ZnO纳米材料的水热/溶剂热合成与物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是具有高激子束缚能(60 meV)的宽带隙(3.37 eV)半导体材料。由于其独特的半导体及压热电性质,ZnO特别是ZnO纳米材料在紫外发射器件、场发射器件、纳米发电机、太阳能电池等光电器件领域具有独特的基础研究与应用价值。本文选题立足于尺寸、形貌及表面性质可控的ZnO纳米材料的化学制备,着重研究了ZnO纳米材料光致发光和表面亲疏水性质等对材料尺寸、形貌、表面SiO_2钝化处理、表面光化学反应等的依赖性,获得了具有一定价值与原创性的研究结果。具体研究内容如下:
     利用1,6-己二胺(HMDA)辅助的水热方法制备了椭球体、针状以及多枝的花状结构的均一的ZnO纳米粒子,对HMDA调控粒子形貌机理进行深入分析,并详细研究了ZnO粒子形貌依赖的光致发光性质。结果表明,HMDA/Zn摩尔比是ZnO粒子形貌控制的关键因素。在高HMDA/Zn摩尔比下生成的多枝的花状结构粒子与其它两种形貌的粒子相比显示出最强的近带边的紫外发射和最大的紫外与可见的发光强度比值。这可以由HMDA对ZnO粒子生长速率的调控获得合理解释。研究表明,可通过对溶液化学参数的合理调控制备具有良好紫外发射性质的ZnO纳米材料。
     利用溶剂热方法制备了均一的单分散的ZnO多孔微纳米球,对溶剂热下ZnO微球的形成机理进行了深入分析,并研究了ZnO表面有机物钝化依赖的光致发光性质。结果表明,高粘度、高螯合能力的乙二醇溶剂是导致ZnO纳米晶各向同性自组装生长的关键因素。ZnO微球显示了较弱的表面缺陷相关的可见发光强度,这可由乙二醇等有机物质对ZnO表面缺陷的有效钝化来合理解释。研究表明,通过对ZnO表面的钝化处理,可实现对ZnO纳米材料可见光发射的有效控制。
     利用水热和仿生的聚电解质层层沉积技术在玻璃衬底表面制备了ZnO@SiO_2核壳纳米线阵列,对层层沉积制备SiO_2壳层的调控生长进行了细致分析,并深入研究了核壳纳米线表面与界面相关的光致发光性质。结果表明,SiO_2壳层厚度可通过简单调节层层沉积循环次数来理性的调控。与ZnO纳米线相比,ZnO@SiO_2核壳纳米线阵列显示了明显增强的紫外发光特性和紫外发光积分强度随激发温度升高先降低、后增强、再降低的变化趋势,这可由SiO_2壳层的加入对纳米线表面和界面缺陷的影响获得合理解释。研究表明,仿生的层层沉积技术是在高曲率ZnO纳米线表面制备SiO_2壳层的有效方法,且通过表面SiO_2钝化处理可得到增强紫外发射性质的ZnO纳米复合材料。
     对ZnO@SiO_2纳米线阵列膜进行疏水修饰,对其表面润湿性能进行研究。结果表明,在长时间的强紫外光照射下,ZnO@SiO_2纳米线阵列表现出了与纯ZnO纳米线阵列紫外光致亲水现象完全相反的持久的超疏水性,这可由SiO_2壳层对ZnO纳米线表面光化学反应的有效抑制来合理解释。同时将此结构应用到棉布纤维的表面,得到了兼具紫外遮蔽和紫外光下持久超疏水的多功能织物。
ZnO is a direct wide band gap semiconductor, which has band gap of 3.37 eV and a large binding energy of exciton (60 meV). Because of its diverse and unique semiconducting, piezoelectric, and pyroelectric properties, ZnO, especially ZnO nanomaterials possess unique basic research and applied values in various photoelectric device areas, such as UV-emission devices, field-emission devices, nanogenerators, and solar cells. In this thesis, we based on the controllable chemical synthesize for the size, morphology and surface property of ZnO nanomaterials, mainly studied its size, morphology, surface SiO_2 passivation treatment and surface photochemical reaction dependent properties, that is photoluminescence and surface wettability. Some valuable and original research results were acquired. The details are as following:
     Uniform ZnO particles with ellipsoidal, needle-like and branched morphologies were prepared by a hexamethylenediamine (HMDA)-assisted hydrothermal method. The formation mechanism of the particles controlled by HMDA were further analyzed, and the morphology-dependent photoluminescent properties of ZnO particles were also studied detailedly. Results indicated that the molar ratio of HMDA/Zn was the key factor to controll the particle morphologies. The branched particles, which prepared at high molar ratio of HMDA/Zn, showing the most intense near-band-edge ultraviolet photoluminescence and the greatest ratio of ultraviolet to visible photoluminescence comparing to other two morphologies particles. This can be well explained by considering the roles of the HMDA in the growth process of ZnO particles. The studies indicated that the ZnO nanomaterials with well ultraviolet emission properties can be prepared through rational controlled the chemical parameters in solution.
     Uniform and monodispersed ZnO microspheres were successfully prepared through a facile solvothermal method. The formation mechanism of ZnO microspheres in the solvothermal system was studied in-depth, and the surface organic passivation-dependent photoluminescent properties of ZnO microspheres were also studied detailedly. Results indicated that the ethylene glycol solvent with high viscosity and active chelation was the key factor to induce the isotropy self-assemble growth of ZnO nanocrystals. The microspheres exhibitted weak surface defects-dependent visible emission. This can be well explained by the effective passivation of organic materials for the surface defects of ZnO. The studies indicated that the visible emission of ZnO nanomaterials can be effectively controlled through the surface passivation treatment for ZnO.
     The ZnO@SiO_2 core-shell nanowire arrays were succefully prepared on the glass substrate by combing the hydrothermal method and bioinspired layer-by-layer deposition technique. The tunable growth of SiO_2 shell prepared by layer-by-layer deposition technique was analyzed detailedly, and the surface/interface-dependent photoluminescent properties of core-shell nanowires were also studied further. Results indicated that the thickness of SiO_2 shell can be conveniently controlled by the number of deposition cycles. Comparing with the bare ZnO nanowires, the ultraviolet photoluminescence of ZnO@SiO_2 core-shell nanowire arrays was obvious enhanced and its temperature dependence of ultraviolet emission intensities showed an anomalous behavior. This can be well explained by the influence of SiO_2 shell for the defects existing in the surface/interface of ZnO nanowire array. The studies indicated that the bioinspired layer-by-layer deposition technique is an effective method for the formation of SiO_2 shell on the surface of highly curved ZnO nanowires with shell thickness being well controlled, and enhanced ultraviolet emission can be acquired through the surface SiO_2 passivation treatment in composite ZnO nanomaterials.
     The ZnO@SiO_2 nanowire arrays were treated with hydrophobic modification and their surface wettabilities have been studied. Results indicated that under the long-term ultraviolet irradiation, different from the photo-induced superhydrophilicity of bare ZnO nanowires, the ZnO@SiO_2 nanowire arrays exhibited durable superhydrophobicity. This can be well explained by the blocking effect of SiO_2 shell on the surface photochemical reactions of ZnO nanowires. Meanwhile, this core-shell nanowire array was also applied on the surface of cotton textile, and obtained a multifunctional textile which exhibited excellent ultraviolet-blocking property together with ultraviolet-durable superhydrophobicity.
引文
[1] Wang Z L. ZnO nanowire and nanobelt platform for nanotechnology [J]. Materials Science andEngineering R: Reports, 2009, 64 (3-4): 33-71.
    [2] ?zgürü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J ApplPhys, 2005, 98(4): 041301 (1-103).
    [3] Norton D P, Heo Y W, Ivill M P, et al. ZnO: growth, doping & processing [J]. Mater. Today, 2004, 7(6):34-40.
    [4] Dulub O, Boatner L A, Diebold U. STM study of the geometric and electronic structure of ZnO(0 0 01)-Zn, (0 0 0 1)-O, (1 0 1 0), and (1 1 2 0) surfaces [J]. Surf. Sci, 2002, 519 (3): 201-217.
    [5] Meyer B, Marx D. Density-functional study of the structure and stability of ZnO surfaces [J]. Phys. Rev.B, 2003, 67(3): 035403.
    [6] Tasker P W. The stability of ionic crystal surfaces [J]. Journal of Physics C: Solid State Physics, 1979,12 (22): 4977-4984.
    [7] Dulub O, Diebold U, Kresse G. Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn [J].Physical Review Letters, 2003, 90 (1): 016102 (1-4).
    [8] Wander A, Schedin F, Steadman P, et al. Stability of polar oxide surfaces [J]. Physical Review Letters,2001, 86 (17): 3811-3814.
    [9] Staemmler V, Fink K, Meyer B, et al. Stabilization of polar ZnO surfaces: Validating microscopicmodels by using CO as a probe molecule [J]. Physical Review Letters, 2003, 90 (10): 106102 (1-4).
    [10] Hernández Battez A, González R, Viesca J L, et al. CuO, ZrO2 and ZnO nanoparticles as antiwearadditive in oil lubricants [J]. Wear, 2008, 265 (3-4): 422-428.
    [11] Porter F. Zinc Handbook: Properties, Processing, and Use in Design [M]. CRC Press, 1991.
    [12] Jin B J, Lee S Y, .Im S. Effects of native defects on optical and electrical properties of ZnO preparedby pulsed laser deposition [J]. Materials Science and Engineering B, 2000, 71(1-3): 303-305.
    [13]隋晓萌.聚合物-氧化锌纳米复合材料的制备和发光性质研究[D]: [博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2006.
    [14]陈艳伟. ZnO、ZnO:In一维纳米结构材料的制备及光伏器件[D]: [博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2006.
    [15]百度百科.脉冲激光沉积[G/OL]. http://baike.baidu.com/view/3033029.htm, 2010-01-21.
    [16] Wang Z L. Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family forNanotechnology [J]. ACS Nano, 2008, 2 (10): 1987-1992.
    [17] Pileni M P. Water in oil colloidal droplets used as microreactors [J]. Advance in Colloid and InterfaceScience, 1993, 46 (C): 139-163.
    [18] Byrappa K, Yoshimura M. Handbook of hydrothermal technology [M]. New Jersey, USA: NoyesPublications, 2001. 181.
    [19] Byrappa K, Yoshimura M. Handbook of hydrothermal technology [M]. New Jersey, USA: NoyesPublications, 2001. 179.
    [20]杨华明.无机功能材料.北京:化学工业出版社,2007. 57-66.
    [21] Kolb E D, Coriell A S , Laudise R A, et al.The hydrothermal growth of low carrier concentrationZnO at high water and hydrogen pressures [J]. Mater Res Bulletin, 1967, 2 (12): 1099-1106.
    [22] Zhao M, Wu D P, Chang J L, et al. Synthesis of cup-like ZnO microcrystals via a CTAB-assistedhydrothermal route [J]. Mater Chem and Phys, 2009, 117 (2-3): 422–424.
    [23] Shi X X, Pan L L, Chen S.P, et al. Zn(II)-PEG 300 Globules as Soft Template for the Synthesis ofHexagonal ZnO Micronuts by the Hydrothermal Reaction Method [J]. Langmuir, 2009, 25(10):5940–5948.
    [24] Zhang H, Yang D R, Li D S, et al. Controllable Growth of ZnO Microcrystals by aCapping-Molecule-Assisted Hydrothermal Process [J]. Cryst Growth & Design, 2005, 5(2): 547-550.
    [25] Zeng Y, Zhang T, Fu W Y, et al. Fabrication and Optical Properties of Large-Scale Nutlike ZnOMicrocrystals via a Low-Temperature Hydrothermal Route [J]. J Phys Chem C, 2009, 113(19): 8016–8022.
    [26] Liang J B, Liu J W, Xie Q, et al. Hydrothermal Growth and Optical Properties of Doughnut-ShapedZnO Microparticles [J]. J Phys Chem B, 2005, 109(19): 9463-9467.
    [27] Jiang C L, Zhang W Q, Zou G F, Yu W C,et al. Precursor-Induced Hydrothermal Synthesis ofFlowerlike Cupped-End Microrod Bundles of ZnO [J]. J Phys Chem B,2005, 109(4):, 1361-1363.
    [28] Yao K X, Zeng H C, ZnO/PVP Nanocomposite Spheres with Two Hemispheres [J]. J Phys Chem C,2007, 111(36): 13301-13308.
    [29] Bai P, Wu P P, Yan Z F, Jinkai Zhou, et al. Self-Assembly of Clewlike ZnO Superstructures in thePresence of Copolymer [J].J Phys Chem C, 2007, 111(27): 9729-9733.
    [30] Zhou X F, Hu Z L, Fang Y Q, et al. Hollow microsphere assembly of ZnO nanosheets [J]. Mater Chemand Phys, 2008, 11(2): 592-595.
    [31] Zhang H, Wu J B, Zhai C X, et al. From ZnO nanorods to 3D hollow microhemispheres: solvothermalsynthesis photoluminescence and gas sensor properties [J]. Nanotechnology, 2007, 18 (45): 1-7.
    [32] Jiang P, Zhou J J, Fang H F, et al. Hierarchical Shelled ZnO Structures Made of Bunched NanowireArrays [J]. Adv Funct Mater, 2007, 17(8): 1303–1310.
    [33] Chou T P, Zhang Q F, Fryxell G E, et al. Hierarchically Structured ZnO Film for Dye-Sensitized SolarCells with Enhanced Energy Conversion Efficiency [J]. Adv Mater, 2007, 19(18): 2588–2592.
    [34] Zhang Q F, Chou T P, Russo B, et al. Aggregation of ZnO Nanocrystallites for High ConversionEfficiency in Dye-Sensitized Solar Cells [J]. Angew Chem Int Ed, 2008, 47, 2402–2406.
    [35] Otsuka A, Funabiki K, Sugiyama N, et al. Thermodynamic Studies on Cobalt Complexes. X. ChemicalEquilibrium between Aquopentamminecobalt(III) Complex and Oxalate Ion [J].Chem Lett, 2006, 35(4):666-670.
    [36] Zeng L Y, Dai S Y, Xu W W, et al. Dye-Sensitized Solar Cells Based on ZnO Films [J]. Plasma SciTechnol, 2006, 8(2): 172-179.
    [37] Lee W J, Suzuki A, Imaeda K, et al. Fabrication and Characterization of Eosin-Y-Sensitized ZnO SolarCell [J]. Jpn J Appl Phys, 2004, 43(1): 152-155.
    [38] Pasquier A D, Chen H H, Lu Y C, et al. Dye sensitized solar cells using well-aligned zinc oxidenanotip arrays [J]. Appl Phys Lett, 2006, 89(25): 253513.
    [39] Zhang Q F, Chou T P, Russo B, et al. Polydisperse Aggregates of ZnO Nanocrystallites: A Method forEnergy-Conversion-Efficiency Enhancement in Dye-Sensitized Solar Cells [J]. Adv Funct Mater, 2008,18(11): 1654-1660.
    [40] Chou T P, Zhang Q F, Fryxell G E, et al. Hierarchically Structured ZnO Film for Dye-Sensitized SolarCells with Enhanced Energy Conversion Efficiency [J]. Adv Mater, 2007, 19(18): 2588-2592.
    [41] Huang M H,Mao S,Feick H,et al. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science,2001, 292(5523): 1897-1899.
    [42] Johnson J C, Yan H, Sehaller R D, et al. Single Nanowire Lasers [J]. J.Phys.Chem.B, 2001,105(46):11387-11390.
    [43] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle arrays [J]. ApplPhys Lett, 2003,83(1): 144-146.
    [44] Comini E, Faglia G, Sberveglieri G, Z. et al. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts [J]. Appl Phys Lett, 2002, 81(10): 1869.
    [45] Comini E, Baratto C, Faglia G, et al. Single crystal ZnO nanowires as optical and conductometricchemical sensor [J]. J Phys D: Appl Phys, 2007, 40(23): 7255-7529.
    [46] Wan Q, Li Q H, Chen Y J, et al. Single-crystalline tin-doped indium oxide whiskers: Synthesis andcharacterization [J]. Appl Phys Lett, 2004, 84 (18): 3654-3656.
    [47] Fan Z Y, Lu J G, Gate-refreshable nanowire chemical sensors [J]. Appl Phys Lett, 2005, 86(12):123510-123513.
    [48] Liao L, Lu H B, Shuai M, et al. A novel gas sensor based on field ionization from ZnO nanowires:moderate working voltage and high stability [J]. Nanotechnology, 2008, 19(17): 175501.
    [49] Al-Hilli S M, Willander M, ZnO nanorods as an intracellular sensor for pH measurements [J]. J ApplPhys, 2007, 102(19): 084304.
    [50] Willander M, Yang L L, Wadeasa A, et al. Zinc oxide nanowires: Controlled low temperature growthand some electrochemical and optical nano-devices [J]. J Mater Chem, 2009, 19 (7): 1006-1018.
    [51] Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J].Science,2006, 312 (5771): 242-246.
    [52] Wang X D, Song J H, Liu J, et al. Direct-Current Nanogenerator Driven by Ultrasonic Waves [J].Science, 2007, 316 (5821): 102-105.
    [53] Qin Y , Wang X D, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging [J]. Nature,2008, 451(7180): 809-813.
    [54] Yang R S, Qin Y, Li C, et al. Biomechanical Energy into Electricity by a Muscle-Movement-DrivenNanogenerator [J]. Nano Lett., 2009, 9 (3): 1201-1205.
    [55] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells nature materials [J].Nature Mater, 2005, 4 (6): 455-459.
    [56] Jiang C Y, Sun X W, Lo G Q, et al. Improved dye-sensitized solar cells with a ZnO-nanoflowerphotoanode [J]. Appl Phys Lett, 2007, 90 (26): 263501.
    [57] Feng X J, Feng L, Jin M H, et al. Reversible Super-hydrophobicity to Super-hydrophilicity Transitionof Aligned ZnO Nanorod Films [J]. J Am Chem Soc, 2004, 126(1): 62-63.
    [58] Qin Y, Yang R S, Wang Z L. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate [J]. JPhys Chem C, 2008, 112(48): 18734-18736.
    [59] Ko S H, Park I, Pan H, et al. ZnO nanowire network transistor fabrication on a polymer substrate bylow-temperature, all-inorganic nanoparticle solution process [J]. Appl Phys Lett, 2008, 92(15): 154102 .
    [60] Choi M Y, Choi D, Jin M J, et al. Mechanically Powered Transparent Flexible Charge-GeneratingNanodevices with Piezoelectric ZnO Nanorods [J]. Adv Mater, 2009, 21(21): 1–5.
    [61] Guo L, Yang S, Yang C, et al. Highly monodisperse polymer-capped ZnO nanoparticles:preparationand optical properties [J].Appl Phys Lett, 2000, 76(20): 2901-2903.
    [62] Yang C L, Wang J N , Ge W K, et al. Enhanced ultraviolet emission and optical properties in polyvinylpyrrolidone surface modified ZnO quantum dots [J]. J Appl Phys, 2001, 90(9): 4489-4493.
    [63] Guo L, Cheng J X , Li X Y , et al. Synthesis and optical properties of crystalline polymer-capped ZnOnanorods [J]. Mat Sci Eng C, 2001, 16(1-2): 123-127.
    [64] Sui X M, Shao C L, Liu Y C. a White-light emission of polyvinyl alcohol/ZnO hybrid nanofibersprepared by electrospinning [J]. Appl Phys Lett, 2005, 87, 113115:1-3.
    [65] Chang S L, Park M C, Kuang Q, et al. Giant enhancement in UV response of ZnO nanobelts bypolymer surface-functionalization [J]. J Am Chem Soc, 129 (40): 12096-12097.
    [66] Dietl T, Ohno H, Matsukura F,et al. Zener model description of ferromagnetism in zinc-blendemagnetic semiconductors [J]. Science, 2000, 287(5455): 1019-1022.
    [67] Sato K, Katayama-Yoshida H. Material design for transparent ferromagnets with ZnO-based magneticsemiconductors [J]. Jan J Appl Phys, 39 (6 B): L555-L558.
    [68] Sato K, Katayama-Yoshida H. Ferromagnetism in a transition meta l atom doped ZnO [J]. Physica E,2001, 10 (1-3): 251-255.
    [69] Sato K, Katayama-Yoshida H. Electronic structure and ferromagnetism oftransition-metal-impurity-doped zinc oxide [J]. Physica B, 2001, 308-310: 904-907.
    [70] Minami T. New n-type transparent conducting oxides [J]. MRS Bulletin, 2000, 25(8): 38- 44.
    [71] Hu J, Gordon RG. Textured fluorine-doped zinc oxide films by atmospheric pressure chemical vapordeposition and their use in amorphous silicon solar cells [J]. Sol Cell, 1991, 30(1-4): 437-450.
    [72] Wang X, Kong X, Yu Y, et al. Effect of Annealing on Upconversion Luminescence of ZnO:Er3+Nanocrystals and High Thermal Sensitivity [J]. J Phys Chem C, 111 (41): 15119-15124.
    [73] Zhong M Y, Shan G Y, Li Y J, et al. Synthesis and luminescence properties of Eu3+-doped ZnOnanocrystals by a hydrothermal process [J]. Mater Chem Phys, 2007, 106 (2-3): 305-309.
    [74] Look D C. Electrical and optical properties of p-type ZnO [J]. Semieond Sci Technol, 2005, 20(4):S55-S61.
    [75] Look D C, Claflin B. P-type doping and devices based on ZnO [J]. Phys Status Solidi (b), 2004,241(3): 624-630.
    [76] Park W I, Yi G C, Kim M, et al. Quantum confinement observed in ZnO/ZnMgO nanorodheterstructures [J]. Adv.Mater, 2003, 15(6): 526-529.
    [77] Shan G Y, Xu L H, Wang G R, et al. Enhanced Raman Scattering of ZnO Quantum Dots on SilverColloids [J]. J Phys Chem C, 2007, 111(8): 3290-3293.
    [78] Liu Y, Zhong M, Shan G, et al. Biocompatible ZnO/Au nanocomposites for ultrasensitive DNAdetection using resonance Raman scattering [J]. J Phys Chem B, 2008, 112 (20): 6484-6489.
    [1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271 (5251):933-937.
    [2] Iijima S. Helical microtubules of graphitic carbon [J].Nature, 1991, 354 (6348): 56-58.
    [3] Liu Z P, Li S, Yang Y, et al. Complex-Surfactant-Assisted Hydrothermal Route to FerromagneticNickel Nanobelts [J]. Adv. Mater, 2003, 15 (22): 1946-1948.
    [4] Wang Z L, Kong X Y, Zuo J M. Induced Growth of Asymmetric Nanocantilever Arrays on PolarSurfaces [J]. Phys. Rev. Lett, 2003, 91 (18): 1855021-1855024.
    [5] Li F, Ding Y, Gao P X., et al. Single-crystal hexagonal disk and rings of ZnO: low-temperature,large-scale synthesis and growth mechanism [J]. Angew. Chem Int. Ed, 2004, 43 (39): 5238-5242.
    [6] Yan H, He R, Pham J, et al. Morphogenesis of one-dimensional ZnO nano- and microcrystals [J].Advanced Materials, 2003, 15 (5): 402-405.
    [7] Lou X W, Zeng H C. Complexα-MoO3 nanostructures with external bonding capacity for self-assembly[J]. J. Am. Chem. Soc., 2003, 125 (9): 2697-2704.
    [8] Yang H G, Zeng H C. Self-Construction of Hollow SnO2 Octahedra Based on Two-DimensionalAggregation of Nanocrystallites [J]. Angew. Chem. Int. Ed, 2004, 43 (44): 5930-5933.
    [9] Jiang C Y, Sun X W, Lo G Q, et al. Improved dye-sensitized solar cells with a ZnO-nanoflowerphotoanode [J]. Appl. Phys. Lett, 2007, 90 (26): 263501.
    [10] Tian B, Zheng X L, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronicpower sources [J]. Nature, 2007, 449 (7164): 885-889.
    [11] Oin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging [J]. Nature,2008, 451 (7180): 809-813.
    [12] Gao P X, Ding Y, Mai W J, et al. Materials science: Conversion of zinc oxide nanobelts intosuperlattice-structured nanohelices [J]. Science, 2005, 309 (5741): 1700-1704.
    [13] Gur I, Fromer N A, Chen C P, et al. Hybrid solar cells with prescribed nanoscale morphologies basedon hyperbranched semiconductor nanocrystals [J]. Nano Lett, 2007, 7 (2): 409-414.
    [14] Chen P, Ma X, Yang D. Fairly pure ultraviolet electroluminescence from ZnO-based light-emittingdevices [J]. Appl. Phys. Lett, 2006, 89 (11): 111112.
    [15] Xu C X, Sun X W. Field emission from zinc oxide nanopins [J]. Appl. Phys. Lett, 2003, 83 (18):3806-3808.
    [16] Ohshima E, Ogino H, Niikura I, et al. Growth of the 2-in-size bulk ZnO single crystals by thehydrothermal method [J]. J. Cryst. Growth, 2004, 260 (1-2): 166-170.
    [17] Yang T L, Zhang D H, Ma J, et al. Transparent conducting ZnO:Al films deposited on organicsubstrates deposited by r.f. magnetron-sputtering [J]. Thin Solid Films, 1998, 326 (1-2): 60-62.
    [18] Sang B, Yamada A, Konagai M. Textured ZnO thin films for solar cells grown by a two-step processwith the atomic layer deposition technique [J]. Jpn. J. Appl. Phys, Part 2: Letters, 1998, 37 (2 SUPPL. B):L206-L208.
    [19] Hara K, Horiguchi T, Kinoshita T, et al. Highly efficient photon-to-electron conversion withmercurochrome-sensitized nanoporous oxide semiconductor solar cells [J]. Sol. Energ. Mat. Sol. C, 2000,64 (2): 115-134.
    [20] Delaunay J J, Kakoiyama N, Yamada I. Fabrication of three-dimensional network of ZnO tetratpodsand its response to ethanol [J]. Mater. Chem. Phys, 2007, 104 (1): 141-145.
    [21] Law J B K, Boothroyd C B, Thong J T L. Site-specific growth of ZnO nanowires from patterned Znvia compatible semiconductor processing [J]. J. Cryst. Growth, 2008, 310 (10): 2485-2492.
    [22] Gao P X, Wang Z L. High-Yield Synthesis of Single-Crystal Nanosprings of ZnO [J]. Small, 2005,1(10): 945-949.
    [23] Zhang J, Sun L D, Yin J L. Control of ZnO Morphology via a Simple Solution Route [J]. Chem. Mater,2002, 14(10): 4172-4177.
    [24] Zhang J, Liu H, Wang Z, et al. Polyvinylpyrrolidone-directed crystallization of ZnO with tunablemorphology and bandgap [J]. Adv. Funct. Mater, 2007, 17 (18): 3897-3905.
    [25] Sun X M, Chen Z X, Deng Z X, et al. A CTAB-assisted hydrothermal orientation growth of ZnOnanorods [J]. Mater. Chem. Phys, 2002, 78 (1): 99-104.
    [26] Kuo C L, Kuo T J, Huang M H. Hydrothermal synthesis of ZnO microspheres and hexagonalmicrorods with sheetlike and platelike nanostructures [J]. J. Phys. Chem. B, 2005, 109 (43): 20115-20121..
    [27] Gao X D, Li X M, Zhang S, et al. ZnO submicron structures of controlled morphology synthesized inzinc-hexamethylenetetramine-ethylenediamine aqueous system [J]. J. Mater. Res, 2007, 22 (7): 1815-1823.
    [28] Sounart T L, Liu J, Voigt J A, et al. Sequential nucleation and growth of complex nanostructuredfilms [J]. Adv. Funct. Mater, 2006,16 (3): 335-344.
    [29] Sounart T L, Liu J, Voigt J A, et al. Secondary nucleation and growth of ZnO [J]. J. Am. Chem. Soc,2007, 129 (51): 15786-15793.
    [30] Lu C H, Yeh C H. Influence of hydrothermal conditions on the morphology and particle size of zincoxide powder [J]. Ceram. Int, 2000, 26 (4): 351-357.
    [31] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The Kinetics of the Radiative andNonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation [J]. J. Phys. Chem. B, 2000,104 (8): 1715-1723.
    [32] Tong Y H, Liu Y C, Dong L, et al. Growth and optical properties of ZnO nanostructures by vaportransport process [J]. Materials Chemistry and Physics, 2007, 103 (1): 190-194.
    [33] Hirai T, Ohno N, Harada Y, et al. Spatially resolved cathodoluminescence spectra of excitons in a ZnOmicroparticle [J]. Appl. Phys. Lett, 2008, 93 (4): 041113.
    [1] Zeng H C. Synthetic architecture of interior space for inorganic nanostructures [J]. J Mater. Chem, 2006,16 (7): 649-662.
    [2] Zhang D B, Qi L M, Ma J M, et al. Synthesis of Submicrometer-Sized Hollow Silver Spheres in MixedPolymer-Surfactant Solutions [J]. Adv Mater, 2002, 14 (20): 1499-1502.
    [3] Hua H G, Zeng H C. Difluoromethyl Phenyl Sulfone, a Difluoromethylidene Equivalent: Use in theSynthesis of 1,1-Difluoro-1-alkenes [J]. Angew Chem Int Ed, 2004, 43 (39): 5205-5206.
    [4] Im H S, Jeong U, Xia Y N. Polymer hollow particles with controllable holes in their surfaces [J]. NatMater, 2005, 4 (9): 671-675.
    [5] Jiang P, Bertone J F, Colvin V L. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals[J]. Science, 2001, 291 (5503): 453-457.
    [6] Wang Y L, Xia Y N. Bottom-Up and Top-Down Approaches to the Synthesis of MonodispersedSpherical Colloids of Low Melting-Point Metals [J]. Nano Lett, 2004, 4 (10): 2047-2050.
    [7] Xu X L, Asher S A. Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in PhotonicCrystals [J]. J Am Chem Soc, 2004, 126 (25): 7940-7945.
    [8] Wang Y L, Cai L, Xia Y N. Monodisperse Spherical Colloids of Pb and Their Use as ChemicalTemplates to Produce Hollow Particles [J]. Adv Mater, 2005, 17 (4): 473-477.
    [9] Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots using silicaspheres as carriers [J]. Angew Chem Int Ed, 2009, 48 (25): 4598-4601.
    [10] Zornoza B, Irusta S, Téllez C, et al. Mesoporous silica sphere-polysulfone mixed matrix membranesfor gas separation [J]. Langmuir, 2009, 25 (10): 5903-5909.
    [11] Li H X, Bian Z F, Zhu J, et al. Mesoporous Titania Spheres with Tunable Chamber Stucture andEnhanced Photocatalytic Activity [J]. J Am Chem Soc, 2007, 129 (27): 8406-8407.
    [12] Wan H, Liu L, Li C, et al. Facile synthesis of mesoporous SBA-15 silica spheres and its application forhigh-performance liquid chromatography [J]. J Colloid Interf Sci, 2009, 337 (2): 420-426.
    [13] Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons with mesoporouswalls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports indirect methanol fuel cells [J]. Adv Mater, 2004,16 (22): 2057-2061.
    [14] Yan L, Wang K, Wu J, et al. Hydrophobicity of model surfaces with loosely packed polystyrenespheres after plasma etching [J]. J Phys Chem B, 2006, 110 (23): 11241–11246.
    [15] Wei A, Sun X W, Xu C X, et al. Growth mechanism of tubular ZnO formed in aqueous solution [J].Nanotechnology, 2006, 17 (6): 1740-1744.
    [16] Vayssieres L, Keis K, Hagfeldt A, et al. Three-Dimensional Array of Highly Oriented Crystalline ZnOMicrotubes [J]. Chem Mater, 2001, 13 (12): 4395-4398.
    [17] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science,2001, 292 (5523): 1897-1899.
    [18] Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides [J]. Science, 2001, 291 (5510):1947-1949.
    [19] Kong X Y, Ding Y, Yang R, et al. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of PolarNanobelts [J]. Science, 2004, 303 (5662): 1348-1351.
    [20] Gao P M, Ding Y, Mai W J, et al. Conversion of Zinc Oxide Nanobelts into Superlattice-StructuredNanohelices [J]. Science, 2005, 309 (5741): 1700-1704.
    [21] Yao Z, Postma H M C, Balents L, et al. Carbon nanotube intramolecular junctions [J]. Nature, 1999,402 (6795): 273-276.
    [22] Xu F, Zhang P, Navrotsky A, et al. Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis,Surface Energy, and Photocatalytic Activity [J]. Chem Mater, 19 (23): 5680-5686.
    [23] Liu Z F, Jin Z G, Li W, et al. Ordered porous ZnO thin film fromed by dip-coating method using PStemplates [J]. J Sol-Gel Sci Technol, 2006, 40 (1): 25-30.
    [24] Jiu J T, Kurumada K, Tanigaki M. Preparation of nanoporous ZnO using copolymer gel template [J].Mater Chem Phys, 2003, 81 (1): 93-98.
    [25] Jaramillo T F, Baeck S H, Kleiman-Shwarsctein A, et al. Combinatorial Electrochemical Synthesisand Screening of Mesoporous ZnO for Photocatalysis [J]. Macromol Rapid Commun 2004, 25 (1):297-301.
    [26] Xiao Y H, Li L, Li Y, et al. Synthesis of mesoporous ZnO nanowires through a simple in situprecipitation method [J]. Nanotechnology, 2005, 16 (6): 671.
    [27] Shan C X, Liu Z, Zhang Z Z, et al. A Simple Route to Porous ZnO and ZnCdO Nanowires [J]. J PhysChem B, 2006, 110 (23): 11176-11179.
    [28] Dong L, Liu Y C, Tong Y H, et al. Preparation of ZnO colloids by aggregation of the nanocrystalsubunits [J]. J Colloid Interf Sci, 2005, 283 (2): 380-384.
    [29] Yu D B, Sun X Q, Zou J W, et al. Oriented Assembly of Fe3O4 Nanoparticles into MonodisperseHollow Single-Crystal Microspheres [J]. J Phys Chem B, 2006, 110 (43): 21667-21671.
    [30] Yang J, Quan Z W, Kong D Y, et al. Y2O3 : Eu3+ Microspheres: Solvothermal Synthesis andLuminescence Properties [J]. J Cryst Growth Des, 2007, 7 (4): 730-735.
    [31] Yao K X, Zeng H C. ZnO/PVP Nanocomposite Spheres with Two Hemispheres [J]. J Phys Chem C,2007, 111 (36): 13301-13308.
    [32] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271 (5251):933-937.
    [33] Zhang Y W, Jin S, Tian S J, et al. Sol?Gel Fabrication and Electrical Property of Nanocrystalline(RE2O3)0.08(ZrO2)0.92 (RE = Sc, Y) Thin Films [J]. Chem Mater, 2001, 13 (2): 372-378.
    [34] Cheng H M, Hsu H C, Tseng Y K, et al. Raman Scattering and Efficient UV Photoluminescence fromWell-Aligned ZnO Nanowires Epitaxially Grown on GaN Buffer Layer [J]. J Phys Chem B, 2005, 109 (18):8749-8754.
    [35]徐海阳. CaF2包埋的ZnO纳米晶及F钝化的ZnO薄膜的光电性质研究[D]:[硕士学位论文].长春:东北师范大学物理学院, 2004.
    [36] Scott J F. UV resonant Raman scattering in ZnO [J]. Phys Rev B, 1970, 2 (4): 1209-1211.
    [37] Liufu S C, Xiao H N, Li Y P. Thermal analysis and degradation mechanism of polyacrylate/ZnOnanocomposites [J]. Polym Degrad Stab, 2005, 87 (1), 103-110.
    [38] Jiang X C, Herricks T, Xia Y N. Monodispersed Spherical Colloids of Titania: Synthesis,Characterization, and Crystallization [J], Adv Mater, 2003, 15 (14): 1205-1209.
    [39] Zhang Q F, Chou T P, Russo B, et al. Aggregation of ZnO Nanocrystallites for High ConversionEfficiency in Dye-Sensitized Solar Cells [J]. Angew. Chem. Int. Ed. 2008, 47 (13): 2402–2406.
    [40] Lu C H, Yeh C H. Influence of hydrothermal conditions on the morphology and particle size of zincoxide powder [J]. Ceram Int, 2000, 26 (4): 351-357.
    [41] Van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The Kinetics of the Radiative andNonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation [J]. J Phys Chem B, 2000,104 (8): 1715-1723.
    [42] K H Tam, C K Cheung, Y H Leung, et al. Defects in ZnO Nanorods Prepared by a HydrothermalMethod [J]. J Phys Chem B, 2006, 110 (42), 20865-20871.
    [43] Greene L E, Law M, Goldberger J, et al. Low-Temperature Wafer-Scale Production of ZnO NanowireArrays [J]. Angew Chem Int Ed, 2003, 42 (26): 3031-3034.
    [44] Li W J, Shi E W, Zhong W Z, et al. Growth mechanism and growth habit of oxide crystals [J]. J CrystGrowth, 1999, 203 (1-2): 186-196.
    [45] Sun Y, Xia Y. The Cortical Topography of Tonal Structures Underlying Western Music [J]. Science,2002, 298 (5601): 2167-2170.
    [46] Wang Y L, Xia Y N. Bottom-Up and Top-Down Approaches to the Synthesis of MonodispersedSpherical Colloids of Low Melting-Point Metals [J]. Nano Lett, 2004, 4(10): 2047-2050. (c) Sun X M, Li YD. Ga2O3 and GaN Semiconductor Hollow Sphere [J]. Angew Chem Int Ed, 2004, 43 (29): 3827-3831.
    [47] Wang Y L, Jiang X C, Xia Y N. A Solution-Phase, Precursor Route to Polycrystalline SnO2 NanowiresThat Can Be Used for Gas Sensing under Ambient Conditions [J]. J Am Chem Soc, 2003, 125 (52):16176-16177.
    [48] Chen J Y, Herricks T, Geissler M, et al. Single-Crystal Nanowires of Platinum Can Be Synthesized byControlling the Reaction Rate of a Polyol Process [J]. J Am Chem Soc, 2004, 126 (35): 10854-10855.
    [49] Alivisatos A P. Naturally Aligned Nanocrystals [J]. Science, 2000, 289 (5480): 736-737.
    [50] Banfield J F, Welch S A, Zhang H, et al. Aggregation-Based Crystal Growth and MicrostructureDevelopment in Natural Iron Oxyhydroxide Biomineralization Products [J]. Science, 2000, 289 (5480):751-754.
    [51] He T, Chen D R, Jiao X L. Controlled Synthesis of Co3O4 Nanoparticles through Oriented Aggregation[J]. Chem Mater, 2004, 16 (4): 737-743.
    [52] Wu N L, Wu L F, Rusakova I A, et al. Evolution in Structural and Optical Properties of Stannic OxideXerogel upon Heat Treatment [J]. J Am Ceram Soc. 1999, 82 (1): 67-73.
    [1] Wu Y Y, Yan H Q, huang M, et al. Inorganic Semiconductor Nanowires: Rational Growth, Assembly,and Novel Properties [J]. Eur J, 2002, 8(6): 1260-1268.
    [2] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type dopingand light-emitting diode based on ZnO [J]. Nature Mater, 2005, 4(1): 42-45.
    [3] Huo K F, Hu Y M, Fu J J, et al. Direct and Large-Area Growth of One-Dimensional ZnONanostructures from and on a Brass Substrate [J]. J Phys Chem C, 2007, 111(16): 5876-5881.
    [4] Huang M H, Mao S, Feick H, Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001,292(5523): 1897-1899.
    [5] Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gassensors [J]. Appl Phys Lett, 2004, 84 (18): 3654-3656.
    [6] Qin Y, Wang X, Wang Z L, et al. Microfibre–nanowire hybrid structure for energy scavenging [J].Nature, 2008, 451 (7180): 809-814.
    [7] Klingshirn C F. ZnO: material, physics and applications [J]. Chem Phys Chem, 2007, 8 (6): 782-803.
    [8] Liao L, Lu H B, Li J C, et al. Size Dependence of Gas Sensitivity of ZnO Nanorods [J]. J Phys Chem C,2007, 111 (5): 1900-1903.
    [9] Kling R, Kirchner C, Gruber Th, et al. Analysis of ZnO and ZnMgO nanopillars grown byself-organization [J]. Nanotechnology, 2004 15 (8): 1043-1046.
    [10] Wang Z L. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics [J]. AdvFunct Mater, 2008, 18(22): 3553–3567.
    [11] Sun B, Sirringhaus H. Solution-processed zinc oxide field-effect transistors based on self-assembly ofcolloidal nanorods [J]. Nano Lett, 2005, 5 (12): 2408-2413.
    [12] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. AdvMater, 2003, 15 (5): 464-466.
    [13] Li Q, Kumar V, Li Y, et al. Fabrication of ZnO nanorods and nanotubes in aqueous solutions [J].Chem Mater, 2005, 17 (5): 1001-1006.
    [14] Cha S N , Lang J E, Choi Y, et al. High performance ZnO nanowire field effect transistor usingself-aligned nanogap gate electrodes [J]. Appl Phy Lett, 2006, 89 (26): 263102.
    [15] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271 (5251):933-937.
    [16] Mews A, Eychmueller A, Giersig M, et al. Preparation, characterization, and photophysics of thequantum dot quantum well system CdS/HgS/CdS [J]. J Phys Chem, 1994, 98 (3): 934-941.
    [17] Kim S, Kim C O, H Wang S W, et al. Growth and enhanced light emission of hybrid structures ofZnO/Si nanocrystals [J]. Appl Phys Lett, 2008, 92(24): 243108–3.
    [18] Lee S S, Byun K T, Park J P, et al. Homogeneous ZnS coating onto TiO2 nanoparticles by a simpleone pot sonochemical method [J]. Chem Eng J, 2008, 139(1): 194–197.
    [19] Plank N O V, Snaith H J, Ducati C, et al. A simple low temperature synthesis route for ZnO–MgOcore–shell nanowires [J]. Nanotechnology, 2008, 19 (46): 465603.
    [20] Chu B H, Leu L C, Chang C Y, et al. Conformable coating of SiO2 on hydrothermally grown ZnOnanorods [J]. Appl Phys Lett, 2008, 93(23): 233111.
    [21] Mann S, Webb J, Williams R J P, et al. Biomineralization: Chemical and Biochemical Perspectives[M]. VCH: Weinheim, Germany, 1989.
    [22] Lowenstam H A. Minerals formed by organisms [J]. Science, 1981, 211(4487): 1126-1131.
    [23] Bansal V, Ahmad A, Sastry M. Fungus-mediated biotransformation of amorphous silica in rice husk tonanocrystalline silica [J]. J Am Chem Soc, 2006, 128 (43): 14059–14066.
    [24] Kr?ger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silicananosphere formation [J]. Science, 1999, 286 (5442): 1129–1132.
    [25] Sumper M, Lorenz S, Brunner E. Control of Size in the Polyamine-Directed Formation of SilicaNanospheres [J].Angew Chem Int Ed, 2003, 42 (42): 5192–5195.
    [26] Lutz K, Gr?gerC, Sumper M, et al. Dye-sensitized TiO2 nanotube solar cells: Fabrication andelectronic characterization [J]. Phys Chem Chem Phys, 2005, 7(14): 2812–2815.
    [27] Sumper M. Biomimetic patterning of silica by long-chain polyamines [J]. Angew Chem Int Ed, 2004,43 (17): 2251–2254.
    [28] Kr?ger N, Deutzmann R, Bergsdorf C, et al. Species-specific polyamines from diatoms control silicamorphology [J]. Proc Natl Acad Sci, 2000, 97 (26): 14133– 14138.
    [29] Laugel N, Hemmerle′J, Porcel C, et al. Nanocomposite silica/polyamine films prepared by a reactivelayer-by-layer deposition [J]. Langmuir, 2007, 23 (7): 3706-3711.
    [30] Caruso F, Lichtenfeld H, Giersig M, et al. Electrostatic self-assembly of silicananoparticle-polyelectrolyte multilayers on polystyrene latex particles [J]. J Am Chem Soc, 1998, 120 (33):8523-8524.
    [31] Caruso F, M?hwald H. Preparation and characterization of ordered nanoparticle and polymercomposite multilayers on colloids [J]. Langmuir, 1999, 15 (23): 8276-8281.
    [32] Zhang L B, Chen H, Sun J Q, et al. Layer-by-Layer Deposition of Poly (diallyldimethylammoniumchloride) and Sodium Silicate Multilayers on Silica-Sphere-Coated Substrate—Facile Method to Prepare aSuperhydrophobic Surface [J]. Chem Mater, 2007, 19 (4): 948–953.
    [33] Ohyama M, Kozuka H, Yoko T. Sol-gel preparation of ZnO films with extremely preferred orientationalong (002) plane from zinc acetate solution [J]. Thin Solid Films, 1997, 306(1): 78-85.
    [34] Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing [M].Academic Press: London, 1990, Chapter 3.
    [35] Christopher T. G. Knight. A two-dimensional silicon-29 nuclear magnetic resonance spectroscopicstudy of the structure of the silicate anions present in an aqueous potassium silicate solution [J]. J ChemSoc, Dalton Trans, 1988, 1457-1460.
    [36] Coradin T, Livage J. Effect of some amino acids and peptides on silicic acidpolymerization [J]. Colloids Surf B, 2001, 21(4): 329-336.
    [37] Coradin T, Durupthy O, Livage, J. Interactions of amino-containing peptides with sodium silicate andcolloidal silica: A biomimetic approach of silicification [J]. Langmuir, 2002, 18(6): 2331-2336.
    [38] Garcia S P, Semancik S. Controlling the morphology of zinc oxide nanorods crystallized from aqueoussolutions: The effect of crystal growth modifiers on aspect ratio [J]. Chem Mater, 2007, 19(16): 4016–4022.
    [39] Wu Y L, Tok A I Y, Boey F Y C, et al. Surface modification of ZnO nanocrystals [J]. Appl Surf Sci,2007, 253(12): 5473-5479.
    [40] Palomare E, Clifford J N, Haque S A, et al. Control of Charge Recombination Dynamics in DyeSensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Lays [J]. J Am ChemSoc, 2003, 125(2): 475-482.
    [41] Gr?tzel M. Photoelectrochemical cells [J]. Nature, 2001, 414(6861): 338-344.
    [42] Ko H J, Chen Y F, Hong S K, et al. Ga-doped ZnO films grown on GaN templates by plasma-assistedmolecular-beam epitaxy [J]. Appl Phys Lett, 77 (23): 3761-3763.
    [43] van Dijken A, Meulenkamp E A, Vanmaekelbergh D, et al. The Kinetics of the Radiative andNonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation [J]. J Phys Chem B, 2000,104 (8): 1715-1723.
    [44] Liu Y L, Liu Y C, Feng W, et al. The optical properties of ZnO hexagonal prisms grown from poly(vinylpyrrolidone)-assisted electrochemical assembly onto Si (111) substrate[J]. J Chem Phys, 2005,122(17): 174703.
    [1] QuéréD. Non-sticking drops [J]. Rep Prog Phys, 2005, 68 (11): 2495–2532.
    [2]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007. 90-91.
    [3] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202 (1): 1-8.
    [4] Neinhuis C, Barthlott W. Characterization and Distribution of Water-repellent, Self-cleaning PlantSurfaces [J]. Ann Bot, 1997, 79(6): 667-677.
    [5] Lafuma A, Quere D. Superhydrophobic states [J]. Nat Mater, 2003, 2: 457-460.
    [6] Tsujii K, Yamamoto T, Onda T, et al. Super Oil-Repellent Surfaces [J]. Angew Chem Int Ed, 1997,36(9): 1011-1021.
    [7] Yan H, Kurogi K, Mayama H, et al. Environmentally Stable Super Water-Repellent Poly(alkylpyrrole)Films [J]. Angew Chem Int Ed, 2005, 44(22): 3453-3456.
    [8] Richard D, Clanet C, Quere D. Surface phenomena: Contact time of a bouncing drop [J]. Nature, 2002,417: 811-811.
    [9] Erbil H Y, Demirel A L, Avci Y, et al. Transformation of a Simple Plastic into a SuperhydrophobicSurface [J]. Science, 2003, 299: 1377-1380.
    [10] Gao X F, Jiang L, Biophysics: Water-repellent legs of water striders [J]. Nature, 2004, 432: 36-36.
    [11] Nakajima A, Fujishima A, Hashimoto K, at al. Preparation of Transparent SuperhydrophobicBoehmite and Silica Films by Sublimation of Aluminum Acetylacetonate [J]. Adv Mater, 1999, 11(16):1365-1368.
    [12] Sun T L, Ling F, Gao X F, et al. Bioinspired Surfaces with Special Wettability [J]. Acc Chem Res,2005, 38(8): 644-652.
    [13] Gau H, Herminghaus S, Lenz P, et al. Liquid Morphologies on Structured Surfaces: FromMicrochannels to Microchi [J]. Science, 1999, 283: 46-49.
    [14] Abbott N L, Folkers J P, Whitesides G M. Manipulation of the Wettability of Surfaces on the 0.1- to 1-Micrometer Scale Through Micromachining and Molecular Self-Assembly [J]. Science, 1992, 257:1380-1382.
    [15] Delamarche E, Bernard A, Schmid H, et al. Patterned Delivery of Immunoglobulins to Surfaces UsingMicrofluidic Networks [J]. Science, 1997, 276: 779-781.
    [16] Lau K K S, Bico J, Teo K B K,et al. Superhydrophobic Carbon Nanotube Forests [J]. Nano Lett, 2003,3(12): 1701-1705.
    [17] Feng L, Song Y L, Zhai J, et al. Creation of a Superhydrophobic Surface from an AmphiphilicPolymer [J]. Angew Chem Int Ed, 2003, 42(7): 800-802.
    [18] Xu L B, Chen W, Mulchandani A, et al. Reversible Conversion of Conducting Polymer Films fromSuperhydrophobic to Superhydrophilic [J]. Angew Chem Int Ed, 2005, 44: 6009-6012.
    [19] Wang S T, Feng L, Jiang L, One-Step Solution-Immersion Process for the Fabrication of Stable BionicSuperhydrophobic Surfaces [J]. Adv Mater, 2006, 18(6): 767-770.
    [20] Zhai L, Cebeci F C, Cohen R E. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers[J]. Nano Lett, 2004, 4(7): 1349-1353.
    [21] Ming W, Wu D, Benthem R V, et al. Superhydrophobic Films from Raspberry-like Particles [J]. NanoLett, 2005, 5(11): 2298-2301.
    [22] Zhang G, Wang D Y, Gu Z Z,et al. Fabrication of Superhydrophobic Surfaces from Binary ColloidalAssembly [J]. Langmuir, 2005, 21(20): 9143-9148.
    [23] Zhu Y, Zhang J C, Zhai J, et al. Multifunctional carbon nanofibers with conductive, magnetic andsuperhydrophobic properties [J]. Chem- PhysChem, 2006, 7(2): 336-341.
    [24] Shibuichi S, Yamamoto T, Onda T, et al. Super water- and oil-repellent surfaces resulting from fractalstructure [J]. J Colloid Interface Sci, 1998, 208(1): 287-294.
    [25] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem. 1936, 28(8):988-994.
    [26] Athanassiou A, Lygeraki M I, Pisignano D,et al. Photocontrolled Variations in the Wetting Capabilityof Photochromic Polymers Enhanced by Surface Nanostructuring [J]. Langmuir, 2006, 22(5): 2329-2333.
    [27] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans Faraday Soc, 1944, 40: 546-551.
    [28] Extrand C W. Designing for Optimum Liquid Repellency [J]. Langmuir, 2006, 22(4): 1711-1714.
    [29] Huo K F, Hu Y M, Fu J J, et al. Direct and Large-Area Growth of One-Dimensional ZnONanostructures from and on a Brass Substrate [J]. J Phys Chem C, 2007, 111(16): 5876-5881.
    [30] Huang M H, Mao S, Feick H, et al. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science,2001, 292: 1897-1899.
    [31] Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J]. Science,2006, 312: 242-246.
    [32] Qin Y, Wang X D, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging [J]. Nature,2008, 451: 809-814.
    [33] Law M, Greene L E, Johnson J C. et al. Nanowire dye-sensitized solar cells [J]. Nat Mater, 2005, 4:455-459.
    [34] Cui Y, Wei Q Q, Park H K. et al. Nanowire Nanosensors for Highly Sensitive and Selective Detectionof Biological and Chemical Species [J]. Science, 2001, 293: 1289-1292.
    [35] Feng L, Li S H, Li H J, et al. Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers [J].Angew Chem Int Ed, 2002, 41(7): 1221-1223.
    [36] Verplanck N, Galopin E, Camart J-C, et al. Reversible Electrowetting on Superhydrophobic SiliconNanowires [J]. Nano Lett, 2007, 7(3): 813-817.
    [37] Zhu W Q, Feng X J, Feng L, et al. UV-Manipulated wettability between superhydrophobicity andsuperhydrophilicity on a transparent and conductive SnO2 nanorod film [J]. Chem Commun, 2006, 26:2753-2755.
    [38] Qu M N, Zhao G Y, Wang Q, et al. Fabrication of superhydrophobic surfaces by a Pt nanowire arrayon Ti/Si substrates [J]. Nanotechnology, 2008, 19(5): 055707.
    [39] Feng X J, Feng L, Jin M H, et al. Reversible Super-hydrophobicity to Super-hydrophilicity Transitionof Aligned ZnO Nanorod Films [J]. J Am Chem Soc, 2004, 126(1): 62-63.
    [40] Shi F, Niu J, Liu J, et al. Towards Understanding Why a Superhydrophobic Coating Is Needed byWater Striders [J]. Adv Mater, 2007, 19(17): 2257–2261.
    [41] Gao X F, Jiang L. Biophysics: Water-repellent legs of water striders [J]. Nature, 2004, 432: 36-36.
    [42] Jiang Y G, Wan P B, Smet M, et al. Self-Assembled Monolayers of a Malachite Green Derivative:Surfaces with pH- and UV-Responsive Wetting Properties [J]. Adv Mater, 2008, 20(10): 1972–1977.
    [43] Wu X D, Zheng L J, Wu D. Fabrication of Superhydrophobic Surfaces from MicrostructuredZnO-Based Surfaces via a Wet-Chemical Route [J]. Langmuir, 2005, 21(7): 2665-2667.
    [44] Martines E, Seunarine K, Morgan H, et al. Superhydrophobicity and Superhydrophilicity of RegularNanopatterns [J]. Nano Lett, 2005, 5(10): 2097-2103.
    [45] Wang Z L, ZnO nanowire and nanobelt platform for nanotechnology [J]. Mater Sci Engineer R, 2009,64: 33–71.
    [46] ?zgürü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices [J]. J ApplPhys, 2005, 98: 041301.
    [47] Liao L, Lu H B, Li J C, et al. Size Dependence of Gas Sensitivity of ZnO Nanorods [J]. J Phys ChemC, 2007, 111(5): 1900-1903.
    [48] Liu C H, Zapien J A, Yao Y, et al. High-Density, Ordered Ultraviolet Light-Emitting ZnO NanowireArrays [J]. Adv. Mater. 2003, 15(10): 838-841.
    [49] Liu J, She J C, Deng S Z, et al. Ultrathin Seed-Layer for Tuning Density of ZnO Nanowire Arrays andTheir Field Emission Characteristics [J]. J Phys Chem C, 2008, 112(31): 11685–11690.
    [50] Qin Y, Yang R S, Wang Z L. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate [J]. JPhys Chem C, 2008, 112(48): 18734-18736.
    [51] Zhang X T, Sato O, Fujishima A. Water Ultrarepellency Induced by Nanocolumnar ZnO Surface [J].Langmuir, 2004, 20(14): 6065-6067.
    [52] Zhang X T, Sato O, Taguchi M, et al. Self-Cleaning Particle Coating with Antireflection Properties [J].Chem. Mater. 2005, 17(3): 696-700.
    [53] Zhang X T, Jin M, Liu Z Y, et al. Superhydrophobic TiO2 Surfaces: Preparation, PhotocatalyticWettability Conversion, and Superhydrophobic?Superhydrophilic Patterning [J]. J Phys Chem C, 2007,111(39): 14521–14529.
    [54] Patankar N A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces [J]. Langmuir,2003, 19(4): 1249-1253.
    [55] Sun R D, Nakajima A, Fujishima A, et al. Photoinduced Surface Wettability Conversion of ZnO andTiO2 Thin Films [J]. J Phys Chem B, 2001, 105(10): 1984-1990.
    [56] Jang E S, Won J H, Hwang S J, et al. Fine Tuning of the Face Orientation of ZnO Crystals to OptimizeTheir Photocatalytic Activity [J]. Adv Mater, 2006, 18(24): 3309-3312.
    [57] Wang Y X, Li X Y, Lu G.,et al. Highly Oriented 1-D ZnO Nanorod Arrays on Zinc Foil: Direct Growthfrom Substrate, Optical Properties and Photocatalytic Activities [J]. J Phys Chem C, 2008, 112(19):7332-7336.
    [58] Zhao F H, Li X Y, Zheng J G, et al. ZnO Pine-Nanotree Arrays Grown from Facile Metal ChemicalCorrosion and Oxidation [J]. Chem Mater, 2008, 20(4): 1197–1199.
    [59] Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena [J]. Surf. Sci.Rep. 2008, 63(12): 515-582.
    [60] Palomare E, Clifford J N, Haque S, et al. Control of Charge Recombination Dynamics in DyeSensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Lay [J]. J Am ChemSoc, 2003, 125(2): 475-482.
    [61] Gr?tzel M. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344.
    [62]李昕.纺织品的防紫外线辐射整理[J].染整科技, 2003, 4: 4-11.
    [63] Noureddine A , Eric H , Sowmitri T, et al. Cotton Fabric Surface Modification for Improved UVRadiation Protection Using Sol–Gel Process [J]. J of Appl Polym Sci, 2007, 104 (1): 111–117.
    [64] Suchada T, Edgar A O, Nantaya Y, et al. Broad Ultraviolet Protection by Copolymerization of2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl]ethyl methacrylate and2-Hydroxy-4-acryloyloxybenzophenone on Cotton via Admicellar Polymerization [J]. J of Appl Polym Sci,2008, 108 (6): 4004–4013.
    [65] Ibrahim N A, Gouda M, Husseiny S M, et al. UV-Protecting and Antibacterial Finishing of CottonKnits [J]. J of Appl Polym Sci, 2009, 112 (6): 3589–3596.
    [66] Nurhan O, Ebeoglugil M F, Is?l K, et al. Low-Temperature, Sol–Gel-Synthesized, Silver-DopedTitanium Oxide Coatings to Improve Ultraviolet-Blocking Properties for Cotton Fabrics [J]. J of ApplPolym Sci, 2007, 106 (1): 514–525.
    [67] Laura M, Elisa C, Mariastella S, Organic-Inorganic Hybrids as Transparent Coatings for UV andX-ray Shielding [J]. ACS Appl Mater & Interf, 2009, 1(3): 726-734.
    [68] Wang R H, Xin J H, Tao X M, UV-Blocking Property of Dumbbell-Shaped ZnO Crystallites onCotton Fabrics [J]. Inorg Chem, 2005, 44 (11): 3926-3930.
    [69] Xu B, Cai Z S, Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wetchemical route and hydrophobic modification [J]. Appl Surf Sci, 2008, 254 (18): 5899–5904.
    [70] Meulenkamp, E. A. Synthesis and Growth of ZnO Nanoparticles [J]. J Phys Chem B, 1998, 102 (29):5566-5572.
    [71] Suchada T, Edgar A. O, Nantaya Y, Double coating via repeat admicellar polymerization forpreparation of bifunctional cotton fabric: Ultraviolet protection and water repellence [J]. Colloids and SurfA: Physicochem. Eng. Aspects, 2009, 349 (1-3): 170–175.
    [72] Laugel N, Hemmerle J, Porcel C, et al. Nanocomposite Silica/Polyamine Films Prepared by a ReactiveLayer-by-Layer Deposition [J]. Langmuir, 2007, 23 (7): 3706-3711.
    [73] Wang L L, Zhang X T, Fu Y, et al. Bioinspired Preparation of Ultrathin SiO2 Shell on ZnO NanowireArray for Ultraviolet-Durable Superhydrophobicity [J]. Langmuir, 2009, 25 (23), 13619–13624.
    [74] Zhang X T, Sato O, Taguchi M, et al. Self-Cleaning Particle Coating with Antireflection Properties [J].Chem Mater, 2005, 17 (3): 696-700.
    [75] Yoldas B E. Investigations of porous oxides as an antireflective coating for glass surfaces [J]. Appl Opt,1980, 19 (9): 1425-1429.
    [76] Leng, B, Shao Z Z, Gijsbertus D W, et al. Superoleophobic Cotton Textiles [J]. Langmuir, 2009, 25(4): 2456-2460.
    [77] Stephen M, Hoon J L, Design of a Superhydrophobic Surface Using Woven Structures [J]. Langmuir,2007, 23 (11): 6004-6010.
    [78] Arthur W. A, Alice P. G, Physical Chemistry of Surfaces, sixth edition, [M/OL] New York: Awiley-interscience publication, John Wiley & Sons, Inc. 1997, page 358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700