标,肖金玉.重牧退化草地的植被、土壤及其耦合特征[J].应用生态学报,2002,13(8):915~922
    [247] Acosta-Martinez V, Zobeck T M, Gill T E, et al. Enzyme activities and microbial community structure in semiarid agricultural soils[J]. Biology and Fertility of Soils, 2003, 3: 216~227
    [248] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.1~13
    [249] Perucci P, Scarponi L, Businelli M. Enzyme activities in clay loam soil amended with various crop residue[J]. Plant and Soil, 1984, 81: 345~351
    [250] 周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [251] 张银龙,林鹏.秋茄红树林土壤酶活性时空动态[J].厦门大学学报(自然科学版),1999,38(1):129~136
    [252] 江育璋,宁恩瀚,陈兆畦.鲜土酶活性测定技术的研究[J].西南农学院学报,1985,(2):70~74
    [253] 周礼恺.土壤酶活性的测定方法[J].土壤通报,1980(5):37~38
    [254] 王理平,刘再清.杉木桤木混交林土壤酶与土壤肥力的研究[J].林业科技通讯,1998(2):28~30
    [255] 魏丹.土壤酶对改土培肥和土壤有机污染物的净化作用[J].黑龙江农业科学,1999(4):48~50
    [256] Siegel B Z. Plant peroxidases2an organismic perspective[J]. Plant Growth Regulation, 1993, 12: 303~312
    [257] Garca-Gil J, Plaza C C, Soler-Rovira P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biol. & Biochem., 2000, 32: 1907~1913
    [258] 杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564~570
    [259] Diamantidis G, Effosse A, Potier P, et al. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum[J]. Soil Biol. & Biochem., 2000, 32: 919~927
    [260] Bentez E, Melgar R, Melgar H, et al. Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.) grown with olive cake mulches[J]. Soil Biol. & Biochem., 2000, 32: 1829~1835
    [261] 麦克拉伦A D(闵九康等译).土壤生物化学[M].北京:农业出版社,1984.
    [262] Pancholy S K, Rice E L. Soil enzymes in relation to old field succession: Amylase, cellulase, invertase, dehydrogenase and urease[J]. Soil Sci. Soc. Amer. Proc., 1973, 37: 47~50
    [263] 杨邦俊,向世群.有机肥对紫色水稻土磷酸酶有效性的影响[J].土壤通报,1990,21(3):108~110
    [264] Tien M, Kirk T K. Lignin-degrading enzyme from Phancerochaete chrysosporium: purification, characterization and catalytic properties of a unique H_2O_2 requiring oxygenase[J]. Proc. Na. H. Acad. Sci. USA., 1984, 81: 2280~2284
    [265] Glenn J K, Gold M H. Purification and characterization of an extracellular Mn(Ⅱ)-dependent peroxidase from the lignin-degrading basidiomycetes, Phancerochaete chrysosporium[J]. Arch. Biochem. Biophys., 1985, 242: 329~341
    [266] Sariaslani F S. Microbial enzymes for oxidation of organic molecules[J]. Crit. Rev. Biotechnol., 1989, 9: 171~257
    [267] Aon M A, Colaneri A C. Temporal and spatial evolution of enzymatic activities and physico2chemical properties in an agricultural soil[J]. Appl. Soil Ecology, 2001, 18: 255~270
    [268] Dari K, Bechet M, Blondeau R. Isolation of soil streptomyces strains capable of degrading humic acids and analysis of their peroxidase activity[J]. FEMS. Microb. Ecol., 1995, 16: 115~122
    [269] Magnuson M, Crawford D L. Comparison of extracellular peroxidase and esterase deficient mutants of Streptomyces viridosporus T7A[J]. Appl. Environ. Microbiol., 1992, 58: 1070~1072
    [270] 胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):23~26
    [271] Groffman P M, Mc-Dowellb W H, Myersc J C, et al. Soil microbial biomass and activity in tropical riparian forests[J]. Soil Biol. & Biochem., 2001, 33: 1339~1348
    [272] Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques[J]. Soil Biol. & Biochem., 2002, 34: 387~401
    [273] Merino-Trigo A, Sampedro L, Rodrguez-Berrocal F J, et al. Activity and partial characterization of xylanolytic enzymes in the earthworm Eisenia andrei fed on organic wastes[J]. Soil Biol. & Biochem., 1999, 31: 1735~1740
    [274] Busto M D, Perez-Mateos M. Extraction of humic-β-glucosidase fractions from soil[J]. Biol. & Fertil. Soils, 1995, 20: 77~82
    [275] Kandeler E, Luxhui J, Tscherko M, et al. Xylanase, invertase and protease at the soil-litter interface of a loamy sand[J]. Soil Biol. & Biochem., 1999, 31: 1171~1179
    [276] Rao M A, Violante A, Gianfreda L. Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability[J]. Soil Biol. & Biochem., 2000, 32: 1007~1014
    [277] 王友保,刘登义,张莉,等.铜官山铜尾矿库植被及土壤酶活性研究[J].应用生态学报 2003,14(5):757~760
    [278] Lefroy R D B, Blair G J, Strong W M. Changes in soil organic mater with cropping as measured by organic C fractions and ~(13)C natural isotope abundance[J]. Plant and soil, 1993, 156: 399~402
    [279] 袁可能.有机矿质复合体研究Ⅰ.土壤有机矿质复音体中腐殖质的氧化稳定性研究[J].土壤学报,1963,11(3):286~293
    [280] Blair G J, Lefroy R D B. Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural Systems[J]. Aust. J. Agri. Res., 1995, 46: 1459~1466
    [281] Sparling G P. Ratio of microbial biomass C to soil organic C as a sensitive of changes in soil organic matter[J]. Aust. J. Soil Res., 1992, 30: 195~207
    [282] Bradley R L, Fyles J W. A kinetic parameter describing soil available C and it's relationship to rate increase in C mineralization[J]. Soil Biol. Biochem. 1995, 27(2): 167~172
    [283] Liang B C, Mackenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter continuous corn in eastern can adian soils[J]. Biol. Feril. Soils, 1998, 26: 88~94
    [284] 姜培坤,周国模,徐秋芳.雷竹高效栽培措施对土壤碳库的影响[J].林业科学,2002,38(6):6~11
    [285] 沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166~173
    [286] Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles[J]. Soil Biol. & Biochem., 1996, 28: 88~94
    [287] Dosskey M G, Bertsch P M. Transport of dissolved organic matter through a sandy forest soil[J]. Soil Sci. Soc. Am. J., 1997, 61: 920~927
    [288] Guggenberger G, Glaser B, Zech W. Heavy metal binding hydrophobie and hydrophilie dissolved organic carbon fractions in Spodozol A and B horizon[J]. Water, Air, and Soil Pollution, 1993, 72: 111~127
    [289] 沈宏,曹志洪,胡正义.土壤活性碳的表征及其生态意义[J].生态学杂志,1999,18(3):32~38
    [290] Coleman D C, Reid C P P, Cole C. Biological strategies of nutrient cycling in soil systems[J]. Advances in Ecological Research, 1983, 13: 1~55
    [291] Wander M M, Traina S J, Stinner B R, et al. The effects of organic and conventional management oil biologically active soil organic matter fractions[J]. Soil Sci. Soc. Am. J., 1994, 58: 1130~1139
    [292] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand[J]. Soil Biol. & Biochem., 2000, 32: 211~219
    [293] Liang B C, Mackenzi A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1997, 26(2): 88~94
    [294] 徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报,2005,27(2):18~22
    [295] Hagedom F, Kaiser R, Feyen H, et al. Effect of redox conditions and flow processes on the mobility of dissolved organic carbon an d nitrogen in a forest soil[J]. J. Envir. Qual., 2000, 29: 288~297
    [296] Six J, Contant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241: 155~176
    [297] Blair G J, Crocker G J. Crop rotation effects on soil carbon and physical fertility of two Australian soils[J]. Australian Journal of Soil Research, 2000, 38: 71~84
    [298] Nelson P N, Baldock J A, Oades J M. Change in dispersible clay content, organic carbon contents and electrolyte composition following incubation of sodic soil[J]. Australian Journal of Soil Research, 1998, 36: 883~897
    [299] Conteh A, Blair G J. The distribution and relative losses of soil organic carbon fraction in aggregate size fractions from cracking clay soils (vertisols) under cotton production[J]. Australian Journal of Soil Research, 1998, 36: 257~271
    [300] Blair G J, Lfroy R, Whitbread A, et al. The development of the KMnO_4 oxidation technique to determine labile carbon in soil and its use in a carbon management index[A]. In: Lal R, Kimble J M, Follett R, et al. eds. Assessment methods for soil carbon[C]. Boca Raton Florida: Lewis Publishers, 2001. 323~337
    [301] Jobbery E G, Jackson R B. The vertical distribution soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10: 423~436
    [302] Conteh A, Lefroy R D B, Blair G J. Dynamics of organic matter in soils as determined by variations in ~(13)C/~(12)C isotopic ratios and fractionation by ease of oxidation[J]. Australian Journal of Soil Research, 1997, 35: 881~890
    [303] 李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4):122~125
    [304] Rattan Lal. Physical management of soils of the tropics: priorities for the 21st century[J]. Soil Science, 2000, 165: 191~207
    [305] Mandelbrot B B. Fractal: form chance and Dimension[M]. San Francisco: Freeman, 1977. 1~234
    [306] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1982. 45~256
    [307] 林鸿溢,李映雪.分形论——奇异性探索[M].北京理工大学出版社,1992.43~78
    [308] Turcotte D L. Fractal fragmentation[J]. J. Geography Res., 1986, 91(12): 1921~1926
    [309] Rieu M, Sposito G. Fractal fragmentation, soil porosity and soil water propenies Ⅰ. Theory[J]. Soil. Sci. Am. J., 1991a, 55: 1231~1238
    [310] Rieu M, Sposito G. Fractal fragmentation, soil porosity and soil water propenies Ⅱ. Application[J]. Soil. Sci. Am. J., 1991b, 55: 1239~1244
    [311] 李保国.分形理论在土壤科学中的应用及其展望[J].土壤学进展,1994,22(1):1~10
    [312] 鲁植雄,张维强,潘君拯.分形理论及其在农业土壤中的应用[J].土壤学进展,1994,22(5):40~45
    [313] Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Sci. Soc. Am. J, 1981, 45: 1023~1031
    [314] 杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896~1899
    [315] Katz A J, Thompson A H. Fractal sandstone pores: implication for conductivity and pore formation[J]. Phys. Rev. Lett., 1985, 54(12): 1325~1328.
    [316] Alexandra K, Renduo Z. Estimating the soil water retention from particle-size distribution: a fractal approach[J]. Soil Soc. Am., 1998, 163(3): 171~179
    [317] Friesen J P, Mikula R J. Fractal space and rock permeability implications[J]. Phys. Rev. B., 1987,38: 2635~2638
    [318] Pachepsky Ya A, Shcherbakov R A, Korsunskaya L P. Scaling of soil water retention using a fractal model[J]. Soil Sci., 1995, 159: 99~104
    [319] Bird N R H, Bartoli F, Dexter A R. Water retention models for fractal soil structures[J]. Eupr J. Soil Sci., 1996, 47: 1~6
    [320] 张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221~226
    [321] 宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112~115
    [322] 董连科.分形理论及其运用[M].沈阳:辽宁科技出版社,1991.5~7
    [323] 廖尔华,张世熔,邓良基,等.丘陵区土壤颗粒的分形维数及其应用[M].四川农业大学学报,2002,20(3):242~245,281
    [324] Scott W T, Stephen W W. Application of fractal mathematics to soil water retension estimation[M]. Soil Sci. Soc. Am. J., 1989, 53: 987~996
    [325] Scott W T, Stephen W W. Fractal scaling of soil particles-size distributions: analysis and limitations[J]. Soil Sci. Soc. Am. J., 1992, 56: 362~369
    [326] 吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究.土壤学报,1999,36(2):162~167
    [327] 刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征.生态学报,2002,22(2):1998~2005
    [328] Brakensiek D L, Rawls W J, Longsdon S D. Fractal description of macroporosity[J]. Journal of Soil Science Sociations of American, 1992, 56: 1721~1723
    [329] Rawls W J, Brakensiek D L, Longsdon S D. Predicting saturated hydraulic conductivity utilizing fractal principles[J]. Soil Sciences Sociation American of Journal, 1993, 57: 1193~1197
    [330] Zeng Y, Gantzer C J, Payton R L, et al. Fractal dimension and lacunarity determined with X-ray computed tomography[J]. Journal of Soil Sciences Sociation of American, 1996, 60: 1718~1724
    [331] 黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490~497
    [332] 梁士楚,王伯荪.广西英罗港红树林区木揽群落土壤粒径分布的分形特征[J].热带海洋学报,2003,22(1):17~22
    [333] 程先富,史学正,王洪杰.红壤丘陵区耕层土壤颗粒的分形特征[J].地理科学,2003,23(5):617~621
    [334] 苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,24(1):71~74
    [335] 封磊,洪伟,吴承祯,等.杉木-观光木混交林不同经营模式土壤团粒结构的分形特征[J].山地学报,2004,22(3):315~320
    [336] 章明奎,何振立.成土母质对土壤团聚体形成的影响[J].热带亚热带土壤科学,1997,6(3):198~202
    [337] Barral M T, Arias M, Guerif J. Effects of iron and organic matter on the porosity and structural stability of soil aggregates[J]. Soil & Tillage Research, 1998, 46: 162~172
    [338] Salako F K, Babaiola O, Hauset S, et al. Soil macroaggtegate stability under different fallow management systems and cropping intensities in south western Nigeria[J]. Geoderma, 1999, 91: 103~123
    [339] 孙波,张桃林,赵其国.我国中亚热带缓丘区红粘土红壤肥力的演化Ⅰ.物理学肥力的演化[J].土壤学报,1999,36(1):35~47
    [340] 沈慧,姜凤岐,杜晓军,等.水土保持林土壤肥力及其评价指标[J].水土保持学报,2000,14(2):60~65
    [341] 陈恩凤,周礼恺,邱凤琼.土壤肥力实质的研究Ⅰ.黑土[J].土壤学报,1984,21(3):229~237
    [342] 陈恩凤,周礼恺,邱凤琼.七壤肥力实质的研究Ⅱ.棕壤[J].土壤学报,1985,22(2):113~119
    [343] 周礼恺,严昶升,武冠云,等.土壤肥力实质的研究Ⅲ.红壤[J].土壤学报,1986,23(3):193~203
    [344] 邱凤琼,严昶升,陈恩凤.土壤肥力实质的研究Ⅳ.水稻土[J].土壤学报,1987,24(3):232~238
    [345] 陈恩凤,周礼恺,武冠云,等.土壤的自动调节性能与抗逆性能[J].土壤学报,1991,28(2):168~176
    [346] 陈恩凤,周礼恺,武冠云.微团聚体的保肥性能及其组成比例在评断土壤肥力水平中的意义[J].土壤学报,1994,31(1):18~28
    [347] 陈利军,张岫岚,周礼恺.土壤保肥-供肥机理及其调节Ⅰ.棕壤型菜园土的P素保持与供应[J].应用生态学报,1998,9(3):254~256
    [348] 陈恩凤,关连珠,江景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49~53
    [349] 汪景宽,张继宏,王雷,等.棕壤不同粒级微团聚体中磷素的保持与供应[J].土壤通报,2001,32(3):113~115
    [350] 廖咏梅,陈劲松.米亚罗地区亚高山针叶林在不同人为干扰条件下的土壤分形特征[J].生态杂志.2005,24(8):878~882
    [351] Chaney K, Swift R S. The influence of organic matter on aggregate stability in some British soil[J].J. of soil Sci., 1984, 35: 223~230
    [352] Churchan G J, Tare K R. Aggrcgation of clay in different types of New lealand soils[J]. Geoderma, 1986, 37: 207~220
    [353] Arduino E, Barberis E, Boero V. Iron oxides and particle aggregation in B horizons of some soils[J]. Geoderma, 1989, 45: 319~329
    [354] 关连珠,张伯泉,颜丽.不同肥力黑土、棕壤微团聚体组成及其胶结物质的研究[J].土壤学报,1991,28(3):260~267
    [355] Oades J M, Waters A G. Aggregate hierarchy in soil[J]. Aust. J. Soil Res., 1991, 29(6): 815~828
    [356] Beare M H, Hendrix P F, Coleman D C. Water-stable aggregates and organic matter fractions in conventional and no-tillage soils[J]. Soil Sci. Soc. Am. J., 1994a, 58: 777~786
    [357] Berae M H, Hendrix P F, Coleman D C. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils[J]. Soil Sci. Soc. Am. J., 1994b, 58: 787~795
    [358] 钟哲科,高智慧.杨树、水杉林带枯落物对土壤微生物C、N的影响[J].林业科学,2003,39(2):153~157
    [359] 苏永中,赵哈林,张铜会,等.不同退化沙地土壤碳的矿化潜力[J].生态学报,2004,24(2):372~378
    [360] 李贵桐,张宝贵,李保国.秸秆预处理对土壤微生物量及呼吸活性的影响[J].应用生态学报,2003,14(12):2225~2228
    [361] 姚槐应.不同利用年限茶园土壤的化学及微生物生态特征研究[J].浙江农业科学,2002(3):129~131
    [362] 梁巍,岳进,吴吉力,等.微生物生物量C、土壤呼吸的季节性变化与黑土稻田甲烷排放[J].应用生态学报,2003,14(12):2278~2280
    [363] Davidson E A, Galloway L F, Strand M K. Assessing available carbon: comparison of techniques across selected forest soils[J]. Communications in Soils Science and Plant Analysis, 1987, 18: 45~64
    [364] Feller G, Balesdent J, Nicolardot B, et al. Approaching functional soil organic matter pools through particle-size fractionation: examples for tropical soils[A]. In: Lal R, Kimble J M, Follett R F, et al. eds. Assessment methods for soil carbon[C]. Boca Raton, Florida: Lewis Publishers, 2001. 53~67
    [365] Bending G D, Turner M K, Jones J E. Interaction between crop residue and soil organic matter quality and functional diversity of soil microbial communities[J]. Soil Biology & Biochemistry, 2002, 34: 1073~1082
    [366] 俞慎,何振立,张荣光,等.红壤茶树根层土壤基础呼吸作用和酶活性[J].应用生态学报,2003,14(2):179~183
    [367] 王秀丽,徐建民,谢正苗,等.重金属铜和锌污染对土壤环境质量生物学指标的影响[J].浙江大学学报(农业与生命科学版),2002,28(2):190~194
    [368] Collins H P, Rasmussen P E, Douglas C L J. Crop rotation and residue management effects on soil carbon and microbial dynamics[J]. Soil Sci. Soc. Am. J., 1992, 56: 783~788
    [369] Lamar R T, Dietrich D M. In-situ depletion of pentachlorophenol from contaminated soil by phanerochaete spp[J]. Appl. Environ. Microbial. 1990, 56: 3093~3100
    [370] 王常慧,刑雪荣,韩兴国.温度和湿度对我国内蒙古羊草草原士壤净氮矿化的影响[J].生态学报,2004,24(11):2472~2476
    [371] Koblerg R L, Rouppet B, Westfall D G, et al. Evaluation of an in situ net soil nitrogen mineralization method in dryland agroecosystem[J]. Soil Sci Soc. Am. J. 1997, 61(3): 504~508
    [372] 李贵才,韩兴国,黄建辉,唐建维.森林生态系统士壤氮矿化影响因素研究进展[J].生态学报,2001,21(7):1187~1195
    [373] Binkley D, Hart S C. The component of nitrogen availability assessment in forest soil[J]. Advances in Soil Science, 1989, 10: 57~112
    [374] Rashid G H, Scheafer R. Seasonal variation in the nitrogen mineralization and mineral nitrogen accumulation in two temperate forest soils[J]. Pedobioligia, 1988, 31: 381~390
    [375] Sulkava P, Huhta V, Laakso J. Impact of faunal structure on decomposition and N-mineralization in relation to temperature and moisture in forest soil[J]. Pedobiologia, 1996, 40: 505~513
    [376] Smith C J, Chalk P M, Crawford D M, et al. Estimating gross nitrogen mineralization and immobilization rates in anaerobic and aerobic soil suspensions[J]. Soil Sci. Soc. Am. J., 1994, 58(7): 1652~1660
    [377] Bormann F H, Likens G E, Melillo J M. Nitrogen budget for a grading northern hardwood forest ecosystem[J]. Science, 1977, 196: 981~983
    [378] Neal A S, Binkley D. Foliage litter quality and annual net N mineralization comparison across North American forest sites[J]. Oecologia, 1997, 111: 151~159
    [379] Maithani K, Arunachalan A, Tripathi R S, Pandey H N. Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths[J]. Biol & Fert Soils, 1998, 27(1): 44~50
    [380] Yoshiyuki I, Miura S & Kohzu A. Effects of forest type and stand age on litterfall quality and soil N dynamics in Shikoku district southern Japan[J]. For Ecol & Manag, 2004, 202: 107~117
    [381] 陈印平,潘开文,吴宁,罗鹏,王进闯,鲜纪绅.凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响[J].应用与环境生物学报,2005,11(2):146~151
    [382] Melillo J M, Aber J D, Muratore J. M. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63: 621~626
    [383] 杨玉盛,陈光水,郭剑芬,等.杉木观光木混交林凋落物分解及养分释放的研究[J].植物生态学报,2002,26(3):275~282
    [384] lyamuremye F, Gewin V, Dick R P, et al. Carbon, nitrogen and phosphorus mineralization potential of native agroforestry plant residues in soils of Senegal[J]. Arid Soil Res. Rehab., 2000, 14: 359~371
    [385] Taylor B R, Parkison D, Parsons W F J. Nitrogen and lignin content aspredictor of litter decayrates: amicrocosm test[J]. Ecology, 1989, 70: 97~104
    [386] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Sci. Soc. Am. J., 1987, 51: 1173~1179
    [387] 黄耀,刘世梁,沈其荣,等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2002,13(6):709~714
    [388] Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biol. Bioch., 1995, 27: 753~760
    [389] Mazzarino M J, Oliva L, Abril A, et al. Factors affecting nitrogen dynamics in a semiarid woodland(Dry Chaco, Argentina)[J]. Plant and Soil, 1991, 138: 85~98
    [390] Garcia C, Hernandez T. Organic matter in bare soils of the Mediterranean region with a semiarid climate[J]. Arid Soil Res. Rehab., 1996, 10: 31~41
    [391] Anderson T H, Domsch K H. The metabolic quotient for CO_2 a specific activity parameter to assess the effects of environmental conditions[J]. Soil Biol. Biochem., 1993, 25: 393~395
    [392] Insam H H, aselwandter K. Metabolic quotient of the soil microflora in relation to plant succession[J]. Oecologia, 1989, 79: 174~178
    [393] Anderson T H, Domsch K H. Application of eco-physiological quotients(qCO_2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Biology and Biochemistry, 1990, 22: 251~255
    [394] Bath E. Microbial biomass and ATP in smelter-polluted forest humus[J]. Bulletin of Environrnental Contamination and Toxicology, 1991, 47(2): 278~282
    [395] Insam H. Effects of heavy metals tress on the metabolic quotient of the soil microflora[J]. Soil Biology and Biochemistry, 1996, 28(4-5): 691~694
    [396] Raich, J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44B: 81~99
    [397] 王艳,孙杰,吴金水,等.有机物料对污染土壤微生物碳和磷的影响[J].植物营养与肥料学报,2000,6(3):300~305
    [398] 张成娥,王栓全.作物秸秆腐解过程中土壤微生物量的研究[J].水土保持学报,2000,14(3):96~99
    [399] Nagatsuka T, Furusaka C. Effects of oxygen tension on growth, respiration, and type of bacterial isolated from soil suspensions[J]. Soil Biol. Biochem., 1980, 12: 397~403
    [400] Jenkisnon, D S. The effect of biocidal treatments on metabolism in soil: The decomposition of fumigated organisms in soil[J]. Soil Biol. Biochem., 1976, 8: 203~208
    [401] Schnure J, Rosswall T. Mineralization of nitrogen from ~(15)N labeled fungi, soil microbial biomass and roots and its uptake by barely plant[J]. Plant and Soil, 1987, 102: 71~78
    [402] Insam H. Influence of macroclimates on soil microbial biomass[J]. Soil Biol. Biochem., 1989, 21: 211~221
    [403] 韩晓日,郭鹏程,陈恩凤,等.士壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报,1998,35(3):412~418
    [404] Sorenson L H. Organic matter and microbial biomass in a soil incubated in the field for 20 years with ~(14)C labelled barley straw[J]. Soil Biol. Biochem., 1997, 19: 39~42
    [405] Marumoto T. Anderson J P E and Domsch K H. Mineralization of nutrients from soil microbial biomass[J]. Soil Biology and Biochem., 1982, 14: 469~475
    [406] 王岩,张莹,沈其荣,等.施用有机、无机肥后土壤微生物量、固定态铵的变化及其有效性研究[J].植物营养与肥料学报,1997,3(4):307~314
    [407] Mary B, Recous S. Darwis D, et al. Interactions between decomposition of plant residues and nitrogen cycling in soil[J]. Plant and Soil, 1996, 181: 71~82
    [408] Recous S, Aita C, Mary B. In situ changes in gross N transfomations in bare soil after addition of straw[J]. Soil Biology and Biochem., 1999, 31: 119~133
    [409] White C S, Moore D I, Homer J D, et al. Nitrogen Mineralization immobilization response to field N or C perturbations: An evaluation of a theoretical model[J]. Soil Biology and Biochem., 1988, 20: 101~105
    [410] Smith J L, Paul E A. The significance of soil microbial biomass estimations[A]. In: Bollag J M and Stotzky G(eds.). Soil Biochmistry[C]. Marcel Dekker. New York, N. Y. 1990. 357~396
    [411] Sparling C P. The soil biomass[A]. Soil Organic Matter and Biological Activity[C]. Martinus Nijhoff, 1985. 223~262
    [412] 高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41~49
    [413] 胡希远,Kuehne R F.秸秆在土壤内分解初期氮素矿化与固持的模拟测定[J].应用生态学报,2005,16(2):243~248
    [414] Beare M H, Parmelee R W, Hendrix P F, et al. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems[J]. Ecol. Mong., 1992, 62: 569~591
    [415] Holmes W E, Zak D R. Soil microbial biomass dynamics and net nitrogen mineralization in northern hardwood ecosystems[J]. Soil Sci. Soc. Am. J., 1994, 58(1): 238~243
    [416] 李明锐,沙丽清.西双版纳不同土地利用方式下土壤氮矿化作用研究[J].应用生态学报,2005,16(1):54~58
    [417] Vitousek P M, Sanford R L. Nutrient cycling in moist tropical forests[J]. Annual Review of Ecology and Systematics, 1986, 17: 137~167
    [418] Kitayama K. Soi nitrogen dynamics along a gradient of long-term soil development in a Hawaiian wet montane rain forest[J]. Plant and Soil, 1996, 183(2): 253~262
    [419] Rovira P, Vallejo V R. Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of in incubation depth[J]. Soil Biol. Biochem., 1997, 29: 1509~1520
    [420] Sanchez L F, Garcia-miragaya J, Chacon N. Nitrogen mineralization in soil under grasses and under trees in a protected Venezuelan savanna[J]. Acta Ecologia, 1997, 18(1): 27~37
    [421] Verhoveven J T A, Maltby E, Schmitz M B. Nitrogen and phoshorus mineralization in fens and bogs[J]. Journal of Ecology, 1990, 78(3): 713~726
    [422]Ohrui K, Mitchell M J, Bischoff J M. Effect of landscape position on N mineralization and nitrification in a forested watershed in the Adirondack Mountains of New York[J]. Can. J. For. Res., 1999,29:497-508
    
    [423]Berg B. Nutrient release from litter and humus in coniferous forest soils a mini review[J]. Scand J For Res. 1986, 1:359-369
    
    [424]Bryant D M, Elisabeth A H, Timothy R S, Marilyn D W. Analysis of litter decomposition in an alpine tundra[J]. Can J Bot, 1998, 76: 1295 - 1304
    
    [425]Briones M J I, Ineson P. Decomposition of eucalyptus leaves in litter mixtures[J]. Soil Biol & Biochem, 1996, 28(10-11): 1381 - 1388
    
    [426]Jian C, Stark J M. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil[J]. Soil Biol & Biochem, 2000, 32: 47 - 57
    
    [427]Meine V N, Carlos C, Paul L W, Nugroho K, Martial B. Soil carbon dynamics in the humid tropical forest zone[J]. Geoderma, 1997, 79(1 ~ 4): 187 - 225
    
    [428]Evans R D, Belnap J. Long-term consequences of disturbance on nitrogen dynamics in an ecosystem[J]. Ecology, 1999, 80(1): 150-160
    
    [429]Scott N A, Binkley D. Foliage litter quality and annual net N mineralization: comparison across North American forest sites[J]. Oecologia, 1997,111: 151 - 159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700