氯离子对金、银纳米粒子形貌调控的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金、银纳米粒子因其独特的结构、性质以及良好的生物相容性而受到人们广泛的关注,并应用于生物医学领域中。目前关于金、银纳米粒子的水相合成及形貌控制报道很多,对于其形成机制也有一定的认识,但正如纳米粒子水相合成中,人们对水分子作用的忽视一样,由反应物不可避免引入的元素对纳米粒子的形成,尤其是粒子形貌的影响,一直没有引起广大研究者的注意。
     本论文在金、银纳米粒子的合成过程中,深入研究了反应体系的动力学过程,探索Cl-对纳米粒子形貌的调控机制,从而有效控制产物的形貌。首先利用种子生长法制备金纳米花为模型体系,在较宽的pH值范围内(4.2~11.0),系统、定量的研究了金纳米花的生长动力学,发现由Cl-诱导的粒子内熟化作用是影响形貌和稳定性的重要因素,并且可以通过提高pH值抑制Cl-的熟化促进作用。反应过程中通过简单地调节pH值可以调控金纳米花的形貌,反应后提高pH或除去Cl-就可以使金纳米花长期稳定。
     其次以球形银为种子,以HAuCl4/NH2OH的混合溶液为生长溶液,制备空心的Ag/Au纳米结构,并在较宽的pH范围内(4.2~12.5)监测其反应过程,发现Cl-的存在是粒子形貌调控中不可忽略的因素。当生长溶液的pH值较低时(4.2~10.3),Cl-的存在会导致AgCl的生成,从而抑制了金属离子的进一步还原和沉积,形成了不规则的空心Ag/Au纳米结构。通过提高反应体系pH(10.6~12.5),可以抑制AgCl对金属离子还原和沉积过程的不利影响,得到具有空心结构的Ag/Au纳米花。
     最后研究了Cl-及与Cl-相关的其他离子(Br-、I-、OH-、Ag+)对种子法制备金纳米花和柠檬酸钠还原法制备金纳米粒子体系的影响。研究结果进一步证明了Cl-、Br-、I-等卤素离子对粒子内熟化的促进作用以及OH-、Ag+等对粒子内熟化的抑制作用,并且这种促进及抑制作用会随着添加剂浓度的增加而增大。制备过程中可以通过促进和抑制熟化实现对粒子形貌的调控。
Recently, gold and silver nanoparticles, two of the important noble metals, have been extensively studied as active components in a wide variety of fundamental researches and technical applications due to their unique structures, optical, electric, catalytic properties and biocompatibility. Great efforts have been devoted to control the size and shape of the metal nanopaticles since it is well documented that their properties are both size- and shape-dependent. Many publications about the synthetic methods of the gold and silver nanoparticles have been reported. For example, many people utilized sodium borohydride or sodium citrate as the reducing agent to synthesis the gold or silver nanoparticles in one step. The nanoparticles with monodisperse dimension can be tuned from several nanometers to a few dozens. Other people fabricated the nanoparticles/composites with solid/hollow interior using seeding approach. Many perspectives about the growth mechanism have been proposed in the literature, such as nucleation-growth, aggregation and ripening. In addition, the organic molecules and some inorganic ions have been found to affect the morphology of the nanoparticles. For instance, some researchers utilized CTAB as the template to synthesize gold nanoparticles with anisotropic structures. And other researchers also reported that inorganic ions, such as silver ions and iodine ions, can manipulated the shape of the nanoparticles. However, just like water effect was neglected for synthesis of nanoparticles in the aqueous solution, the effect of some inevitable factors introduced by reactants for the synthesis as well as shape-control of the nanoparticles has not been taken into account.
     In this dissertation, the growth kinetics of the gold and silver nanoparticles was investigated systematically and quantitatively. The effect of Cl- on the synthesis of nanoparticles were revealed and used to effectively manipulate the shape of the nanoparticles.
     1、The seeding approach for preparation of gold nanoflowers in which 25 nm gold nanoparticles were used as the seeds and mixture of HAuCl4 and hydroxylamine as growth solution were investigated systematically. It is revealed that the formation and stability of the nanoflowers were affected greatly by the intraparticle ripening induced by the chlorine ions existed in the reaction system. In this seeding approach, hydroxylamine promoted the rapid reduction of HAuCl4 and thus rapid formation of small Au particles with diameter around 3 nm in the growth solution. The attachment of the small particles on the seed surface contributed to the growth of the nanoflowers. The branch length of the nanoflowers increased with the increased pH of the growth solution due to the suppressed ripening at higher pH. Stability of the nanoflowers can be improved by increasing the pH of the storing solution and/or removal of the chlorine ions.
     2、For the reactions to synthesize Ag/Au hollow nanostructures by using silver nanoparticles as the seeds and the mixtures of HAuCl4 and hydroxylamine as the growth solutions, the existence of Cl- is likely to affect the shape of the nanostructures. For the reactions of low pH (4.2?10.3), the hollow Ag/Au nanostructures were irregular in shape due to the suppressed reduction and deposition of metallic precursors induced by AgCl. However, for the reactions of high pH (10.6?12.5), the disappearance of AgCl due to the competition of hydroxyl groups with chlorine ions to Ag+ in the solution facilitated the reduction and deposition of metallic ions, resulting in the hollow Ag/Au nanoflowers.
     3、We have found the chlorine ions can accelerated the intraparticle ripening and AgCl can suppressed the reducing rate and deposition of the metallic ions in above works. So the Cl- and other related ions were used to control the branch of the gold nanoflowers. It is found that the halide ions accelerated the intraparticle ripening of the gold nanoflowers and the branch can be tuned by simply changing the concentration of the halide ions at high pH. However, the introduction of Ag+ into the reaction solution suppressed the intraparticle ripening and the gold nanoflowers with longer branch were obtained at low pH. These results further proved the understanding for the synthesis of metallic nanoparticles in my previous work.
     4、In this chapter, the shape control of the nanoparticles using the Cl- and other related ions was applied in the Frens method. It is conclude that the accelerated ripening induced by chlorine ions and suppressed ripening by hydroxyl groups and AgCl were also applicative in Frens method. When the chlorine ions were introduced into the reaction solution, the nanoparticles transformed from ellipsoidal to spherical shape. However, when the hydroxyl groups or Ag+ were introduced into the reaction solution, the nanoparticles became more anisotropic and exhibited as short line and tadpole. Besides, the different reaction time at which the ions were introduced into the reaction solution have greatly effect on the introparticle ripening, thus the formation of the nanoparticles.
引文
1. DANIEL M C, ASTRUC D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews, 2004, 104, (1): 293-346.
    2. BURDA C, CHEN X B, NARAYANAN R, El-SAYED M A. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105, (4): 1025-1102.
    3. MUNRO C H, SMITH W E, GARNER M, CLARKSON J, WHITE P C. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering [J]. Langmuir, 1995, 11: 3712-3720.
    4. MAIER S A, BRONGERSMA M L, KIK P G, MELTZER S, REQUICHA A A G, ATWATER H A. Plasmonics - A route to nanoscale optical devices [J]. Advanced Materials, 2001, 13(19): 1501.
    5. YANG Y, NOGAMI M, SHI J L, CHEN H R, MA G H, TANG S H. Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties [J]. Applied Physics Letters, 2006, 88: 8.
    6. SANDERS A W, ROUTENBERG D A, WILEY B J, XIA Y N, DUFRESNE E R, REED M A. Observation of plasmon propagation, redirection, and fan-out in silver nanowires [J]. Nano Letters, 2006, 6(8): 1822-1826.
    7. TOMINAGA J, MIHALCEA C, BUCHEL D, FUKUDA H, NAKANO T, ATODA N, FUJI H, KIKUKAWA T. Local plasmon photonic transistor [J]. Applied Physics Letters, 2001, 78(17): 2417-2419.
    8. TATON T A, MIRKIN C A, LETSINGER R L. Scanometric DNA array detection with nanoparticle probes [J]. Science, 2000, 289: 1757-1760.
    9. CAO Y W, JIN R, MIRKIN C A. DNA-modified core-shell Ag/Au nanoparticles [J]. Journal of the American Chemical Society, 2001, 123(32): 7961-7962.
    10. TKACHENKO A G, XIE H, COLEMAN D, GLOMM W, RYAN J, ANDERSON
    M F, FRANZEN S, FELDHEIM D L. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting [J]. Journal of the American Chemical Society, 2003, 125(16): 4700-4701.
    11. CHEN J, SAEKI F, WILEY B J, CANG H, COBB M J, LI Z Y, AU L, ZHANG H, KIMMEY M B, LI X D, XIA Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents [J]. Nano Letters, 2005, 5(3): 473-477.
    12. ZHANG X Y, YOUNG M A, LYANDRES O, VAN DUYNE R P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy [J]. Journal of the American Chemical Society, 2005, 127(12): 4484-4489.
    13. SKRABALAK S E, CHEN J, AU L, LU X, LI X, XIA Y. Gold nanocages for biomedical applications [J]. Advanced Materials, 2007, 19(20): 3177-3184.
    14. JAIN P K, HUANG X H, EL-SAYED I H, EL-SAYED M A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine [J]. Accounts of Chemical Research, 2008, 41(12): 1578-1586.
    15. LEWIS L N, Chemical catalysis by colloids and clusters [J]. Chemical Reviews, 1993, 93: 2693-2730.
    16. XIONG Y J, WILEY B, XIA Y N. Nanocrystals with unconventional shapes - A class of promising catalysts [J]. Angewandte Chemie-International Edition, 2007, 46(38): 7157-7159.
    17. XU X Y, ROSI N L, WANG Y H, HUO F W, MIRKIN C A. Asymmetric functionalization of gold nanoparticles with oligonucleotides [J]. Journal of the American Chemical Society, 2006, 128(29): 9286-9287.
    18. SI S, MANDAL T K. pH-controlled reversible assembly of peptide-functionalized gold nanoparticles [J]. Langmuir, 2007, 23(1): 190-195.
    19. KELLY K L, CORONADO E, ZHAO L L, SCHATZ G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003, 107(3): 668-677.
    20. MIE G. Beitr?ge zur Optik Trüber Medien [J]. Ann. Phys., 1908, 25: 329.
    21. FLEISCHMANN M, HENDRA P J, MACQUILLAN A. Raman spectra of pyridine Adsorbed at a silver Electrode [J]. Chemical Physics Letters, 1974, 26: 163-166.
    22. CAO Y C, JIN R C, NAM J M, THAXTON C S, MIRKIN C A. Raman dye-labeled nanoparticle probes for proteins [J]. Journal of the American Chemical Society, 2003, 125(48): 14676-14677.
    23. MICHAELS A M, JIANG J, BRUS L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules [J]. Journal of Physical Chemistry B, 2000, 104(50): 11965-11971.
    24. ITOH K, NISHIZAWA T, YAMAGATA J, FUJII M, OSAKA N, KUDRYASHOV I. Raman microspectroscopic study on polymerization and degradation processes of a diacetylene derivative at surface enhanced Raman scattering active substrates. 1. Reaction kinetics [J]. Journal of Physical Chemistry B, 2005, 109(1): 264-270.
    25. ORENDORFF C J, GOLE A, SAU T K, MURPHY C J. Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence [J]. Analytical Chemistry, 2005, 77(10): 3261-3266.
    26. ANDERSON D J, MOSKOVITS M. A SERS-active system based on silver nanoparticles tethered to a deposited silver film [J]. Journal of Physical Chemistry B, 2006, 110(28): 13722-13727.
    27. ZHAO L L, JENSEN L, SCHATZ G C. Surface-enhanced Raman scattering of pyrazine at the junction between two Ag-20 nanoclusters [J]. Nano Letters, 2006, 6(6): 1229-1234.
    28. DIERINGER J A, LETTAN R B, SCHEIDT K A, VAN DUYNE R P. A frequency domain existence proof of single-molecule surface-enhanced Raman Spectroscopy [J]. Journal of the American Chemical Society, 2007, 129(51): 16249-16256.
    29. OLSON T Y, SCHWARTZBERG A M, ORME C A, TALLEY C E, O'CONNELL B, ZHANG J Z. Hollow gold-silver double-shell nanospheres: Structure, optical absorption, and surface-enhanced Raman scattering [J]. Journal of Physical Chemistry C, 2008, 112(16): 6319-6329.
    30. CAMDEN J P, DIERINGER J A, WANG Y M, MASIELLO D J, MARKS L D, SCHATZ G C, VAN DUYNE R P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J]. Journal of the American Chemical Society, 2008, 130(38): 12616.
    31. VLCKOVA B, MOSKOVITS M, PAVEL I, SISKOVA K, SLADKOVA M, SLOUF M. Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer [J]. Chemical Physics Letters, 2008, 455(4-6): 131-134.
    32. LU L H, AI K, OZAKI Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape [J]. Langmuir, 2008, 24(3): 1058-1063.
    33. XIAO Y, PATOLSKY F, KATZ E, HAINFELD J F, WILLNER I. "Plugging into enzymes": Nanowiring of redox enzymes by a gold nanoparticle [J]. Science, 2003, 299: 1877-1881.
    34. PATOLSKY F, WEIZMANN Y, WILLNER I. Long-range electrical contacting of redox enzymes by SWCNT connectors [J]. Angewandte Chemie-International Edition, 2004, 43(16): 2113-2117.
    35. ZHAO W, XU J J, CHEN H Y. Extended-range glucose biosensor via layer-by-layer assembly incorporating gold nanoparticles [J]. Frontiers in Bioscience, 2005, 10: 1060-1069.
    36. ZHAO J, ZHU X L, LIB T, LI G X. Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c [J]. Analyst, 2008, 133(9): 1242-1245.
    37. PANDEY P C, UPADHYAY S. Bioelectrochemistry of glucose oxidase immobilized on ferrocene encapsulated ormosil modified electrode [J]. Sensors and Actuators B-Chemical, 2001, 76(1-3): 193-198.
    38. MIRKIN C A, LETSINGER R L, MUCIC R C, STORHOFF J J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature, 1996, 382(6592): 607-609.
    39. CHEN J Y, WILEY B, LI Z Y, CAMPBELL D, SAEKI F, CANG H, AU L, LEE J,LI X D, XIA Y N. Gold nanocages: Engineering their structure for biomedical applications [J]. Advanced Materials, 2005, 17(18): 2255-2261.
    40. AN K, HYEON T. Synthesis and biomedical applications of hollow nanostructures [J]. Nano Today, 2009, 4(4): 359-373.
    41. WANG H, HUFF T B, ZWEIFEL D A, HE W, LOW P S, WEI A, CHEN J X. In vitro and in vivo two-photon luminescence imaging of single gold nanorod [J]. Proc.Nat1.Acad.Sci, 2005, 102: 15752-15756.
    42. HU M, CHEN J Y, LI Z Y, AU L, HARTLAND G V, LI X D, MARQUEZ M, XIA Y N. Gold nanostructures: engineering their plasmonic properties for biomedical applications [J]. Chemical Society Reviews, 2006, 35(11): 1084-1094.
    43. SKRABALAK S E, CHEN J Y, SUN Y G, LU X M, AU L, COBLEY C M, XIA Y N. Gold Nanocages: Synthesis, Properties, and Applications [J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.
    44. HUANG X H, EL-SAYED I H, QIAN W, EL-SAYED M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
    45. BRAUN G, LEE S J, DANTE M, NGUYEN T Q, MOSKOVITS M, REICH N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films [J]. Journal of the American Chemical Society, 2007, 129(20): 6378.
    46. PAVEL I, MCCARNEY E, ELKHALED A, MORRILL A, PLAXCO K, MOSKOVITS M. Label-free SERS detection of small proteins modified to act as bifunctional linkers [J]. Journal of Physical Chemistry C, 2008, 112(13): 4880-4883.
    47. HAN X X, ZHAO B, OZAKI Y. Surface-enhanced Raman scattering for protein detection [J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1719-1727.
    48. CAO Y W C, JIN R C, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J]. Science, 2002, 297(5586): 1536-1540.
    49. HARUTA M, DATE M. Advances in the catalysis of Au nanoparticles [J]. Applied Catalysis A-General, 2001, 222(1-2): 427-437.LI X D, XIA Y N. Gold nanocages: Engineering their structure for biomedical applications [J]. Advanced Materials, 2005, 17(18): 2255-2261.
    40. AN K, HYEON T. Synthesis and biomedical applications of hollow nanostructures [J]. Nano Today, 2009, 4(4): 359-373.
    41. WANG H, HUFF T B, ZWEIFEL D A, HE W, LOW P S, WEI A, CHEN J X. In vitro and in vivo two-photon luminescence imaging of single gold nanorod [J]. Proc.Nat1.Acad.Sci, 2005, 102: 15752-15756.
    42. HU M, CHEN J Y, LI Z Y, AU L, HARTLAND G V, LI X D, MARQUEZ M, XIA Y N. Gold nanostructures: engineering their plasmonic properties for biomedical applications [J]. Chemical Society Reviews, 2006, 35(11): 1084-1094.
    43. SKRABALAK S E, CHEN J Y, SUN Y G, LU X M, AU L, COBLEY C M, XIA Y N. Gold Nanocages: Synthesis, Properties, and Applications [J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.
    44. HUANG X H, EL-SAYED I H, QIAN W, EL-SAYED M A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.
    45. BRAUN G, LEE S J, DANTE M, NGUYEN T Q, MOSKOVITS M, REICH N. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films [J]. Journal of the American Chemical Society, 2007, 129(20): 6378.
    46. PAVEL I, MCCARNEY E, ELKHALED A, MORRILL A, PLAXCO K, MOSKOVITS M. Label-free SERS detection of small proteins modified to act as bifunctional linkers [J]. Journal of Physical Chemistry C, 2008, 112(13): 4880-4883.
    47. HAN X X, ZHAO B, OZAKI Y. Surface-enhanced Raman scattering for protein detection [J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1719-1727.
    48. CAO Y W C, JIN R C, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J]. Science, 2002, 297(5586): 1536-1540.
    49. HARUTA M, DATE M. Advances in the catalysis of Au nanoparticles [J]. Applied Catalysis A-General, 2001, 222(1-2): 427-437.
    61. Zhu H F, Tao C, Zheng S P, Li J B. One step synthesis and phase transition of phospholipid-modified Au particles into toluene [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2005, 257: 411-414.
    62. MPOURMPAKIS G, VLACHOS D G. Insights into the early stages of metal nanoparticle formation via first-principle calculations: the roles of citrate and water [J]. Langmuir, 2008, 24(14): 7465-7473.
    63. PHILIP D. Synthesis and spectroscopic characterization of gold nanoparticles [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2008, 71(1): 80-85.
    64. TABRIZI A, AYHAN F, AYHAN H. Gold Nanoparticle Synthesis and Characterisation [J]. Hacettepe Journal of Biology and Chemistry, 2009, 37(3): 217-226.
    65. TURKEVICH J, HILLIER J, STEVENSON P C. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss. Faraday Soc., 1951, 11: 55.
    66. FRENS G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature (London), Physical Science, 1973, 241(105): 20-22.
    67. CHOW M K, ZUKOSKI C F. Sol formation mechanisms: role of colloidal stability [J]. Journal of Colloid and Interface Science, 1994, 165(1): 97-109.
    68. HENGLEIN A, GIERSIG M. Formation of colloidal silver nanoparticles: Capping action of citrate [J]. Journal of Physical Chemistry B, 1999, 103(44): 9533-9539.
    69. TERANISHI T, HOSOE M, TANAKA T, MIYAKE M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition [J]. Journal of Physical Chemistry B, 1999, 103(19): 3818-3827.
    70. PEI L H, MORI K, ADACHI M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization [J]. Langmuir, 2004, 20(18): 7837-7843.
    71. KIMLING J, MAIER M, OKENVE B, KOTAIDIS V, BALLOT H, PLECH A.Turkevich method for gold nanoparticle synthesis revisited [J]. Journal of Physical Chemistry B, 2006, 110(32): 15700-15707.
    72. PONG B K, ELIM H I, CHONG J X, JI W, TROUT B L, LEE J Y. New insights on the nanoparticle growth mechanism in the citrate reduction of Gold(III) salt: Formation of the au nanowire intermediate and its nonlinear optical properties [J]. Journal of Physical Chemistry C, 2007, 111(17): 6281-6287.
    73. XIONG Y J, CAI H G, WILEY B J, WANG J G, KIM M J, XIA Y N. Synthesis and mechanistic study of palladium nanobars and nanorods [J]. Journal of the American Chemical Society, 2007, 129(12): 3665-3675.
    74. POLTE J, AHNER T T, DELISSEN F, SOKOLOV S, EMMERLING F, THUNEMANN A F, KRAEHNERT R. Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation [J]. Journal of the American Chemical Society, 132(4): 1296-1301.
    75. ELIYAHU S, VASKEVICH A, RUBINSTEIN I. On the Formation Mechanism of Metal Nanoparticle Nanotubes [J]. Thin Solid Films, 518(6): 1661-1666.
    76. JI X H, SONG X N, LI J, BAI Y B, YANG W S, PENG X G. Size control of gold nanocrystals in citrate reduction: The third role of citrate [J]. Journal of the American Chemical Society, 2007, 129(45): 13939-13948.
    77. HAO E, BAILEY R C, SCHATZ G C, HUPP J T, LI S Y. Synthesis and optical properties of "branched" gold nanocrystals [J]. Nano Letters, 2004, 4(2): 327-330.
    78. KUO P L, CHEN C C. Generation of gold thread from Au(III) and triethylamine [J]. Langmuir, 2006, 22(18): 7902-7906.
    79. RAI A, SINGH A, AHMAD A, SASTRY M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles [J]. Langmuir, 2006, 22(2): 736-741.
    80. XIE J P, LEE J Y, WANG D I C. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution [J]. Chemistry of Materials, 2007, 19(11): 2823-2830.
    81. TANG X L, JIANG P, GE G L, TSUJI M, XIE S S, GUO Y J. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-stephydrothermal route and their high SERS effect [J]. Langmuir, 2008, 24(5): 1763-1768.
    82. PARDINAS-BLANCO I, HOPPE C E, PINEIRO-REDONDO Y, LOPEZ-QUINTELA M A, RIVAS J. Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near-infrared-absorbing films and coatings [J]. Langmuir, 2008, 24(3): 983-990.
    83. YAMAMOTO M, KASHIWAGI Y, SAKATA T, MORI H, NAKAMOTO M. Synthesis and morphology of star-shaped gold nanoplates protected by poly(N-vinyl-2-pyrrolidone) [J]. Chemistry of Materials, 2005, 17(22): 5391-5393.
    84. XIAO Y, SHLYAHOVSKY B, POPOV I, PAVLOV V, WILLNER I. Shape and color of Au nanoparticles follow biocatalytic processes [J]. Langmuir, 2005, 21(13): 5659-5662.
    85. BURT J L, ELECHIGUERRA J L, REYES-GASGA J, MONTEJANO-CARRIZALES J M, JOSE-YACAMAN M. Beyond Archimedean solids: Star polyhedral gold nanocrystals [J]. Journal of Crystal Growth, 2005, 285(4): 681-691.
    86. WU H Y, LIU M, HUANG M H. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles [J]. Journal of Physical Chemistry B, 2006, 110(39): 19291-19294.
    87. CHEN H M, HSIN C F, LIU R S, LEE J F, JANG L Y. Synthesis and characterization of multi-pod-shaped gold/silver nanostructures [J]. Journal of Physical Chemistry C, 2007, 111(16): 5909-5914.
    88. WANG W, YANG X, CUI H. Growth Mechanism of Flowerlike Gold Nanostructures: Surface Plasmon Resonance (SPR) and Resonance Rayleigh Scattering (RRS) Approaches to Growth Monitoring [J]. Journal of Physical Chemistry C, 2008, 112(42): 16348-16353.
    89. WANG Y L, CAMARGO P H C, SKRABALAK S E, GU H C, XIA Y N. A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver [J]. Langmuir, 2008, 24(20): 12042-12046.
    90. SELVAKANNAN P R, MANDAL S, PASRICHA R, ADYANTHAYA S D, SASTRY M. One-step synthesis of hydrophobized gold nanoparticles of controllablesize by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface [J]. Chemical Communications, 2002, 13: 1334-1335.
    91. DAI X H, TAN Y W, XU J. Formation of gold nanoparticles in the presence of o-anisidine and the dependence of the structure of poly(o-anisidine) on synthetic conditions [J]. Langmuir, 2002, 18(23): 9010-9016.
    92. WANG J G, NEOH K G, KANG E T. Preparation of nanosized metallic particles in polyaniline [J]. Journal of Colloid and Interface Science, 2001, 239(1): 78-86.
    93. BROWN K R, NATAN M J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmuir, 1998, 14(4): 726-728.
    94. BROWN K R, WALTER D G, NATAN M J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J]. Chemistry of Materials, 2000, 12(2): 306-313.
    95. NIU J L, ZHU T, LIU Z F. One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent [J]. Nanotechnology, 2007, 18: (32).
    96. JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. Journal of Physical Chemistry B, 2001, 105(19): 4065-4067.
    97. ZOU X Q, YING E B, DONG S J. Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties [J]. Nanotechnology, 2006, 17(18): 4758-4764.
    98. SUN Y G, XIA Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. Journal of the American Chemical Society, 2004, 126(12): 3892-3901.
    99. SUN Y G, XIA Y N. Multiple-walled nanotubes made of metals [J]. Advanced Materials, 2004, 16(3): 264.
    100. METRAUX G S, CAO Y C, JIN R C, MIRKIN C A. Triangular nanofrarnes made of gold and silver [J]. Nano Letters, 2003, 3(4): 519-522.
    101. JIN Y D, DONG S J. One-pot synthesis and characterization of novel silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes [J].Journal of Physical Chemistry B, 2003, 107(47): 12902-12905.
    102. GUO S J, DONG S J, WANG E. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology [J]. Chemistry-a European Journal, 2008, 14(15): 4689-4695.
    103. LAMER V, DINEGAR R. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols [J]. Journal of the American Chemical Society, 1950, 72: 4847-4854.
    104. PENG X G, WICKHAM J, ALIVISATOS A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "focusing" of size distributions [J]. Journal of the American Chemical Society, 1998, 120: 5343-5344.
    105. PARK J, PRIVMAN V, MATIJEVIC E. Model of formation of monodispersed colloids [J]. Journal of Physical Chemistry B, 2001, 105(47): 11630-11635.
    106. NIESZ K, GRASS M, SOMORJAI G A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents [J]. Nano Letters, 2005, 5(11): 2238-2240.
    107. PRADHAN N, XU H, PENG X. Colloidal CdSe Quantum Wires by Oriented Attachment [J]. Nano Letters, 2006, 6(4): 720-724.
    108. NARAYANASWAMY A, XU H, PRADHAN N, PENG X. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection [J]. Angewandte Chemie International Edition, 2006, 45(32): 5361-5364.
    109. YANG W Y, GAO F M, WEI G D, AN L A. Ostwald Ripening Growth of Silicon Nitride Nanoplates [J]. Crystal Growth & Design, 10(1): 29-31.
    110. PENG Z A, PENG X G. Mechanisms of the shape evolution of CdSe nanocrystals [J]. Journal of the American Chemical Society, 2001, 123(7): 1389-1395.
    111. CHEN Y F, KIM M, LIAN G, JOHNSON M B, PENG X G. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals [J]. Journal of the American Chemical Society, 2005, 127(38): 13331-13337.
    112. COZZOLI P D, PELLEGRINO T, MANNA L. Synthesis, properties andperspectives of hybrid nanocrystal structures [J]. Chemical Society Reviews, 2006, 35(11): 1195-1208.
    113. CHEN Y F, JOHNSON E, PENG X G. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening [J]. Journal of the American Chemical Society, 2007, 129(35): 10937-10947.
    114. THESSING J, QIAN J H, CHEN H Y, PRADHAN N, PENG X G. Interparticle influence on size/size distribution evolution of nanocrystals [J]. Journal of the American Chemical Society, 2007, 129(10): 2736.
    115. DONG X Y, JI X H, JING J, LI M Y, LI J, YANG W S. Synthesis of Triangular Silver Nanoprisms by Stepwise Reduction of Sodium Borohydride and Trisodium Citrate [J]. Journal of Physical Chemistry C, 2010, 114(5): 2070-2074.
    116. TEMPLETON A C, WUELFING M P, MURRAY R W. Monolayer protected cluster molecules [J]. Accounts of Chemical Research, 2000, 33(1): 27-36.
    117. BRUST M, KIELY C J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 202(2-3): 175-186.
    118. ACKERSON C J, JADZINSKY P D, KORNBERG R D. Thiolate ligands for synthesis of water-soluble gold clusters [J]. Journal of the American Chemical Society, 2005, 127(18): 6550-6551.
    119. HU J Q, ZHANG Y, LIU B, LIU J X, ZHOU H H, XU Y F, JIANG Y X, YANG Z L, TIAN Z Q. Synthesis and properties of tadpole-shaped gold nanoparticles [J]. Journal of the American Chemical Society, 2004, 126(31): 9470-9471.
    120. SAU T K, MURPHY C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. Journal of the American Chemical Society, 2004, 126(28): 8648-8649.
    121. KUO C H, HUANG M H. Synthesis of branched gold nanocrystals by a seeding growth approach [J]. Langmuir, 2005, 21(5): 2012-2016.
    122. JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Advanced Materials, 2001, 13(18): 1389-1393.
    123. ORENDORFF C J, MURPHY C J. Quantitation of metal content in the silver-assisted growth of gold nanorods [J]. Journal of Physical Chemistry B, 2006, 110(9): 3990-3994.
    124. YUAN H, MA W H, CHEN C C, ZHAO J C, LIU J W, ZHU H Y, GAO X P. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions [J]. Chemistry of Materials, 2007, 19(7): 1592-1600.
    125. WANG C G, WANG T T, MA Z F, SU Z M. pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios [J]. Nanotechnology, 2005, 16(11): 2555-2560.
    126. XUE C, MIRKIN C A. pH-Switchable Silver Nanoprism Growth Pathways [J]. Angewandte Chemie-International Edition, 2007, 46: 2036-2038.
    127. HA T H, KOO H J, CHUNG B H. Shape-Controlled Syntheses of Gold Nanoprisms and Nanorods Influenced by Specific Adsorption of Halide Ions [J]. Journal of Physical Chemistry C, 2010, 2007, 111: 1123-1130.
    128. WANG J, LI Y F, HUANG Z C. Identification of Iodine-Induced Morphological Transformation of Gold Nanorods [J]. Journal of Physical Chemistry C, 2010, 2008, 112: 11691-11695.
    129. MILLSTONE J E, WEI W, JONES M R, YOO H J, MIRKIN C A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles [J]. Nano Letters, 2008, 8(8): 2526-2529.
    1. DANIEL M C, ASTRUC D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews, 2004, 104(1): 293-346.
    2. BURDA C, CHEN X B, NARAYANAN R, EL-SAYED M A. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105(4): 1025-1102.
    3. JANA N R. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles [J]. Small, 2005, 1(8-9): 875-882.
    4. MURPHY C J, SAN T K, GOLE A M, ORENDORFF C J, GAO J X, GOU L, HUNYADI S E, LI T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications [J]. Journal of Physical Chemistry B, 2005, 109(29): 13857-13870.
    5. JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Advanced Materials, 2001, 13(18): 1389-1393.
    6. SAU T K, MURPHY C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. Journal of the American Chemical Society, 2004, 126(28): 8648-8649.
    7. GOU L F, MURPHY C J. Fine-tuning the shape of gold nanorods [J]. Chemistry of Materials, 2005, 17(14): 3668-3672.
    8. RAI A, SINGH A, AHMAD A, SASTRY M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles [J]. Langmuir, 2006, 22(2): 736-741.
    9. SHARMA J, VIJAYAMOHANAN K P. Organic dye molecules as reducing agent for the synthesis of electroactive gold nanoplates [J]. Journal of Colloid and Interface Science, 2006, 298(2): 679-684.
    10. CHU H C, KUO C H, HUANG M H. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different sizeranges [J]. Inorganic Chemistry, 2006, 45(2): 808-813.
    11. GAO S Y, ZHANG H J, LIU X D, WANG X M, GE L H. Room-temperature strategy for networked nonspherical gold nanostructures from Au(III)-[G-2]-CO2H dendrimer complex [J]. Journal of Colloid and Interface Science, 2006, 293(2): 409-413.
    12. CHEN J Y, MCLELLAN J M, SIEKKINEN A, XIONG Y J, LI Z Y, XIA Y N. Facile synthesis of gold-silver nanocages with controllable pores on the surface [J]. Journal of the American Chemical Society, 2006, 128(46): 14776-14777.
    13. ZHANG H, XU J J, CHEN H Y. Shape-controlled gold nanoarchitectures: Synthesis, superhydrophobicity, and electrocatalytic properties [J]. Journal of Physical Chemistry C, 2008, 112(36): 13886-13892.
    14. NIU J L, ZHU T, LIU Z F. One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent [J]. Nanotechnology, 2007, 18: 32.
    15. WANG W, YANG X, CUI H. Growth Mechanism of Flowerlike Gold Nanostructures: Surface Plasmon Resonance (SPR) and Resonance Rayleigh Scattering (RRS) Approaches to Growth Monitoring [J]. Journal of Physical Chemistry C, 2008, 112(42): 16348-16353.
    16. JANA N R, PENG X G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals [J]. Journal of the American Chemical Society, 2003, 125(47): 14280-14281.
    17. CAMARGO P H C, XIONG Y, JI L, ZUO J M, XIA Y. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails [J]. Journal of the American Chemical Society, 2007, 129(50): 15452.
    18. MCLELLAN J M, GEISSLER M, XIA Y N. Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings [J]. Journal of the American Chemical Society, 2004, 126(35): 10830-10831.
    19. LU X M, YAVUZ M S, TUAN H Y, KORGEL B A, XIA Y N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction [J]. Journal of the American ChemicalSociety, 2008, 130(28): 8900.
    20. NIU W X, ZHENG S L, WANG D W, LIU X Q, LI H J, HAN S A, CHEN J, TANG Z Y, XU G B. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals [J]. Journal of the American Chemical Society, 2009, 131(2): 697-703.
    21. LU L H, AI K, OZAKI Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape [J]. Langmuir, 2008, 24(3): 1058-1063.
    22. YUAN H, MA W H, CHEN C C, ZHAO J C, LIU J W, ZHU H Y, GAO X P. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions [J]. Chemistry of Materials, 2007, 19(7): 1592-1600.
    23. WANG C G, WANG T T, MA Z F, SU Z M. pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios [J]. Nanotechnology, 2005, 16(11): 2555-2560.
    24. HAO F, NEHL C L, HAFNER J H, NORDLANDER P. Plasmon resonances of a gold nanostar [J]. Nano Letters, 2007, 7: 729-732.
    25. WANG Y L, CAMARGO P H C, SKRABALAK S E, GU H C, XIA Y N. A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver [J]. Langmuir, 2008, 24(20): 12042-12046.
    26. ZOU X Q, YING E B, DONG S J. Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties [J]. Nanotechnology, 2006, 17(18): 4758-4764.
    27. BAKR O M, WUNSCH B H, STELLACCI F. High-yield synthesis of multi-branched urchin-like gold nanoparticles [J]. Chemistry of Materials, 2006, 18(14): 3297-3301.
    28. RASHID M H, BHATTACHARJEE R R, KOTAL A, MANDAL T K. Synthesis of spongy gold nanocrystals with pronounced catalytic activities [J]. Langmuir, 2006, 22(17): 7141-7143.
    29. JANA N R, GEARHEART L, MURPHY C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles [J]. Langmuir, 2001, 17(22): 6782-6786.
    30. BROWN K R, NATAN M J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmuir, 1998, 14(4): 726-728.
    31. CHEN S H, WANG Z L, BALLATO J, FOULGER S H, CARROLL D L. Monopod, bipod, tripod, and tetrapod gold nanocrystals [J]. Journal of the American Chemical Society, 2003, 125(52): 16186-16187.
    32. JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. Journal of Physical Chemistry B, 2001, 105(19): 4065-4067.
    33. KUO C H, HUANG M H. Synthesis of branched gold nanocrystals by a seeding growth approach [J]. Langmuir, 2005, 21(5): 2012-2016.
    34. WU H Y, LIU M, HUANG M H. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles [J]. Journal of Physical Chemistry B, 2006, 110(39): 19291-19294.
    35. HAO E, BAILEY R C, SCHATZ G C, HUPP J T, LI S Y. Synthesis and optical properties of "branched" gold nanocrystals [J]. Nano Letters, 2004, 4(2): 327-330.
    36. TENG X W, YANG H. Synthesis of platinum multipods: An induced anisotropic growth [J]. Nano Letters, 2005, 5(5): 885-891.
    37. JI X H, SONG X N, LI J, BAI Y B, YANG W S, PENG X G. Size control of gold nanocrystals in citrate reduction: The third role of citrate [J]. Journal of the American Chemical Society, 2007, 129(45): 13939-13948.
    38. BROWN K R, WALTER D G, NATAN M J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J]. Chemistry of Materials, 2000, 12(2): 306-313.
    39. HUANG W, TAMILMANI S, RAGHAVAN S, SMALL R. Dissolution of copper thin films in hydroxylamine-based solutions [J]. International Journal of Mineral Processing, 2003, 72(1-4): 365-372.
    40. PENG Z A, PENG X G. Mechanisms of the shape evolution of CdSe nanocrystals [J]. Journal of the American Chemical Society, 2001, 123(7): 1389-1395.
    41. CHEN Y F, JOHNSON E, PENG X G. Formation of monodisperse andshape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening [J]. Journal of the American Chemical Society, 2007, 129(35): 10937-10947.
    42. THESSING J, QIAN J H, CHEN H Y, PRADHAN N, PENG X G. Interparticle influence on size/size distribution evolution of nanocrystals [J]. Journal of the American Chemical Society, 2007, 129(10): 2736.
    43. MICHOTA A, BUKOWSKA J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates [J]. Journal of Raman Spectroscopy, 2003, 34(1): 21-25.
    1. SUN Y G, XIA Y N. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes [J]. Analytical Chemistry, 2002, 74(20): 5297-5305.
    2. SUN Y G, WILEY B, LI Z Y, XIA Y N. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys [J]. Journal of the American Chemical Society, 2004, 126(30): 9399-9406.
    3. CHEN J Y, WILEY B, LI Z Y, CAMPBELL D, SAEKI F, CANG H, AU L, LEE J, LI X D, XIA Y N. Gold nanocages: Engineering their structure for biomedical applications [J]. Advanced Materials, 2005, 17(18): 2255-2261.
    4. SHUKLA S, PRISCILLA A, BANERJEE M, BHONDE R R, GHATAK J, SATYAM P V, SASTRY M. Porous gold nanospheres by controlled transmetalation reaction: A novel material for application in cell imaging [J]. Chemistry of Materials, 2005, 17(20): 5000-5005.
    5. SKRABALAK S E, CHEN J, AU L, LU X, LI X, XIA Y. Gold nanocages for biomedical applications [J]. Advanced Materials, 2007, 19(20): 3177-3184.
    6. KHALAVKA Y, BECKER J, SONNICHSEN C. Synthesis of Rod-Shaped Gold Nanorattles with Improved Plasmon Sensitivity and Catalytic Activity [J]. Journal of the American Chemical Society, 2009, 131(5): 1871-1875.
    7. SRNOVA-SLOUFOVA I, LEDNICKY F, GEMPERLE A, GEMPERLOVA J. Core-shell (Ag)Au bimetallic nanoparticles: Analysis of transmission electron microscopy images [J]. Langmuir, 2000, 16(25): 9928-9935.
    8. SANEDRIN R G, GEORGANOPOULOU D G, PARK S, MIRKIN C A. Seed-mediated growth of bimetallic prisms [J]. Advanced Materials, 2005, 17(8): 1027.
    9. YIN Y D, ERDONMEZ C, ALONI S, ALIVISATOS A P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra [J]. Journal of the American Chemical Society, 2006, 128(39):12671-12673.
    10. CHEN H M, LIU R S, ASAKURA K, LEE J F, JANG L Y, HU S F. Fabrication of nanorattles with passive shell [J]. Journal of Physical Chemistry B, 2006, 110(39): 19162-19167.
    11. PREVO B G, ESAKOFF S A, MIKHAILOVSKY A, ZASADZINSKI J A. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation [J]. Small, 2008, 4(8): 1183-1195.
    12. ZHANG Q B, XIE J P, LEE J Y, ZHANG J X, BOOTHROYD C. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction [J]. Small, 2008, 4(8): 1067-1071.
    13. SKRABALAK S E, CHEN J Y, SUN Y G, LU X M, AU L, COBLEY C M, XIA Y N. Gold Nanocages: Synthesis, Properties, and Applications [J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.
    14. BI Y P, LU G X. Controlled synthesis of pentagonal gold nanotubes at room temperature [J]. Nanotechnology, 2008, 19: 27.
    15. SIEB N R, WU N C, MAJIDI E, KUKREJA R, BRANDA N R, GATES B D. Hollow Metal Nanorods with Tunable Dimensions, Porosity, and Photonic Properties [J]. Acs Nano, 2009, 3(6): 1365-1372.
    16. AN K, HYEON T. Synthesis and biomedical applications of hollow nanostructures [J]. Nano Today, 2009, 4(4): 359-373.
    17. LU X M, TUAN H Y, CHEN J Y, LI Z Y, KORGEL B A, XIA Y N. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium [J]. Journal of the American Chemical Society, 2007, 129(6): 1733-1742.
    18. SUN Y G, XIA Y N. Multiple-walled nanotubes made of metals [J]. Advanced Materials, 2004, 16(3): 264.
    19. KIM M H, LU X M, WILEY B, LEE E P, XIA Y N. Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4 [J]. Journal of Physical Chemistry C, 2008, 112(21): 7872-7876.
    20. SUN Y G, MAYERS B T, XIA Y N. Template-engaged replacement reaction: Aone-step approach to the large-scale synthesis of metal nanostructures with hollow interiors [J]. Nano Letters, 2002, 2(5): 481-485.
    21. SUN Y G, XIA Y A. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction [J]. Nano Letters, 2003, 3(11): 1569-1572.
    22. SUN Y G, XIA Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. Journal of the American Chemical Society, 2004, 126(12): 3892-3901.
    23. METRAUX G S, CAO Y C, JIN R C, MIRKIN C A. Triangular nanofrarnes made of gold and silver [J]. Nano Letters, 2003, 3(4): 519-522.
    24. JIN Y D, DONG S J. One-pot synthesis and characterization of novel silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes [J]. Journal of Physical Chemistry B, 2003, 107(47): 12902-12905.
    25. GUO S J, DONG S J, Wang E. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology [J]. Chemistry-a European Journal, 2008, 14(15): 4689-4695.
    26. ZOU X Q, YING E B, DONG S J. Preparation of novel silver-gold bimetallic nanostructures by seeding with silver nanoplates and application in surface-enhanced Raman scattering [J]. Journal of Colloid and Interface Science, 2007, 306(2): 307-315.
    27. DONG X Y, JI X H, JING J, LI M Y, LI J, YANG W S. Synthesis of Triangular Silver Nanoprisms by Stepwise Reduction of Sodium Borohydride and Trisodium Citrate [J]. Journal of Physical Chemistry C, 2010, 114(5): 2070-2074.
    28. JI X H, SONG X N, LI J, BAI Y B, YANG W S, PENG X G. Size control of gold nanocrystals in citrate reduction: The third role of citrate [J]. Journal of the American Chemical Society, 2007, 129(45): 13939-13948.
    29. ZHAO L L, JI X H, SUN X J, LI J, YANG W S, PENG X G. Formation and Stability of Gold Nanoflowers by the Seeding Approach: The Effect of Intraparticle Ripening [J]. Journal of Physical Chemistry C, 2009, 113(38): 16645-16651.
    30. YUAN H, MA W H, CHEN C C, ZHAO J C, LIU J W, ZHU H Y, GAO X P.Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions [J]. Chemistry of Materials, 2007, 19(7): 1592-1600.
    31. BAI J, LI Y X, YANG S T, DU J S, WANG S G, ZHANG C Q, YANG Q B, CHEN X S. Synthesis of AgCl/PAN composite nanofibres using an electrospinning method [J]. Nanotechnology, 2007, 18: 30.
    32. STATHATOS E, LIANOS P. Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films [J]. Langmuir, 2000, 16: 2398-2400.
    1. MURPHY C J, JANA N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Advanced Materials, 2002, 14(1): 80-82.
    2. NIKOOBAKHT B, EL-SAYED M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method [J]. Chemistry of Materials, 2003, 15(10): 1957-1962.
    3. SUN Y G, XIA Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium [J]. Journal of the American Chemical Society, 2004, 126(12): 3892-3901.
    4. MURPHY C J, SAU T K, GOLE A, ORENDORFF C J. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures [J]. Mrs Bulletin, 2005, 30(5): 349-355.
    5. BURDA C, CHEN X B, NARAYANAN R, EL-SAYED M A. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105(4): 1025-1102.
    6. ORENDORFF C J, SAU T K, MURPHY C J. Shape-dependent plasmon-resonant gold nanoparticles [J]. Small, 2006, 2(5): 636-639.
    7. CHU H C, KUO C H, HUANG M H. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges [J]. Inorganic Chemistry, 2006, 45(2): 808-813.
    8. JAIN P K, LEE K S, EL-SAYED I H, EL-SAYED M A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine [J]. Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.
    9. YUAN H, MA W H, CHEN C C, ZHAO J C, LIU J W, ZHU H Y, GAO X P. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions [J]. Chemistry of Materials, 2007, 19(7): 1592-1600.
    10. ZHOU L, YU X F, FU X F, HAO Z H, LI K Y. Surface plasmon resonance andfield enhancement of Au/Ag alloyed hollow nanoshells [J]. Chinese Physics Letters, 2008, 25(5): 1776-1779.
    11. KHALAVKA Y, BECKER J, SONNICHSEN C. Synthesis of Rod-Shaped Gold Nanorattles with Improved Plasmon Sensitivity and Catalytic Activity [J]. Journal of the American Chemical Society, 2009, 131(5): 1871-1875.
    12. YAMAMOTO M, SAKATA T, MORI H, NAKAMOTO M. Synthesis and morphology of star-shaped gold nanoplates protected by poly(N-vinyl-2-pyrrolidone) [J]. Chemistry of Materials, 2005, 17(22): 5391-5393.
    13. CHEN S H, WANG Z L, BALLATO J, CARROLL D L. Monopod, bipod, tripod, and tetrapod gold nanocrystals [J]. Journal of the American Chemical Society, 2003, 125(52): 16186-16187.
    14. WU H Y, HUANG M H. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles [J]. Journal of Physical Chemistry B, 2006, 110(39): 19291-19294.
    15. HAO E, SCHATZ G C, LI S Y. Synthesis and optical properties of "branched" gold nanocrystals [J]. Nano Letters, 2004, 4(2): 327-330.
    16. NEHL C L, HAFNER J H. Optical properties of star-shaped gold nanoparticles [J]. Nano Letters, 2006, 6(4): 683-688.
    17. SAU T K, MURPHY C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution [J]. Journal of the American Chemical Society, 2004, 126(28): 8648-8649.
    18. TANG X L, JIANG P, GE G L, TSUJI M, XIE S S, GUO Y J. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect [J]. Langmuir, 2008, 24(5): 1763-1768.
    19. KUO C H, HUANG M H. Synthesis of branched gold nanocrystals by a seeding growth approach [J]. Langmuir, 2005, 21(5): 2012-2016.
    20. GAO J X, BENDER C M, MURPHY C J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution [J]. Langmuir, 2003, 19(21): 9065-9070.
    21. ORENDORFF C J, MURPHY C J. Quantitation of metal content in the silver-assisted growth of gold nanorods [J]. Journal of Physical Chemistry B, 2006, 110(9): 3990-3994.
    22. ORENDORFF C J GEARHEART L, JANA N R, MURPHY C J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates [J]. Physical Chemistry Chemical Physics, 2006, 8(1): 165-170.
    23. LU L H, AI K, OZAKI Y. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape [J]. Langmuir, 2008, 24(3): 1058-1063.
    24. BAKR O M, WUNSCH B H, STELLACCI F. High-yield synthesis of multi-branched urchin-like gold nanoparticles [J]. Chemistry of Materials, 2006, 18(14): 3297-3301.
    25. NIU W X, WANG D W, LI H J, CHEN J, XU G B. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals [J]. Journal of the American Chemical Society, 2009, 131(2): 697-703.
    26. JENA B K, RAJ C R. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen [J]. Langmuir, 2007, 23(7): 4064-4070.
    27. BUSBEE B D, MURPHY C J. An improved synthesis of high-aspect-ratio gold nanorods [J]. Advanced Materials, 2003, 15(5): 414.
    28. RAI A, SINGH A, AHMAD A, SASTRY M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles [J]. Langmuir, 2006, 22(2): 736-741.
    1. CASWELL K K, BENDER C M, MURPHY C J. Seedless, surfactantless wet chemical synthesis of silver nanowires [J]. Nano Letters, 2003, 3(5): 667-669.
    2. ZHU H F, TAO C, ZHENG S P, LI J B. One step synthesis and phase transition of phospholipid-modified Au particles into toluene [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2005, 257: 411-414.
    3. MPOURMPAKIS G, VLACHOS D G. Insights into the early stages of metal nanoparticle formation via first-principle calculations: the roles of citrate and water [J]. Langmuir, 2008, 24(14): 7465-7473.
    4. PHILIP D. Synthesis and spectroscopic characterization of gold nanoparticles [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2008, 71(1): 80-85.
    5. TABRIZI A, AYHAN H. Gold Nanoparticle Synthesis and Characterisation [J]. Hacettepe Journal of Biology and Chemistry, 2009, 37(3): 217-226.
    6. TURKEVICH J, STEVENSON P C. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discuss. Faraday Soc., 1951, 11: 55.
    7. FRENS G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature (London), Physical Science, 1973, 241(105): 20-22.
    8. POLTE J, DELISSEN F, EMMERLING F, KRAEHNERT R. Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation [J]. Journal of the American Chemical Society, 132(4): 1296-1301.
    9. XIONG Y J, WILEY B J, KIM M J, XIA Y N. Synthesis and mechanistic study of palladium nanobars and nanorods [J]. Journal of the American Chemical Society, 2007, 129(12): 3665-3675.
    10. PONG B K, ELIM H I, TROUT B L, LEE J Y. New insights on the nanoparticle growth mechanism in the citrate reduction of Gold(III) salt: Formation of the aunanowire intermediate and its nonlinear optical properties [J]. Journal of Physical Chemistry C, 2007, 111(17): 6281-6287.
    11. ELIYAHU S, RUBINSTEIN I. On the formation mechanism of metal nanoparticle nanotubes [J]. Thin Solid Films, 518(6): 1661-1666.
    12. CHOW M K, ZUKOSKI C F. Sol formation mechanisms: role of colloidal stability [J]. Journal of Colloid and Interface Science, 1994, 165(1): 97-109.
    13. KIMLING J, MAIER M, OKENVE B, KOTAIDIS V, PLECH A. Turkevich method for gold nanoparticle synthesis revisited [J]. Journal of Physical Chemistry B, 2006, 110(32): 15700-15707.
    14. HENGLEIN A, GIERSIG M. Formation of colloidal silver nanoparticles: Capping action of citrate [J]. Journal of Physical Chemistry B, 1999, 103(44): 9533-9539.
    15. PEI L H, ADACHI M. Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization [J]. Langmuir, 2004, 20(18): 7837-7843.
    16. TERANISHI T, HOSOE M, TANAKA T, MIYAKE M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition [J]. Journal of Physical Chemistry B, 1999, 103(19): 3818-3827.
    17. JI X H, SONG X N, LI J, BAI Y B, YANG W S, PENG X G. Size control of gold nanocrystals in citrate reduction: The third role of citrate [J]. Journal of the American Chemical Society, 2007, 129(45): 13939-13948.
    18. WILEY B, HERRICKS T, SUN Y G, XIA Y N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons [J]. Nano Letters, 2004, 4(9): 1733-1739.
    19. IM S H, LEE Y T, WILEY B, XIA Y N. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity [J]. Angewandte Chemie-International Edition, 2005, 44(14): 2154-2157.
    20. RAI A, SINGH A, AHMAD A, SASTRY M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles [J]. Langmuir, 2006, 22(2): 736-741.
    21. YUAN H, CHEN C C, ZHAO J C, ZHU H Y, GAO X P. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions [J]. Chemistry of Materials, 2007, 19(7): 1592-1600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700