纳米粒子的组装及其与导电聚合物的复合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有小尺寸、大比表面积等特性,纳米粒子拥有特殊的光学、磁学、电学及催化等性质,因此受到人们越来越密切的关注。目前,人们利用多种方法制备了具有不同尺寸和形貌的纳米粒子,并借助表面接枝改性技术,将含有功能性基团的分子修饰在它们的表面,为实现纳米粒子的组装提供了条件。在进一步的研究中,人们以这些功能化的纳米粒子为基本结构单元,通过范德华力、静电力、分子间氢键等超分子作用力,将它们组装成了具有不同形貌的组装体,从而为纳米器件的设计、构筑及应用奠定了基础。然而,稳定性差、容易聚集、不易长期存放等缺点是纳米粒子及其组装体所普遍存在的问题。为了解决这些问题,人们将聚合物引入纳米粒子的体系中。一方面,聚合物的引入提高了纳米粒子及其组装结构的稳定性;另一方面,由于纳米粒子的存在使得聚合物的强度、韧性等性能得到提高,从而实现了纳米粒子与聚合物功能的集成。在本文中我们首先以金纳米粒子为基本结构单元,通过改变实验条件实现了纳米粒子在硅片上的可控自组装,这对进一步理解带电荷纳米粒子的自组装行为具有很重要的意义。然后,我们采用种子法制备了具有花形结构的金纳米粒子,并得到了其在液-液界面的二维组装结构,这种组装结构在表面拉曼增强上具有潜在的应用前景。接下来,我们将聚合物引入到纳米粒子的组装体系中,成功地制备了聚吡咯(PPy)包覆金纳米簇的核壳复合物,此复合物有很好的稳定性并且对硼氢化钠还原亚甲基蓝的反应有良好的催化活性和可重复利用性。最后,我们利用原位聚合的方法制备了Fe_3O_4/SiO_2/PPy复合物,其中PPy壳层的厚度可以通过改变体系中吡咯单体的用量来调控。PPy具有很好的稳定性和生物相容性,因此我们所制备的Fe_3O_4/SiO_2/PPy复合物在生物医用上具有潜在的应用前景。
Nanoparticles (NPs) have attracted much attention due to their unique optical properties, magnetic properties and catalytic properties. In recent years, various methods have been used in synthesis NPs with different sizes and morphologies. These as-prepared NPs were using as building blocks to fabricate various self-assembly structures whose morphologes looked like chain, band and sphere, through van der Waals interaction, electrostatic interaction, hydrogen bond, and so forth. These omnifarious nanostructures displayed bright prospect for applications in nano-design and nano-device.
     However, fragileness and aggregation were usually present in NPs and their self-assembly structures. In order to solve these problems, various functional polymers were introduced into the system. On one hand, polymers could improve the stability of NPs and their self-assembly structures. On the other hand, the existence of NPs could enhance the mechanical properties of polymers.
     In chapter 2, sodium citrate stabilized gold (Au) NPs were prepared. Then, TGA-capped Au NPs were prepared by ligand exchange. The self-assembly behaviors of Au NPs on substrate were carefully investigated by changing the experimental conditions such as volume ratios of water/acetone, species of ligands and temperature. With decreasing the volume ratios of water/acetone, the dendritic grade of self-assembly structures increased. When the volume ratios of water/acetone were the same, the self-assembly structures of TGA-capped Au NPs had less branches than that of sodium citrate-stabilized Au NPs. Low temperature usually increased the dendritic grade of self-assembly structure. We have investigated these self-assembly behaviors from three different aspects including interparticle interaction, the mobile rate of NPs, and the evaporation rate of the solvent. The theory explanation was quite accordance with the experimental phenomenon. Therefore, our studies were useful for understanding the complex mechanism of the self-assembly of charged NPs, and indicated a protocol to NP-based nano- or micro-structures with controlled mophologies.
     In chapter 3, we have successfully synthesized flower-like Au NPs using seeding approach. The results indicated dosage of hydroquinone played a key role in the formation of flower-like NPs. When the amount of hydroquinone was 100μL, no flower-like Au NPs appeared in the system. When the amount of hydroquinone and seed were 300μL and 50μL, respectively, flower-like Au NPs appeared in the system. However, further increasing the amount of hydroquinone, the size and morphology of NPs did not change. In the experiment, when the amount of hydroquinone was 1000μL, the size and morphology of flower-like NPs could be tuned through the dosage of seeds. NPs with different sizes and morphologies were also assembled on the liquid-liquid interface through reducing the surface charge of NPs. This self-assembly structure has potential application in surface enhanced Raman scattering.
     In chapter 4, first, we have successfully synthesized Au superparticle/polypyrrole (SP/PPy) composites. In the preparation process, poly (N-vinylpyrrolidone) (PVP) played a key role; without it, PPy could not cover on the surface of SPs and form a complete shell. The influence of pyrrole monomer concentration on the morphology and shell thickness of resulting composites was also investigated in this chapter. The experimental results indicated the optimized concentrations of pyrrole monomer ranged between 1.14 and 2.28 mM. If the concentration was too high, pure PPy NPs would appear in the system. If the concentration was too low, pyrrole monomer would polymerize into PPy antennas and randomly grow on the surface of SPs. The resulting SP/PPy composites exhibited high catalytic activity and excellent stability in the catalysis applications, for instance, the reduction of MB dye with NaBH_4. Fe_3O_4/SiO_2/PPy nanocomposites were also successfully synthesized. Magnetic nanospheres with diameter of 200 nm were synthesized via a solvothermal reaction. Then, magnetic nanospheres were coated with SiO2 shell which originated from the hydrolysis and condensation of TEOS. The thickness of SiO2 shell could be tuned by the dosage of TEOS. Subsequently, PVP was grafted on the surface of Fe_3O_4/SiO_2, which provided active sites for pyrrole monomer loading on. Finally, PPy shell formed on the surface of Fe_3O_4/SiO_2 through oxidative polymerization. The thickness of PPy shell was controllable by adjusting the dosage of pyrrole monomer. Because of the stability and biocompatibility of PPy, the Fe_3O_4/SiO_2/PPy nanocomposites showed potential applications in biomedicine.
引文
[1] Jana, N. R.; Gearheart L.; Murphy, C. J.; Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun. 2001, 617.
    [2] Kim, F.; Song, J. H.; Yang, P. D.; Photochemical synthesis of gold nanorods, J. Am. Chem. Soc. 2002, 124, 14316.
    [3] Jana, N. R.; Gearheart L.; Obare, S. O.; Murphy, C. J.; Anisotropic chemical reactivity of gold spheroids and nanorods, Langmuir 2002, 18, 922.
    [4] Murphy, C. J.; Jana, N. R.; Controlling the aspect ratio of inorganic nanorods and nanowires, Adv. Mater. 2002, 14, 1389.
    [5] Jana, N. R.; Gearheart L.; Murphy, C. J.; Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 2001, 13, 1389.
    [6] Pacholski, C.; Kornowski, A.; Weller, H.; Self-assembly of ZnO: From nanodots to nanorods, Angew. Chem. Int. Ed. 2002, 41, 1188.
    [7] Jana, N. R.; Peng, X. G.; Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals, J. Am. Chem. Soc. 2003, 125, 14280.
    [8] Hu, J. Q.; Chen,Q.; Xie, Z. X.; Han, G. B.; Wang, R. H.; Ren, B.; Zhang, Y.; Yang, Z. L.; Tian, Z. Q.; A simple and effective route for the synthesis of crystalline silver nanorods and nanowires, Adv. Funct. Mater. 2004, 14, 183.
    [9] Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U.; Selective growth of metal tips onto semiconductor quantum rods and tetrapods, Science 2004, 304, 1787.
    [10] Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S.X.; Li, G. X.; Monodisperse MFeO (M = Fe,Co,Mn) nanoparticles, J. Am. Chem. Soc. 2004, 126, 273.
    [11] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D.; A general srategy for nanocrystalsynthesis, Nature 2005, 437, 121.
    [12] Song, J. M.; Zhu, J. H.; Yu, S. H.; Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface: from monodisperse amorphous Se nanosheres toward Se nanorods, J. Phys. Chem. B 2006, 110, 23790.
    [13] Ge, J. P.; Chen, W.; Liu, L. P.; Li, Y. D.; Formation of disperse nanoparticles at the oil/water interface in normal microemusions, Chem. Eur. J. 2006, 12, 6552.
    [14] Devries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; Uzun, O.; Wunsch, B. H.; Stellacci, F.; Divalent metal nanoparticles, Science 2007, 315, 358.
    [15] Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N.; Facile synthesis of Ag nanocubes and Au nanocages, Nature protocols 2007, 2, 2182.
    [16] Koo, B.; Korgel, B. A.; Coalescence and interface diffusion in linear CdTe/CdSe/CdTe heterojunction nanorods, Nano Letters 2008, 8, 2490.
    [17] Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A.; Iodide ions control seed-mediated growth of anisotropic gold nanoparticles, Nano Letters 2008, 8, 2526.
    [18] Khalavka, Y.; S?nnichsen, C.; Growth of gold tips onto hyperbranched CdTe nanostructures, Adv. Mater. 2008, 20, 588.
    [19] Yang, J.; Peng, J. J.; Zhang, Q. B.; Peng, F.; Wang, H. J.; Yu, H.; One-step synthesis and characterization of gold-hollow PbSx hybrid nanoparticles, Angew. Chem. Int. Ed. 2009, 48, 3991.
    [20] Wang, X.; Fu, H. B.; Peng, A. D.; Zhai, T. Y.; Ma, Y.; Yuan, F. Y.; Yao, J. N.; One-pot solution synthesis of cubic Cobalt nanoskeletons, Adv. Mater. 2009, 21, 1636.
    [21] Fava, D.; Nie, Z. H.; Winnik, M. A.; Kumacheva, E.; Evolution of self-assembled structures of polymer-terminaed gold nanorods in selective solvents, Adv. Mater.2008, 20, 4318.
    [22] Kim, G. M.; Wutzler, A.; Radusch, H. J.; Michler, G. H.; Simon, P.; Sperling, R. A.; Parak, W. J.; One-dimensional arrangement of gold nanoparticles by electrospinning, Chem. Mater. 2005, 17, 4949.
    [23] Nie, Z. H.; Fava, D.; Rubinstein, M.; Kumacheva, E.;“Supramolecular”assembly of gold nanorods end-terminated with polymer“pom-poms”: effect of pom-pom structure on the association modes, J. Am. Chem. Soc. 2008, 130, 3683.
    [24] Polavarapu, L.; Xu, Q. H.; Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS, Langmuir 2008, 24, 10608.
    [25] Boal, A. K.; Iihan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russell, T. P.; Rotello, V. M.; Self-assembly of nanoparticles into structured spherical and network aggregates, Nature 2000, 404, 746.
    [26] Yang, P.; Ando, M.; Murase, N.; Morphology- and color-tunable bright fibers with high concentration of CdTe nanocrystals assembled through sol-gel reaction, Adv. Mater. 2009, 21, 4016.
    [27] He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H.; Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles, ACS Nano 2009, 3, 3993.
    [28] Pietrobon, B.; McEachran, M.; Kitaev, V.; Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods, ACS Nano 2009, 3, 21.
    [29] Kim, J. H.; Kim, J.; Baek, K. H.; Im, D. H.; Kim, C. K.; Yoon, C. S.; Fabrication of CoPt nanoparticles with high coercivity on a polymer film, Colloids Surf. A: Physicochem. Eng. 2007, 301, 419.
    [30] Kim, J.; Lee, J. E.; Lee, S. H.; Yu, J. H.; Lee, J. H.; Park, T. G.; Hyeon, T.;Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery, Adv. Mater. 2008, 20, 478.
    [31] Murphy, C. J.; Orendorff, C. J.; Alignment of gold nanorods in polymer composites and on polymer surfaces, Adv. Mater. 2005, 17, 2173.
    [32] Pérez-Juste, J.; Rodríguez-González, B.; Mulvaney, P.; Liz-Marzán, L. M.; Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films, Adv. Funct. Mater. 2005, 15, 1065.
    [33] Obare, S. O.; Jana, N. R.; Murphy, C. J.; Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes, Nano Letters 2001, 1, 601.
    [34] Zande, B. M; Pagès, L.; Hikmet, R. A. M.; and Blaaderen, A. V.; Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films, J. Phys. Chem. B 1999, 103, 5761.
    [35] Li, M.; Zhang, J.; Liu, Y.; Wang, C.; Xu, X.; Tang, Y.; Yang, B.; Electrospinning: A facile method to disperse fluorescent quantum dots in nanofibers without F?rster resonance energy transfer, Adv. Funct. Mater. 2007, 17, 3650.
    [36] Zhang, H.; Cui, Z.; Wang, Y.; Zhang, K.; Ji, X.; Lu, C.; Bang, Y.; Gao, M.; From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants, Adv. Mater. 2003, 15, 777.
    [37] Liao, J. H.; Zhang, Y.; Yu, W.; Xu, L. N.; Ge, C. W.; Liu, J. H.; Gu, N.; Linear aggregation of gold nanoparticles in ethanol, Colloids Surf. A: Physicochem. Eng. 2003, 223, 177.
    [38] Liao, J. H.; Chen, K. J.; Xu, L. N.; Ge, C.W.; Wang, J.; Huang, L.; Gu, N.; Self-assembly of length-tunable gold nanoparticle chains in organic solvents, Appl. Phys. A 2003, 17, 541.
    [39] Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Joseph, S. T. S.; Kamat, P. V.; Uniaxialplasmon coupling through longitudinal self-assembly of gold nanorods, J. Phys. Chem. B 2004, 108, 13066.
    [40] Pan, B. F.; Ao, L. M.; Gao, F.; Tian, H. Y.; He, R.; Cui, D. X.; End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization, Nanotechnology 2005, 16, 1776.
    [41] Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S.; One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks, Adv. Mater. 2005, 17, 2553.
    [42] Salant, A.; Amitay-Sadovsky, E.; Banin, U.; Directed self-assembly of gold-tipped CdSe nanorodes, J. Am. Chem. Soc. 2006, 128, 10006.
    [43] Yang Y.; Matsubara, S.; Nogami, M.; Shi, J. L.; Huang, W. M.; One-dimensional self-assembly of gold nanopaticles for tunable surface plasmon resonance properties, Nanotechnology 2006, 17, 2821.
    [44] Xie, J. P.; Zhang, Q. B.; Lee, J. Y.; Wang, D. I. C.; General method for extended metal nanowire synthesis: Ethanol induced self-assembly, J. Phys. Chem. C 2007, 111, 17158.
    [45] Rakovich, Y. P.; Volkov, Y.; Sapra, S.; Susha, A. S.; D?blinger, M.; Donegan, J. F.; Rogach, A. L.; CdTe nanowire networks: Fast self-assembly in solution, internal struction, and optical properties, J. Phys. Chem. C 2007, 111, 18927.
    [46] Sardar, R.; Shumaker-Parry, J. S.; Asymmetrically functionalized gold nanoparticles organizad in one-dimensional chains, Nano Letters 2008, 8, 731.
    [47] Fava, D.; Winnik, M. A.; Kumacheva, E.; Photothermally-triggered self-assembly of gold nanorods, Chem. Commun. 2009, 2571.
    [48] Jain, T.; Westerlind, F.; Johnson,E.; Moth-Poulsen, K.; Bj?rnholm, T.; Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods, ACS Nano 2009, 3 ,828.
    [49] Hu, X. G.; Cheng, W. L.;Wang, T.; Wang, E. K.; Dong, S. J.; Well-orderedend-to-end linkage of gold nanorods, Nanotechnology 2005, 16, 2164.
    [50] Minko, S.; Kiriy, A.; Gorodyska, G.; Stamm, M.; Mineralization of single flexible polyelectrolyte molecules, J. Am. Chem. Soc. 2002, 124, 10192.
    [51] Yu, S. H.; Coelfen, H.; Bio-inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem. 2004, 14, 2124.
    [52] C?elfen, H.; Qi, L.; A Systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer, Chem. Eur. J. 2001, 7, 106.
    [53] Yu, S. H.; Antonietti, M.; Coelfen, H.; Giersig, M.; Synthesis of very thin 1D and 2D CdWO4 nanoparticles with improved fluorescence behavior by polymer-controlled crystallization, Angew. Chem. Int. Ed. 2002, 41, 2356.
    [54] Ford, W. M.; Harnach, O.; Yasuda, A.; Wessels, J. M.; Platinated DNA as precursors to templated chains of metal nanoparticles, Adv. Mater. 2001, 13, 1793.
    [55] Tang, Z. Y.; Kotov, N. A.; Giersing, M.; Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science 2002, 297, 237.
    [56] Li, M.; Schnablegger, H.; Stephen, M.; Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Naure 1999, 402, 393.
    [57] Giersig, M.; Mulvaney, P.; Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir 1993, 9, 3408.
    [58] Colvin, V. L.; Goldstein, A. N.; Alivisatos, A. P.; Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers, J. Am. Chem. Soc. 1992, 114, 5221.
    [59] Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J.; Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature 1998, 396, 444.
    [60] Kiely, C. J.; Fink, J.; Zheng, J. G.; Brust, M.; Bethell, D.; Schiffrin, D. J.; Ordered colloidal nanoalloys, Adv. Mater. 2000, 12, 640.
    [61] Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A.; Self-assembly of gold nanorods, J. Phys. Chem. B 2000, 104, 8635.
    [62] Liu, S. T.; Zhu, T.; Hu, R. S.; Liu, Z. F.; Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array, Phys. Chem. Chem. Phys. 2002, 4, 6059.
    [63] Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D.; Spontaneous assembly of a monolayers of charged gold nanocrystals at the water/oil interface, Angew. Chem. Int. Ed. 2004, 43, 458.
    [64] Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Self-assembled metal colloid monolayers: an approach to SERS substrates, Science 1995, 267, 1629.
    [65] Bandyopahyay K.; Patil, V.; Vijayamohanan, K., Sastry, M.; Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers, Langmuir 1997, 13, 5244.
    [66] Wang, J.; Wang, D. Y.; Sobal, N. S.; Giersig, M.; Jiang, M.; M?hwald, H.; Stepwise directing of nanocrystals to self-assemble at water/oil interfaces, Angew. Chem. Int. Ed. 2006, 45, 7963.
    [67] Reincke, F.; Kegel, W. K.; Zhang, H.; Nolte, M.; Wang, D. Y.; Vanmaekelbergh, D.; M?hwald, H.; Understanding the self-assembly of charged nanoparticles at the water/oil interface, Phys. Chem. Chem. Phys. 2006, 8, 3828.
    [68] Xu, Z. C.; Shen, C. M.; Xiao, C. W.; Yang, T. Z.; Chen, S. T.; Li, H. L.; Gao, H. J.; Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior, Chemical Physics Letters 2006, 432, 222.
    [69] Brust, M.; Blass, P. M.; Bard, A. J.; Self-assembly of photoluminescent copper (I) dithiol multilayer thin films and bulk materials, Langmuir 1997, 13, 5602.
    [70] Khanal, B. P.; Zubarev, E. R.; Rings of nanorods, Angew. Chem. Int. Ed. 2007, 46,2195.
    [71] Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. Z.; Kotov, N. A.; Self-assembly of CdTe nanocrystals into free-floating sheets, Science 2006, 314, 274.
    [72] Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M; Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices, Angew. Chem. Int. Ed. 2009, 48, 9484.
    [73] Ogawa, S.; Hu, K.; Fan, F. R. F.; Bard, A. J.; Photoelectrochemistry of films of quantum size lead sulfide particles incorporated in self-assembly monolayers on gold, J Phys. Chem.B 1997, 101, 5707.
    [74] Puntes, V. F.; Krishnan, K. M.; Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystalε-Co nanoparticles, Appl. Phys. Lett. 2001, 78, 2187.
    [75] Teng, X. W.; Yang, H.; Effect of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles, J. Mater. Chem. 2004, 14, 774.
    [76] Park, Y.; Park, S.; Directing close-packing of midnanosized gold Nanoparticles ate water/hexane interface, Chem. Mater. 2008, 20, 2388.
    [77] Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P.; Air-stable all-inorganic nanocrystal solar cells processed from solution, Science 2005, 301, 462.
    [78] Rosi, N. L.; Mirkin, C. A.; Nanostructures in biodiagnostics, Chem. Rev. 2005, 105, 1547.
    [79] Jin, R. C.; Jureller, J. E.; Kim, H. Y.; Scherer, N. F.; Correlating second harmonic optical responses of single Ag nanoparticles with morphology, J. Am. Chem. Soc. 2005, 127, 12482.
    [80] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R.; Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system, Chem. Commun. 1994, 801.
    [81] Murray, C. B.; Kagan, C. R.; Bawendi, M. G.; Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 1995, 270, 1335.
    [82] Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D.; A versatile bottom-up assembly approach to colloidal spheres from nanocrystals, Angew. Chem. Int. Ed. 2007, 46, 6650.
    [83] Maye, M. M.; Chun, S. C.; Han, L.; Rabinovich, D.; Zhong, C. J., Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether, J Am. Chem. Soc. 2002, 124, 4958.
    [84] Zhuang, J. Q.; Wu, H. M.; Yang, Y. G.; Cao, Y. C.; Supercrystalline colloidal particles from artificial atoms, J. Am. Chem. Soc. 2007, 129, 14166.
    [85] Zhuang, J. Q.; Wu, H. M.; Yang, Y. A.; Cao, Y. C.; Controlling colloidal superparticle growth through solvophobic interactions, Angew. Chem. Int. Ed. 2008, 47, 2208.
    [86] Zhuang, J. Q.; Shaller, A. D.; Lynch, J.; Wu, H. M.; Chen, O.; Li, A. D. Q.; Cao, Y. C.; Cylindrical superparticles from semiconductor nanorods, J. Am. Chem. Soc. 2009, 131, 6084.
    [87] Zhang, Z. P.; Sun, H. P.; Shao, X. Q.; Li, D. F.; Yu, H. D.; Han, M. Y.; Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures, Adv. Mater. 2005, 17, 42.
    [88] Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J.; self-assembled Vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in Lithium-ion batteries, Angew. Chem. Int. Ed. 2005, 44, 4391.
    [89] Zhuang, Z. B.; Peng, Q.; Wang, X.; Li, Y. D.; Tetrahedral colloidal crystals of Ag2S nanocrystals, Angew. Chem. Int. Ed. 2007, 46, 8174.
    [90] Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D.; Ag, Ag2S, Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures, J. Am. Chem. Soc. 2008,130, 4016.
    [91] Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L.; Weller, H.; A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices, Adv. Mater. 2001, 13, 1868.
    [92] Guo, S.; Konopny, L.; Popvitz-Biro, R.; Cohen, H.; Porteanu, H.; Lifshitz, E.; Lahav, M.; Thioalkanoates as site-directing nucleating centers for the preparation of patterns of CdS nanoparticles within 3-D crystals and LB films of Cd alkanoates, J. Am. Chem. Soc. 1999, 121, 9589.
    [93] O’Brien, S.; Brus, L.; Murray, C. B.; Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis, J. Am. Chem. Soc. 2001, 123, 12085.
    [94] Guo, S.; Popvitz-Biro, R.; Arad, T.; Hodes, G.; Leiserowitz, L.; Lahav, M.; Superlattices of aemiconductor quantum-size lead sulfide particles prepared by topotactic gas-solid reaction, Adv. Mater. 1998, 10, 657.
    [95] Micic, O. I.; Jones, K. M.; Cahill, A.; Nozik, A. J.; Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots, J. Phys. Chem. B 1998, 102, 9791.
    [96] Martin, J. E.; Wilcoxon, J. P.; Odinek, J.; Provencio, P.; Superlattices of platinum and palladium Nanoparticles, J. Phys. Chem. B 2002, 106, 971.
    [97] Courty, A.; Fermon, C.; Pileni, M. P.;“Supra”crystals made of nanocrystals, Adv. Mater. 2001, 13, 254.
    [98] Wang, S.; Sato, S.; Kimura, K.; Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution, Chem. Mater. 2003, 15, 2445.
    [99] Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zailkovski, V.; Sorensen, C. M.; Klabunde, K. J.; Face-centered cubic and hexagonalclosed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods, J. Phys. Chem. B 2003, 107, 7441.
    [100] Pileni, M. P.; Nanocrystal self-assemblies: fabrication and collective properties, J. Phys. Chem. B 2001, 105, 3358.
    [101]导电高分子材料,雀部博之编,曹镛等译.
    [102] Shi, G. Q.; Jin, S.; Xue, G.; Li, C.; A conducting polymer film stronger than aluminum, Science, 1995, 267, 994.
    [103] Li, D.; Huang, J. X.; Kaner, R. B.; Polyaniline nanofibers: a unique polymer nanostructure for versatile applications, Acc. Chem. Res. 2009, 42, 135.
    [104] Schmidt, C. E.; Shastri, V. R.; Vacanti, J. P.; Langer, R.; Stimulation of neurite outgrowth using an electrically conducting polymer, P. Natl. Acad. Sci. USA 1997, 94, 8948.
    [105] Kotwal, A.; Schmidt, C. E.; Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials, Biomaterials 2001, 22, 1055.
    [106] Zhu, Y.; Li, J. M.; Wan, M. X.; Jiang, L.; Wei, Y.; A new route for the preparation of brain-like nanostructured polyaniline, Macromol. Rapid Commun. 2007, 28, 1339.
    [107] Zhang, H. B.; Wang,J. X.; Wang, Z.; Zhang, F. B.; Wang, S. C.; A novel strategy for the synthesis of sheet-Like polyaniline, Macromol. Rapid Commun. 2009, 30, 1577.
    [108] Zhu, Y.; Hu, D.; Wan, M. X.; Jiang, L.; Wei, Y.; Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline, Adv. Mater. 2007, 19, 2092.
    [109] Wei, Z. X.; Zhang, L. J.; Yu, M.; Yang, Y. S.; Wan, M. X.; Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers, Adv. Mater. 2003, 15, 1382.
    [110] Wei, Z. X.; Wan, M. X.; Hollow microspheres of polyaniline synthesized with an aniline emulsion template, Adv. Mater. 2002, 14, 1314.
    [111] Wang, H. L.; Li, W. G.; Jia, Q. X.; Akhadov, E.; Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters, Chem. Mater. 2007, 19, 520,
    [112] Yao, T. J.; Li, X.; Lin, Q.; Ren, Z. Y.; Wang, C. X.; Lv, H.; Wang, T.; Zhang, J. H.; Yu, K.; Yang, B.; Patterns of conducting polypyrrole with tunable morphologies, Polymer 2009, 50, 3938.
    [113] Chiou, N. R.; Lui, C. M.; Guan, J. J.; Lee, L. J.; Epstein, A. J.; Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties, Nat. Nanotechnol. 2007, 2, 354.
    [114] Sumida, T.; Wada, Y.; Kitamura, T.; Yanagida, S.; Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids, Chem. Commun. 2002, 1613.
    [115] Yang, C. M.; Li, H. Y.; Xiong, D. B.; Cao, Z. Y.; Hollow polyaniline/Fe3O4 microsphere composites: preparation, characterization, and applications in microwave absorption, React. Funct. Polym. 2009, 69, 137.
    [116] Xu, J. J.; Hu, J. C.; Liu, X. F.; Qiu, X. H.; Wei, Z. X.; Stepwise self-assembly of P3HT/CdSe hybrid nanowires with enhanced photoconductivity, Macromol. Rapid Commun. 2009, 30, 1419.
    [117] Wuang, S. C.; Neoh, K. G.; Kang, E. T.; Pack, D. W.; Leckband, D. E.; Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine, J. Mater. Chem. 2007, 17, 3354.
    [118] Wuang, S. C.; Neoh, K. G.; Kang, E. T.; Pack, D. W.; Leckband, D. E.; Polypyrrole nanospheres with magnetic and cell-targeting capabilities, Macromol. Rapid Commun. 2007, 28, 816.
    [119] Liu, Z.; Wang, J.; Xie, D. H.; Chen, G.; Polyaniline-coated Fe3O4nanoparticle–carbon-nanotube composite and its application in electrochemical biosensing, Small 2008, 4, 462.
    [120] Xuan, S. H.; Fang, Q. L.; Hao, L. Y.; Jiang, W. Q.; Gong, X. L.; Hu, Y.,Chen, Z. Y.; Fabrication of spindle Fe2O3@polypyrrole core/shell particles by surface-modified hematite templating and conversion to spindle polypyrrole capsules and carbon capsules, J. Colloid Interface Sci. 2007, 314, 502.
    [121] Zhang, W. D.; Xiao, H. M.; Zhu, L. P.; Fu, S. Y.; Wan, M. X.; Facile one-step synthesis of electromagnetic functionalized polypyrrole/Fe3O4 nanotubes via a self-assembly process, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 320.
    [122] Xiao, H. M.; Zhang, W. D.; Wan, M. X.; Fu, S. Y.; Novel electromagnetic functionalized gamma-Fe2O3/polypyrrole composite nanostructures with high conductivity, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 4446.
    [123] Yao, T. J.; Wang, C. X.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B.; Preparation of raspberry-like polypyrrole composites with applications in catalysis, J. Colloid Interface Sci. 2009, 338, 573.
    [124] Selvan, S. T.; Spatz, J. P.; Klok, H. A.; Moller, M.; Gold-polypyrrole core-shell Particles in diblock copolymer micelles, Adv. Mater. 1998, 10, 132.
    [125] Selvan, S. T.; Novel nanostructures of gold–polypyrrole composites, Chem. Commun. 1998, 351-352.
    [126] Nikolai, P. G.; Dmitri, V. T.; Andrey, L. R.; Alexander, E.; Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications, J. Mater. Chem. 2000, 10, 2163.
    [127] Drury, A.; Chaure, S.; Kr?ll, M.; Nicolosi, V.; Chaure, N.; Blau, W. J.; Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina, Chem. Mater. 2007, 19, 4252.
    [1] Kim, K.; Lee, H. B.; Lee, J. W.; Park, H. K.; Shin, K. S.; Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene?water interface for efficient surface-enhanced raman scattering, Langmuir 2008, 24, 7178.
    [2] Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O’Brien, S.; Murray, C. B.; Structural diversity in binary nanoparticle superlattices, Nature 2006, 439, 55.
    [3] Pacholski, C.; Kornowski, A.; Weller, H.; Self-assembly of ZnO: From nanodots to nanorods, Angew. Chem. Int. Ed. 2002, 41, 1188.
    [4] Stevens, M. M.; Flynn, N. T.; Wang, C.; Tirrell, D. A.; Langer, R.; Coiled-coil peptide-based assembly of gold nanoparticles, Adv. Mater. 2004, 16, 915.
    [5] Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S.; One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks, Adv. Mater. 2005, 17, 2553.
    [6] Maheshwari, V.; Kane, J.; Saraf, R. F.; Self-assembly of a micrometers-long one-dimensional network of cemented Au nanoparticles, Adv. Mater. 2008, 20, 284.
    [7] Khanal, B. P.; Zubarev, E. R.; Rings of nanorods, Angew. Chem. Int. Ed. 2007, 46,195.
    [8] Yin, Y.; Lu, Y.; Gates, B.; Xia, Y.; Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures, J. Am. Chem. Soc. 2001, 123, 8718.
    [9] Bae, Y.; Kim, N. H.; Kim, M.; Lee, K. Y.; Han, S. W.; Anisotropic assembly of Ag nanoprisms, J. Am. Chem. Soc. 2008, 130, 5432.
    [10] Zhong, Z.; Luo, J.; Ang, T. P.; Highfield, J.; Lin, J.; Gedanken, A.; Controlled organization of Au colloids into linear assemblies, J. Phys. Chem. B 2004, 108, 18119.
    [11] Pakovich, Y. P.; Volkov, Y.; Sapra, S.; Susha, A. S.; D?blinger, M.; Donegan, J. F.; Rogach, A. L.; CdTe nanowire networks: Fast self-assembly in solution, internal structure, and optical properties, J. Phys. Chem. C 2007, 111, 18927.
    [12] Khatri, O. P.; Murase, K.; Sugimura, H.; Structural organization of gold nanoparticles onto the ITO surface and its optical properties as a function of ensemble size, Langmuir 2008, 24, 3787.
    [13] Nie, Z.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M.; Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers, Nat. Mater. 2007, 6, 609.
    [14] Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J.; The role of interparticle and external forces in nanoparticle assembly, Nat. Mater. 2008, 7, 527.
    [15] Tang, Z. Y.; Kotov, N. A.; Giersing, M.; Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science 2002, 297, 237.
    [16] Tang, Z. Y.; Ozturk, B.; Wang, Y.; Kotov, N. A.; Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains, J. Phys. Chem. B 2004, 108, 6927.
    [17] Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck,E.; Chaudret, B.; Multimillimetre-large superlattices of air-stable iron–cobalt Nanoparticles, Nat. Mater. 2005, 4, 750.
    [18] Chang, J. Y.; Chang, J. J.; Lo, B.; Tzing, S. H.; Ling, Y. C.; Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water, Chem. Phys. Lett. 2003, 379, 261.
    [19] Liao, J.; Zhang, Y.; Yu, W.; Xu, L.; Ge, C.; Liu, J.; Gu, N.; Linear aggregation of gold nanoparticles in ethanol, Colloids Surf. A: Physicochem. Eng. 2003, 223, 177.
    [20] Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D.; Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface, Angew. Chem. Int. Ed. 2004, 43, 458.
    [21] Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P.; Nanoparticle assembly and transport at liquid-liquid interface, Science 2003, 299, 226.
    [22] Nakashima, H.; Furukawa, K.; Kashimura, Y.; Torimitsu, K.; Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids, Langmuir 2008, 24, 5654.
    [23] Liu, S.; Zhu, T.; Hu, R.; Liu, Z.; Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array, Phys. Chem. Chem. Phys. 2002, 4, 6059.
    [24] Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G.; Self-sssembly of a two-dimensional superlattice of molecularly linked metal clusters, Science 1996, 273, 1690.
    [25] Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J.; Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature 1998, 396, 444.
    [26] Zhang, Z. P.; Sun, H. P.; Shao, X. Q.; Li, D. F.; Yu, H. D.; Han, M. Y.;Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures, Adv. Mater. 2005, 17, 42.
    [27] Xia, Y. N.; Yin, Y. L.; Mclellan, J.; Template-assisted self-assembly of spherical colloids into complex and controllable structures, Adv. Funct. Mater. 2003, 13, 907.
    [28] Yan, X.; Yao, J. M.; Lu, G.; Chen, X.; Zhang, K.; Yang, B.; Microcontact printing of colloidal crystals, J. Am. Chem. Soc. 2004, 126, 10510.
    [29] Warner, M. G.; Hutchison, J. E.; Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds, Nat. Mater. 2003, 2, 272.
    [30] Minko, S.; Kiriy, A.; Gorodyska, G.; Stamm, M.; Mineralization of single flexible polyelectrolyte molecules, J. Am. Chem. Soc. 2002, 124, 10192.
    [31] Ryadnov, M. G.; Woolfson, D. N.; Fiber recruiting peptides: Noncovalent decoration of an engineered protein scaffold, J. Am. Chem. Soc. 2004, 126, 7454.
    [32] Cao, Y.; Zhou, Y. M.; Shan, Y.; Huang, X. J.; Xue, X. J.; Wu, Z. H.; (Ti,Sn)O2 solid solution self-aligned into“sandwich”array on grafted modification collagen matrix, Adv. Mater. 2004, 16, 1189.
    [33] Yu, S. H.; C?lfen, H.; Bio-inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem. 2004, 14, 2124.
    [34] Giersig, M.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Evidence of an aggregative mechanism during the formation of silver nanowires in N, N-dimethylformamide, J. Mater. Chem. 2004, 14, 607.
    [35] Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. Z.; Kotov, N. A.; Self-assembly of CdTe nanocrystals into free-floating sheets, Science 2006, 314, 274.
    [36] Manoharan, V. N.; Elsesser, M. T.; Pine, D. J.; Dense packing and symmetry in small clusters of microspheres, Science 2003, 301, 483.
    [37] Edwards, E. W.; Wang, D.; M?hwald, H.; Hierarchical organization of colloidal particles: from colloidal crystallization to supraparticle chemistry, Macromol.Chem. Phys. 2007, 208, 439.
    [38] Zhang, H.; Edwards, E. W.; Wang, D.; M?hwald, H.; Directing the self-assembly of nanocrystals beyond colloidal crystallization, Phys. Chem. Chem. Phys. 2006, 8, 3288.
    [39] Tang, Z. Y.; Kotov, N. A.; One-dimensional assemblies of nanoparticles: preparation, properties, and promise, Adv. Mater. 2005, 17, 951.
    [40] Bates, M. A.; Frenkel, D.; Influence of polydispersity on the phase behavior of colloidal liquid crystals: A Monte Carlo simulation study, J. Chem. Phys. 1998, 109, 6193.
    [41] Bates, M. A.; Frenkel, D.; Phase behavior of two-dimensional hard rod fluids, J. Chem. Phys. 2000, 112, 10034.
    [42] Kooij, F. M.; Kassapidou, K.; Lekkerkerker, H. N. W.; Liquid crystal phase transitions in suspensions of polydisperse plate-like particles, Nature 2000, 406, 868.
    [43] Gabriel, J-C. P.; Davidson, P.; Mineral liquid crystals from self-assembly of anisotropic nanosystems, Top. Curr. Chem. 2003, 226, 119.
    [44] Murray, C. B.; Kagan, C. R.; Bawendi, M. G.; Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 1995, 270, 1335.
    [45] Haw, M. D.; Poon, W. C. K.; Pusey, P. N.; Colloidal glasses under shear strain, Phys. Rev. E 1998, 58, 4673.
    [46] Storhoff, J. J.; Elghanian, R.; Mucic, C. A.; Letsinger, R. L.; One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, J. Am. Chem. Soc. 1998, 120, 1959.
    [47] Yang, Y.; Matsubara, S.; Nogami, M.; Shi, J.; Huang, W.; One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties, Nanotechnology 2006, 17, 2821.
    [48] Shim, M.; Guyot-Sionnest, P.; Permanent dipole moment and charges in colloidal semiconductor quantum dots, J. Chem. Phys. 1999, 111, 6955.
    [49] Zhang, H.; Wang, D. Y.; Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion, Angew. Chem. Int. Ed. 2008, 47, 3984.
    [50] Zhang, H.; Fung, K. H.; Hartmann, J.; Chen, C.T.; Wang, D.; Controlled chainlike agglomeration of charged gold nanoparticles via a deliberate interaction balance, J. Phys. Chem. C 2008, 112, 16830.
    [51] Mayya, K. S.; Patil, V.; Sastry, M.; On the stability of carboxylic acid derivatized gold colloidal particles: the role of colloidal solution pH studied by optical absorption spectroscopy, Langmuir 1997, 13, 3944.
    [52] Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L.; Schatz, G. C.; What controls the optical properties of DNA-linked gold nanoparticle assemblies?, J. Am. Chem. Soc. 2000, 122, 4640.
    [53] Sukhanova, A.; Volkov, Y.; Rogach, A. L.; Baranov, A. V.; Susha, A. S.; Klinov, D.; Oleinikov, V.; Cohen, J. H. M.; Nabiev, I.; Lab-in-a-drop: controlled self-assembly of CdSe/ZnS quantum dots and quantum rods into polycrystalline nanostructures with desired optical properties, Nanotechnology 2007, 18, 185602.
    [54] Jana, N. R.; Shape effect in nanoparticle self-assembly, Angew. Chem. Int. Ed. 2004, 43, 1536.
    [55] Israelachvili, J.; Intermolecular & Surface Forces, Academic Press, London, 1997.
    [56] Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E.; Drying-mediated self-assembly of nanoparticles, Nature 2003, 426, 271.
    [57] Sukhanova, A.; Baranov, A.V.; Perova, T. S.; Cohen, J. H. M.; Nabiev, I.; Controlled self-assembly of nanocrystals into polycrystalline fluorescent dendrites with energy-transfer properties, Angew. Chem. Int. Ed. 2006, 45, 2048.
    [58] Zhu, H.; Tao, C.; Zheng, S.; Wu, S.; Li, J.; Effect of alkyl chain length on phase transfer of surfactant capped Au nanoparticles across the water/toluene interface, Colloids Surf. A: Physicochem. Eng. 2005, 256, 17.
    [59] Narayanan, S.; Wang, J.; Lin, X. M.; Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering, Phys. Rev. Lett. 2004, 93, 135503.
    [1] Astruc, D.; Daniel, M. C.; Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 2004, 104, 293.
    [2] Shan, J.; Tenhu, H.; Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications, Chem. Commun. 2007, 4580.
    [3] Guo, S.; Wang, E.; Synthesis and electrochemical applications of gold Nanoparticles, Anal. Chem. Acta. 2007, 598, 181.
    [4] Hu, M.; Chen, J.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y.; Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev. 2006, 35, 1084.
    [5] Mohamed, M. B.; Ahmadi, T. S.; Link, S.; Braun, M.; El-Sayed, M. A.; Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix, Chem. Phys. Lett. 2001, 343, 55.
    [6] Shenton, W.; Davies, S. A.; Mann, S.; Directed self-assembly of nanoparticlesinto macroscopic materials using antibody-antigen recognition, Adv. Mater. 1999, 11, 449.
    [7] Hao, Z.; Chen, H.; Ma, D.; Preparation of micro gold device on poly (dimethylsiloxane) chips with region-selective electroless plating, Anal. Chem. 2009, 81, 8649.
    [8] Watanabe, S.; Sonobe, M.; Arai, M.; Tazume, Y.; Matsuo, T.; Nakamura, T.; Yoshida, K.; Enhanced optical sensing of anions with amide-functionalized gold nanoparticles, Chem. Commun. 2002, 2866.
    [9] Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M., Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y.; Gold nanocages covered by smart polymers for controlled release with near-infrared light, nature materials 2009, 8, 935.
    [10] Kalluri, J. R.; Arbneshi, T.; Khan, S. A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; Singh, A. K.; Senapati, D.; Ray, P. C.; Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater, Angew. Chem. Int. Ed. 2009, 48, 9668.
    [11] Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J.; Digestive-ripening agents for gold Nanoparticles: alternatives to thiols, Chem. Mater. 2003, 15, 935.
    [12] Jana, N. R.; Gearheart, L.; Murphy, C. J.; Seed-mediated growth approach for shape controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 2001, 13, 1389.
    [13] Perrault, S. D.; Chan, W. C. W.; Synthesis and surface modification of high monodispersed, spherical gold nanoparticles of 50-20 nm, J. Am. Chem. Soc. 2009, 131, 17042.
    [14] Sun, Y. G.; Xia, Y. N.; Shape-controlled Synthesis of gold and silver nanoparticles,Science 2002, 298, 2176.
    [15] Sau, T. K.; Murphy, C. J.; Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir 2004, 20, 6414.
    [16] Kim, F.; Song, J. H.; Yang, P. D.; Photochemical synthesis of gold nanorods, J. Am. Chem. Soc. 2002, 124, 14316.
    [17] Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D.; Monopod, bipod, tripod, and tetrapod gold nanocrystals, J. Am. Chem. Soc. 2003, 125, 16186.
    [18] Liu, B.; Xie, J.; Lee, J. Y.; Ting, Y. P.; Chen, J. P.; Optimization of high-yield biological synthesis of single-crystalline gold nanoplates, J. Phys. Chem. B 2005, 109, 15256.
    [19] Millstone, J. E.; Park, S. H.; Shuford, K. L.; Qin, L. D.; Schatz, G. C.; Mirkin, C. A.; Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms, J. Am. Chem. Soc. 2005, 127, 5312.
    [20] Li, C. C.; Cai, W. P.; Cao, B. Q.; Sun, F. Q.; Li, Y.; Kan, C. X.; Zhang, L. D.; Mass synthesis of large, single-crystal Au nanosheets based on a polyol process, Adv. Funct. Mater. 2006, 16, 83.
    [21] Nehl, C. L.; Liao, H.; Hafner, J. H.; Optical properties of star-shaped gold nanoparticles, Nano Lett. 2006, 6, 683.
    [22] Xie, J.; Lee, J. Y.; Wang, D. I. C.; Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution, Chem. Mater. 2007, 19, 2823.
    [23] Xie, J.; Zhang, Q.; Lee, J. Y.; Wang, D. I. C.; The synthesis of SERS-active gold nanoflower tags for in vivo applications, ACS Nano 2008, 2, 2473.
    [24] Bakr, O. M.; Wunsch, B. H.; Stellacci, F.; High-yield synthesis of multi-branched urchin-like gold, Chem. Mater. 2006, 18, 3297.
    [25] Kumar, P. S.; Pastoriza-Santos, I.; Rodríguez-González, B.; Abajo, F. J. G.; Liz-Marzán, L. M.; High-yield synthesis and optical response of gold nanostars,Nanotechnology 2008, 19, 015606.
    [26] Jena, B. K.; Raj, C. R.; Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity, Chem. Mater. 2008, 20, 3546.
    [27] Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P.; Plasmon resonances of a gold nanostar, Nano Lett. 2007, 7, 729.
    [28] Wang, Y. L.; Camargo, P. H. C.; Skrabalak, S. E.; Gu, H. C.; Xia, Y. N.; Seed-mediated synthesis of branched gold nanoparticles with the assistance of citrate and their surface-enhanced Raman scattering properties, Langmuir 2008, 24, 12042.
    [29] Zhao, L.; Ji, X.; Sun, X.; Li, J.; Yang, W.; Peng, X.; Formation and stability of gold nanoflowers by the seeding approach: the effect of intraparticle ripening, J. Phys. Chem. B 2009, 113, 16645.
    [30] Joseph, D.; Geckeler, K. E.; Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering, Langmuir 2009, 25, 13224.
    [31] Rashid, M. H.; Bhattacharjee, R. R.; Kotal, A.; Mandal, T. K.; Synthesis of spongy gold nanocrystals with pronounced catalytic activities, Langmuir 2006, 22, 7141.
    [32] Wang, W.; Cui, H.; Chitosan-luminol reduced gold nanoflowers: from one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing, J. Phys. Chem. C 2008, 112, 10759.
    [1] Yin, X. B.; Qi, B.; Sun, X.P.; Yang, X. R.; Wang, E. K.; 4-(Dimethylamino) butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification, Anal. Chem. 2005, 77, 3525.
    [2] Seker, F.; Malenfant, P. R. L.; Larsen, M.; Alizadeh, A.; Conway, K.; Kulkarni, A. M.; Goddard, G.; Garaas, R.; On-demand control of optoelectronic coupling in gold nanoparticle arrays, Adv. Mater. 2005, 17, 1941.
    [3] Tain, E. T.; Wang, J. X.; Zheng, Y. M.; Song, Y. L.; Jiang, L.; Zhu, D. B.; Colorful humidity sensitive photonic crystal hydrogel, J. Mater. Chem. 2008, 18, 1116.
    [4] Tang, Z. Y.; Kotov, N. A.; Giersig, M.; Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science 2002, 297, 237.
    [5] Wu, J.; Zhang, H.; Zhang, J. H.; Yao, T. J.; Sun, H. Z.; Yang, B.; Control of the self-assembly behaviors of charged gold Nanoparticles, Colloids Surf. A: Physicochem. Eng. 2009, 348, 240.
    [6] Jin J., Iyoda T., Cao C. S., Song Y. L., Jiang, L.; Li, T. J.; Zhu, D. B.; Self-assembly of uniform spherical aggregates of magnetic nanoparticles through pi.-πinteractions, Angew. Chem. Int. Ed. 2001, 40, 2135.
    [7] Hong X., Li J., Wang M. J., Xu J. J., Guo W., Li J. H., Bai Y. B., Li, T. J.; Fabrication of magnetic luminescent nanocomposites by a layer-by-layer selfassembly approach, Chem. Mater. 2004, 16, 4022
    [8] Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D.; Permeable silica shell through surface-protected etching, Nano. Lett. 2008, 8, 2867.
    [9] Murray, C. B.; Kagan, C.R.; Bawendi, M. G.; Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 1995, 270, 1335.
    [10] Zhuang, J. Q.; Wu, H. M.; Yang, Y. G.; Cao, Y. C.; Controlling colloidal superparticle growth through solvophobic interactions, Angew. Chem. Int. Ed. 2008, 47, 2208.
    [11] Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P.; Air-stable all-inorganic nanocrystal solar cells processed from solution, Science 2005, 301, 462.
    [12] Rosi, N. L.; Mirkin, C. A.; Nanostructures in biodiagnostics, Chem. Rev. 2005, 105, 1547.
    [13] Jin, R. C.; Jureller, J. E.; Kim, H. Y.; Scherer, N. F.; Correlating second harmonic optical responses of single Ag nanoparticles with morphology, J. Am. Chem. Soc.2005, 127, 12482.
    [14] Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D.; A versatile bottom-up assembly approach to colloidal spheres from nanocrystals, Angew. Chem. Int. Ed. 2007, 46, 6650.
    [15] Zhuang, J. Q.; Wu, H. M.; Yang, Y. G.; Cao, Y. C.; Supercrystalline colloidal particles from artificial atoms, J. Am. Chem. Soc. 2007, 129, 14166.
    [16] Zhuang, J. Q.; Shaller, A. D.; Lynch J.; Wu, H. M.; Chen, O.; Li, A. D. Q.; Cao, Y. C.; Cylindrical superparticles from semiconductor nanorods, J. Am. Chem. Soc. 2009, 131, 6084.
    [17] Yao, T. J.; Lin, Q.; Zhang, K.; Zhao, D. F.; Lv, H.; Zhang, J. H.; Yang, B.; Preparation of SiO2@polystyrene@polypyrrole sandwich composites and hollow polypyrrole capsules with movable SiO2 spheres inside, J. Colloid. Interface Sci. 2007, 315, 434.
    [18] Yoon, C. O.; Sung, H. K.; Kim, J. H.; Barsoukov, E.; Kim, J. H.; Lee, H.; The effect of low-temperature conditions on the electrochemical polymerization of polypyrrole films with high density, high electrical conductivity and high stability, Synth. Met. 1999, 99, 201.
    [19] Cascalheira, A. C.; Aeiyach, S.; Lacaze, P. C.; Abrantes, L. M.; Electrochemical synthesis and redox behaviour of polypyrrole coatings on copper in salicylate aqueous solution, Electrochim. Acta. 2003, 48, 2523.
    [20] Yuan, Y. J.; Adeloju, S. B.; Wallace, G. G.; Eur. Polym. J. 1999, 35, 1761.
    [21] Yao, T. J.; Wang, C. X.; Wu, J.; Lin, Q.; Lv, H.; Zhang, K.; Yu, K.; Yang, B.; Preparation of raspberry-like polypyrrole composites with applications in catalysis, J. Colloid. Interface Sci. 2009, 338, 573.
    [22] Yao, T. J.; Li, X.; Lin, Q.; Wu, J.; Ren, Z. Y.; Wang, C. X.; Zhang, J. H.; Yu, K.; Yang, B.; Patterns of conducting polypyrrole with tunable morphologies, Polymer 2009, 50, 3938.
    [23] Zhang, H.; Wang, C. L.; Li, M. J.; Ji, X. L.; Zhang, J. H.; Yang, B.; Fluorescent nanocrystal-polymer composites from aqueous nanocrystals: methods without ligand exchange, Chem. Mater. 2005, 17, 4783.
    [24] Gittins, D. I.; Caruso, F.; Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media, Angew. Chem. Int. Ed. 2001, 40, 3001.
    [25] Lascelles, S. F.; Armes, S. P. ; Synthesis and characterization of micrometer-sized, polypyrrole-coated polystyrene latexes, J. Mater. Chem. 1997, 7, 1339.
    [26] Li, X.; Wan, M. X.; Wei, Y.; Shen, J. Y.; Chen, Z. J.; Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites, J. Phys. Chem. B 2006, 110, 14623.
    [27] Smith, J. N.; Meadows, J.; Wiliams, P. A.; Adsorption of polyvinylpyrrolidone onto polystyrene latices and the effect on colloid stability, Langmuir 1996, 12, 3773.
    [28] Hao, L.; Zhu, C.; Chen, C.; Kang, P.; Hu, Y.; Fan, W.; Chen, Z.; Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates, Synth. Met. 2003, 139, 391.
    [29] Hao, L.; Zhu, C.; Jiang, W.; Chen, C.; Hu, Y.; Chen, Z.; Sandwich Fe2O3@SiO2@PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles, J. Mater. Chem. 2004, 14, 2929.
    [30] Fujii, S.; Armes, S. P.; Jeans, R.; Devonshire, R.; Synthesis and characterization of polypyrrole-coated sulfur-rich latex particles: new synthetic mimics for sulfur-based micrometeorites, Chem. Mater. 2006, 18, 2758.
    [31] Li, C.; Bai, H.; Shi, G. Q.; Conducting polymer nanomaterials: electrosynthesis and applications, Chem Soc Rev 2009, 38, 2397.
    [32] Ahmadi, T.; Wang, Z. L.; Green, T. C.; Henglein, A.; EI-Sayed, M. A.; Shape-controlled synthesis of colloidal platinum Nanoparticles, Science 1996,272, 1924.
    [33] Jiang, Z. J.; Liu, C. Y.; Sun, L. W.; Catalytic properties of silver nanoparticles supported on silica spheres, J. Phys. Chem. B 2005, 109, 1730.
    [34] Patel, A.C.; Li, S.; Wang, C.; Zhang, W. J.; Wei, Y.; Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications, Chem. Mater. 2007, 19, 1231.
    [35] Bhattacharjee, S.; Dotzauer, D. M.; Bruening, M. L.; Selectivity as a function of nanoparticle size in the catalytic hydrogenation of unsaturated alcohols, J. Am. Chem. Soc. 2009, 131, 3601.
    [36] Liang, C. H.; Xia, W.; van den Berg, M.; Wang, Y. M.; Soltani-Ahmadi, H.; Schluter, O.; Fischer, R. A.; Muhler, M.; Synthesis and catalytic performance of Pd nanoparticle/functionalized CNF composites by a two-step chemical vapor deposition of Pd(allyl)(Cp) precursor, Chem. Mater. 2009, 21, 2360.
    [37] Medasani, B.; Park, Y. H.; Vasiliev, I.; Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles, Phy. Rev. B 2007, 75, 235436.
    [38] Lee, J.; Park, J. C.; Song, H.; A nanoreactor framework of an Au@SiO2 yolk/shell structure for catalytic reduction of pnitrophenol, Adv. Mater. 2008, 20, 1523.
    [39] Ye, S. J.; Lu, Y.; Optical properties of Ag@polypyrrole nanoparticles calculated by Mie Theory, J. Phys. Chem. C 2008, 112, 8767.
    [40] Selvan, S. T., Spatz, J. P., Klok, H. A., Moller, M.; Gold-polypyrrole core-shell particles in diblock copolymer micelles, Adv. Mater. 1998, 10, 132.
    [41] Pillalamarri, S. K.; Blum, F. D.; Bertino, M. F.; Synthesis of polyaniline–gold nanocomposites using“grafting from”approach, Chem. Commun. 2005, 4584.
    [42] Feng, X. M.; Huang, H. P.; Ye, Q. Q.; Zhu, J. J.; Hou, W. H.; Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles, J. Phys. Chem. C 2007, 111, 8463.
    [43] Miyazaki, K.; Nishida, Y.; Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Kikuchi, K.; Ogumi, Z.; Influence of supporting materials on catalytic activities of gold nanoparticles as CO tolerant catalysts in DMFC, Electrochemistry 2007, 75, 217.
    [44] Yan, W. F.; Mahurin, S. M.; Chen, B.; Overbury, S. H.; Dai, S.; Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation, J. Phys. Chem. B 2005, 109, 15489.
    [45] Kovalenko, G. A.; Rudina, N. A.; Chuenko, T. V.; Ermakov, D. Y.; Perminova, L. V.; Synthesis of catalytic filamentous carbon by the pyrolysis of alkanes on alumina-silica foam supporting nickel Nanoparticles, Carbon 2009, 47, 428.
    [46] Deng, Y.; Yang, W.; Wang, C.; Fu, S.; A novel approach for preparation of thermoresponsive polymer magnetic microsphere with core-shell structure, Adv. Mater. 2003, 15, 1729.
    [47] Huo, L.; Li,W.; Lu, L.; Cui, H.; Xi, S.; Wang, J.; Zhao, B.; Shen, Y.; Lu, Z.; Preparation, structure, and properties of three-dimensional orderedα-Fe2O3 nanoparticulate film, Chem. Mater. 2000, 12, 790.
    [48] Sen, T.; Sebastianelli, A.; Bruce, I. J.; Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseperations, J. Am. Chem. Soc. 2006, 128, 7130.
    [49] Hu, A. G.;Yee, G. T.; Lin,W. B.; Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones, J. Am. Chem. Soc. 2005, 127, 12486.
    [50] Ge, J.; Huynh, T.; Hu, Y.; Yin, Y.; Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports, Nano Lett. 2008, 8, 931.
    [51] Ge, J.; Hu, Y.; Zhang, T.; Huynh, T.; Yin, Y.; Self-assembly and field-responsive optical diffractions of superparamagnetic colloids, Langmuir, 2008, 24, 3671.
    [52] Qin, J.; Asempah, I.; Laurent, S.; Fornara, A.; Muller, R. N.; Muhammed, M.;Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs, Adv. Mater. 2009, 21, 1354.
    [53] Deng, Y.; Deng, C.; Yang, D.; Wang, C.; Fu, S.; Zhang, X.; Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes, Chem. Commun. 2005, 5548;
    [54] Liu, J.; Sun, Z.; Deng, Y.; Zou, Y.; Li, C.; Guo, X.; Xiong, L.; Gao, Y.; Li, F.; Zhao, D.; High water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups, Angew. Chem. Int. Ed. 2009, 48, 5875.
    [55] Liu, S.; Xiang, R.; Lu, F.; Rana, R. K.; Zhu, J. J.; One-pot template-free fabrication of hollow magnetite nanopheres and their application as potential drug carriers, J. Phys. Chem. C 2009, 113, 21042.
    [56] Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y.; Superparamagnetic colloids: controlled synthesis and niche applications, Adv. Mater. 2007, 19, 33.
    [57] Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; Pierre, T. G.; Saunders, S. M.; Magnetite nanoparticle dispersions stabilized with triblock copolymers, Chem. Mater. 2003, 15, 1367.
    [58] Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, Gu.; Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 2004, 126, 273.
    [59] Park, J.; An, K.; Hwang, Y.; Park, J.; Noh, H.; Kim, J.; Park, J.; Hwang, N.; Hyeon, T.; Ultra-large-scale syntheses of monodisperse nanocrystals, Nature materials 2004, 3, 891
    [60] Si, S.; Li, C.;Wang, X.; Yu, D.; Peng, Q.; Li, Y. D.; Magnetic monodisperse Fe3O4 nanoparticles, Cryst. Growth Design. 2005, 5, 391.
    [61] Yang, T.; Shen, C.; Yang, H.; Xiao, C.; Xu, Z.; Chen, S.; Shi, D.; Gao, H.; Synthesis, characterization and self-assemblies of magnetite nanoparticles, Surf. Interface Anal. 2006, 38, 1063.
    Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs, Adv. Mater. 2009, 21, 1354.
    [53] Deng, Y.; Deng, C.; Yang, D.; Wang, C.; Fu, S.; Zhang, X.; Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes, Chem. Commun. 2005, 5548;
    [54] Liu, J.; Sun, Z.; Deng, Y.; Zou, Y.; Li, C.; Guo, X.; Xiong, L.; Gao, Y.; Li, F.; Zhao, D.; High water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups, Angew. Chem. Int. Ed. 2009, 48, 5875.
    [55] Liu, S.; Xiang, R.; Lu, F.; Rana, R. K.; Zhu, J. J.; One-pot template-free fabrication of hollow magnetite nanopheres and their application as potential drug carriers, J. Phys. Chem. C 2009, 113, 21042.
    [56] Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y.; Superparamagnetic colloids: controlled synthesis and niche applications, Adv. Mater. 2007, 19, 33.
    [57] Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; Pierre, T. G.; Saunders, S. M.; Magnetite nanoparticle dispersions stabilized with triblock copolymers, Chem. Mater. 2003, 15, 1367.
    [58] Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, Gu.; Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 2004, 126, 273.
    [59] Park, J.; An, K.; Hwang, Y.; Park, J.; Noh, H.; Kim, J.; Park, J.; Hwang, N.; Hyeon, T.; Ultra-large-scale syntheses of monodisperse nanocrystals, Nature materials 2004, 3, 891
    [60] Si, S.; Li, C.;Wang, X.; Yu, D.; Peng, Q.; Li, Y. D.; Magnetic monodisperse Fe3O4 nanoparticles, Cryst. Growth Design. 2005, 5, 391.
    [61] Yang, T.; Shen, C.; Yang, H.; Xiao, C.; Xu, Z.; Chen, S.; Shi, D.; Gao, H.; Synthesis, characterization and self-assemblies of magnetite nanoparticles, Surf. Interface Anal. 2006, 38, 1063.size of superparamagnetic Fe3O4 microparticles, Chem. Mater. 2009, 21, 5079.
    [74] Chen, H.; Deng, C.; Zhang, X.; Synthesis of Fe3O4@SiO2@PMMA core-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis, Angew. Chem., Int. Ed. 2009, 49, 607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700