直升机惯性粒子分离器流道结构型线分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直升机常常近地面飞行,包括低空悬停、起飞、降落等。在悬翼的影响下,地面沙尘等固体颗粒被扬起,不可避免地与气体工质一起被吸入发动机。这些颗粒的粒径范围分布较广,从微米量级到毫米量级,甚至到分米量级。其中较大尺度的颗粒与压气机叶片发生碰撞,会造成叶片破损,同时剥落的金属碎屑会掺杂在气体工质中进入下游部件中,由于这些金属碎屑硬度大、形状常带有尖角,会对下游的部件造成更大的破坏。较小尺度的颗粒可能会粘附于压气机叶片上,破坏其动平衡,甚至会改变叶片实际型线,降低压气机效率。另外,这些颗粒还可能会堵塞喷油口和气膜冷却孔,影响机组的性能和安全运行,缩短其使用寿命。
     为满足直升机的工作要求,尽可能地降低气体工质夹杂的颗粒给发动机带来的损害,需要在发动机入口安装颗粒分离器,考虑到直升机部件结构的限制、工作性能的要求,常采用惯性粒子分离器。为了分析惯性粒子分离器中的流场和性能参数,优化分离器的流道结构,本文首先开发出一套可自动生成分离器模型的参数化造型软件。在此基础上,本文对原惯性粒子分离器模型进行了建模和数值计算,对气相结果进行分析,得到该分离器的性能参数,并对不同粒径的颗粒在分离器内的运动规律进行了分析。接着本文选取了控制分离器进气流道弯曲度及喉部截面积、外缘线最大半径位置、舌部长度等的6个重要参数,对约150个分离器模型的性能参数进行了细致的数值分析和比较。在此基础上,利用神经网络建立分离器流道结构型线参数和分离器颗粒分离效率以及总压损失的非线性关系,通过遗传算法得到了分离器颗粒分离效率和总压损失的近似最优解。和原分离器模型相比,优化模型对大尺度颗粒的分离效率有很大改善,在总压损失略有增加的情况下,从原来的20%增加到了90%;并且,优化后分离器的高效工作范围也大大扩展,在进气速度为30m/s~80m/s、清除流量比为0.12~0.18的范围内,优化模型对大尺度颗粒均有较高的分离效率。因此,本文的研究为惯性粒子分离器的优化设计奠定了良好的理论基础。
Helicopter is often near the ground flight, including low-altitude hover, takeoff,landing and so on. Ground dust and other solid particles which are raised under theinfluence of suspended wing will be sucked into the engine along with the gasrefrigerant inevitably. The range of diameter distribution of these particles is wide,from micron magnitude to millimeter magnitude, even arrives decimeter magnitude.Large-scale particles collide with the compressor blades and can damage them,while the metal debris peeling off from the blades can get into the downstreamcomponents, which are doped in the gas refrigerant. Because of high hardness andsharp corners of the metal debris, they can cause more damage to the downstreamcomponents. Small-scale particles which may adhere to the compressor blades candamage their dynamic balance,and even can change the actual type line of theblades, which will reduce efficiency of compressor.In addition, these particles mayjam injection mouth and film cooling hole, which will affects the performance andsafe operation of engine unit and shorten its service life.
     To meet the work requirements of helicopter and to reduce the damage which iscaused by the particles doped in the gas refrigerant, it's necessary to install particleseparators in engine entrance. Considering the limits of helicopter componentstructure and the requirements of its work performance, an inertial particle separatorwas usually selected. In order to analyze the flow field and performance parametersof inertial particle separator and optimize its flow structure, this paper developed a set of parameterized automatic modeling software for separator firstly. Based on thesoftware, we finished the numerical computation for original separator model, andanalyzed its result of gas phase. We got the performance parameters of the separator,and analyzed the motion law of different diameter's particles within separator. Thensix important parameters were selected, which controlled bending degree of separatorinlet port, section area of throat, position of the biggest radius of outside wall, lengthof tongue department and so on. Then we did detailed numerical analysis andcomparison for the performance of about 150 separators. Based on the results, thenonlinear relationship of parameters of separator flow structure line and particleseparation efficiency and total pressure loss of separator was established by the neuralnetwork. we got the approximate optimal solution of separation efficiency and totalpressure loss of separator by the genetic algorithm. Compared with the original model,the separation efficiency of large-scale particles was increased for the improvedmodel, from less than 20% to about 90%,while the total pressure loss was increasedslightly. The efficient work scope of separator was also greatly expended afteroptimization, the separation efficiency of large-scale particles is all high for optimizedmodel when inlet velocity is in the range of 30m/s to 70m/s and clear flow ratio wasin the range of 0.12 to 0.20. This study has laid a good theoretical basis for optimaldesign of inertial particle separator.
引文
[1] Robert J. D.,Bernnard S., Integral engin inlet particle separator, volume 2-design guide[R].USAAMRDL-TR-75-31B,1975
    [2] Vittal B V. R., Tipton D. L., Bennett W. A. Development of an advanced vaneless inlet particle separator forhelicopter engines[ R] . AIAA-85-1277, 1985.
    [3] Breitman D. S.,Dueck E. G,Habashi W. G. Analysis of a split-flow inertial particle separator by finiteelements[J]. J Air Craft, 1985, 22(2):135-140.
    [4] Sheih C. F.,Delaney R. A.,Tipton D. L. Analysis of the flow field in an engin inlet particle separator computationof internal flows: methods and applications[C] .American Society of Mechanical Engineers FED. 1984,14(2):23-28.
    [5] Zedan M., Hartman P., Mostafa A., et al. Viscous flow analysis for advanced inlet particle separators[R] .AIAA-90-2136, 1990.
    [6] Hamed A., Jun Y. D., Yeuan J. J. Particle dynamic simulations in inlet separator with an experimentally basedbounce model[ J] . J Propul Power, 1995, 11( 2) : 230- 235.
    [7] Calzada dela P,. Vazquez R., Fernandez F., et al. Particle dynamics simulation for aeroengine intake design[R] .ISABE 99-7280, 1999.
    [8]侯凌云.直升机粒子分离器两相流场的数值模拟[D].西安:西北工业大学,1998.
    [9]侯凌云,严传俊.二维粒子分离器的流场及分离效率的数值模拟[J].航空动力学报,1997, 12(4):374-376.
    [10]吴恒刚,王锁芳.整体式粒子分离器数值模拟[J].航空学报,2007,28 (5):1073-1079.
    [11]许峰,王彤,傅耀.弯管内小尺度颗粒运动的数值模拟与分析[J].四川兵工学报,2010,31(2):74-77.
    [12]许峰,王彤,谷传纲,傅耀.带射流方腔内气固流动实验与模拟[J].煤炭技术,2010,29(10):8-10.
    [13] Floria Paoli,傅耀,王彤,谷传纲.发动机入口粒子分离器流场数值模拟及流道改进[J].流体机械,2011,39 (4):10-16.
    [14]方云进,肖文德,王光润.静电分离器的开发与应用[J].石油化工. 1998(27):67-70
    [15]苏明旭,蔡小舒.超声测粒技术及其在两相流测量中应用的进展与现状[J].东北大学学报.2000(21):96-99
    [16]苏明旭,蔡小舒.超细颗粒悬浊液中声衰减和声速的数值分析研究[J].2002(27):218-222
    [17]苏明旭,蔡小舒,黄春燕等.超声衰减法测量颗粒粒度大小[J].仪器仪表学报.2004(4)
    [18] Sommerfeld M., Huber N., Experimental analysis and modeling of particle-wall collisions [J]. InternationalJournal of Multiphase Flow 25(1999)1457-1489
    [19] Fohanno S. ,Oesterle B., Analysis of the effect of collisions on the gravitational motion of large particles in avertical duct [J], International Journal of Multiphase Flow 26(2000)267-292
    [20]滕汜颖,李永光,周伟国,马盺霞.气固两相流场测量技术的现状与展望[J].上海电力学院学报.2002(18):
    [21]范洁川等.近代流动显示技术[M].北京:国防工业出版社,2002
    [22]石惠娴,王勤辉,骆仲泱,等. PIV应用于气固多相流动的研究现状[J].动力工程.2002(22):1589-1593
    [23] Adrain.R.J. Twenty years of particle image velocimetry [J]. Experiments in Fluids, 2005 (39):159-169
    [24]朱自强.应用计算流体动力学[M].北京:北京航空航天大学出版社,2001.
    [25] MacCormack,R.W.The Effect of Viscosity in Hypervelocity Impact Cratcring[J],AIAA-69-354.
    [26]马铁犹.计算流体动力学[M].北京:北京航空学院出版社,1986.
    [27]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社.2002:340-345
    [28] Fuchs N.A.,The Mechanics of Aerosols. Mac.Millan. New York. 1964
    [29] Putnam. A., Integrable form of droplet drag coefficient. ARS J. 31(1961):1467-1468
    [30]由长福,祁海鹰等.煤粉颗粒所受Magnus力的数值模拟[J].工程热物理学报.2001(22):625-628
    [31]由长福,祁海鹰,徐旭常.Basset力研究进展与应用分析[J].应用力学学报. 2002(19):31-33
    [32] Darrell Mann ,Industrial Fellow Department of Mechanical Engineering University of Bath[J]Bath, BA2 7AY,UK Case Studies in TRIZ: Helicopter Engine Particle Separator.
    [33] Marzio Piller, Enrico Nobile, Thomas.J. DNS Study of Turbulent Transport at Low Prandtl Numbers in aChannel Flow [J].Journal of Fluids Mechanics. 2002(458):419-411
    [34]范维橙,万跃鹏.流动及燃烧的模型与计算[M].安徽:中国科技大学出版社,1992
    [35]刘小兵.固液两相流动及在涡轮机械中的数值模拟[M].北京:中国水利电力出版社.1996
    [36]王海刚.旋风分离器中气-固两相流数值计算与实验研究.北京:中国科学院工程热物理研究所博士学位论文.2002
    [37]卢小珍.柴油机排气旋风分离器中的流场及微粒分离规律的研究.北京:北京交通大学硕士学位论文.2006
    [38]王献孚,熊鳌魁.高等流体力学[M].武汉:华中科技大学出版社.2003
    [39]费祥麟.高等流体力学[M].西安:西安交通大学出版社.1989
    [40]周艳荣,谢振华.90°方截面弯管内气固两相流场的数值模拟[J ].西安科技大学学报,2008,28(1):46-50.
    [41]王福军.计算流体动力学分析CFD软件原理与应用[M].清华大学出版社, 2004.
    [42]丁珏,翁培奋. 90°弯管内流动的理论模型及流动特性的数值研究[J].计算力学学报,2004,21(3) :314-321.
    [43]王铁城.空气动力学实验技术[M].北京:航空工业出版社,1995
    [44]刘立峰.大型电机冷却风扇的实验测量与模拟计算.上海:上海交通大学硕士学位论文.2007
    [45]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2010
    [46]史锋,王小川.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.
    [47]孙虎儿.基于神经网络的优化设计及应用[M].北京:国防工业出版社,2009.
    [48]张德丰.MATLAB神经网络仿真与应用M].北京:电子工业出版社,2009.
    [49]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [50]汪祖媛,章劲松,庄镇全.遗传算法的应用研究进展[J ].中国科学技术大学学报,1998,28(4):488-493
    [51]陆金贵.遗传算法原理及其工程应用[M].中国矿业大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700