草酸氧钛钡粒子表面修饰、形貌控制及其电流变性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流变液是一种由微、纳米介电颗粒分散在绝缘液体中组成的智能流体,其流变性能在外电场作用下能快速、可逆地出现几个数量级的变化。这种奇异的特性使得电流变液在诸如减振器、离合器、控制阀等机电转换装置方面具有广阔的应用前景。然而,根据介电极化理论设计和制备的传统型电流变液存在剪切应力较低,难以满足工业实际应用要求的缺点。2003年,温维佳等人首次发现用尿素包覆的草酸氧钛钡(BTO)纳米粒子能够产生巨电流变效应,解决了长期以来电流变液剪切应力较低的历史难题。他们认为巨电流变效应的产生是由包覆在纳米粒子表面的尿素薄层界面效应引起的。虽然极性的尿素小分子容易分解的缺点限制了这类巨电流变液的实际应用,但是通过改善粒子界面性质增强材料电流变性能的方法为制备高性能的电流变液提供了一种新颖的设计思路。为此,本文通过表面修饰、形貌控制和核壳结构设计等方法改善BTO粒子的界面特性,同时避免极性分子分解给材料电流变性能带来的负面影响,以期达到提高材料电流变性能的目的。
     在本文研究中,分别制备了微量聚苯胺(PAn)修饰BTO复合粒子、纳米层状结构的铬掺杂草酸氧钛钡(BCTO)粒子、二氧化硅/草酸氧钛钡(SiO2/BTO)核壳复合粒子等系列电流变材料,通过X射线衍射、红外光谱、扫描电镜、热重分析等方法对这些粒子的结构进行了表征。并将上述材料与甲基硅油组成电流变液,研究它们电流变性能和介电性能的变化规律。本论文的主要研究工作包括以下几个方面:
     1、采用原位氧化苯胺的方法制备出微量PAn修饰的BTO复合粒子,红外光谱和热重分析表明苯胺被氧化成PAn并很好地修饰在BTO粒子表面,同时减小了材料对水分子的吸附。随着PAn修饰量的增加,复合粒子与硅油之间的接触角减小,浸润性增强;同时复合粒子的电流变性能出现先增大,后降低的变化规律。在PAn修饰量为1.7%(An/BTO=1.7mol%)时,复合粒子表现出最佳的电流变性能,其剪切应力达到54.5 kPa (E=3.5kV/mm),为纯BTO粒子电流变液的3.3倍。1.7% PAn/BTO复合粒子的动态剪切应力和电流变效率均比纯BTO粒子有所提高。介电测试结果表明PAn修饰从提高材料的界面极化能力和改善粒子与硅油之间的浸润性两个方面同时增强1.7% PAn/BTO复合粒子的电流变性能。纯BTO粒子电流变性能随电场重复作用次数的增加而降低,而1.7%PAn/BTO复合粒子的电流变性能不受电场重复作用的影响。通过测试电场重复作用前后粒子的红外光谱,结果表明,在电场重复作用下,纯BTO粒子间会形成氢键作用,改变了粒子在硅油中的分散状态,因此其电流变性能稳定性较差;而1.7% PAn/BTO复合粒子在电场重复作用下不发生变化,因此能够保持稳定的电流变性能。
     2、在传统草酸盐共沉淀法基础上,通过在反应体系中引入丙烯酰胺“盖帽剂”制备出形貌不同的BCTO粒子。随着反应体系中丙烯酰胺浓度的增加,BCTO粒子由不规则形貌转变为纳米层状结构和由块体结构粒子组成的聚集体。在丙烯酰胺浓度为5.16g/L时,纳米层状结构BCTO由厚度为70nm的薄片状粒子通过层-层聚集而成。红外光谱和X射线衍射结果表明丙烯酰胺分子对BCTO晶体的选择性吸附是形成纳米层状结构粒子的主要原因。电流变测试结果表明,纳米层状结构BCTO粒子表现出最佳的电流变性能,其剪切应力达到65.3 kPa(E=5 kV/mm),是块状结构BCTO粒子的十多倍。介电分析表明BCTO粒子的电流变性能主要受其形貌和比表面积的影响,极性的丙烯酰胺分子对其电流变性能的增强作用不明显。
     3、首先通过静电作用将带正电的Ba2+离子吸附带负电的Si02纳米粒子表面,然后制备出纯度较高的TiO(C2O4)22-阴离子,通过Ba2+离子和TiO(C2O4)22-阴离子在SiO2粒子表面的反应,合成出具有核壳结构的SiO2/BTO纳米复合粒子。红外光谱、X射线衍射和扫描电镜测试表明BTO包覆在SiO2粒子表面,形成壳层平均厚度小于10nm的核壳粒子。核壳粒子电流变液的剪切应力在电场强度为4kV/mm时达到21.5kPa,为相同浓度的纯BTO粒子电流变液的4.2倍。介电测试结果表明,核壳结构是材料电流变性能和界面极化能力增强的主要原因。
Electrorheological (ER) fluid is a kind of smart liquids which are composed of dielectric micro- or nano-size particles dispersed in an insulating liquid. The rheological properties of an ER suspension can rapidly and reversibly change by several orders of magnitude under an external electric field. These fantastic properties make ER fluid widely use as an electro-mechanical interface in various industrial areas. For example, shock absorbers, clutch, control valve, etc. However, the main shortcoming of conventional ER fluids which have been designed and prepared based on the dielectric polarization mechanism is low shear stress, which can not meet the requirements of industrial actual application. In 2003, Wen weijia et al first found that the ER fluid based on the urea coating barium titanyl oxalate (BTO) nano-particles could produce the giant ER effect, which overcame the historical problem of low shear stress for conventional ER fluids. They have considered that the giant ER effect was induced by the urea thin layer with coating on the surface of the BTO nanoparticles. Although the practical application of this giant ER fluid is restricted by the decomposition of urea molecules under electric field, it gives a new design thought for preparation high performance ER fluids whose ER activities have been enhanced through improving the structure of particles. Based on this research thought, the interfacial properties of BTO particles have been improved through surface modification, morphology control and core/shell structure design. At the same time, these methods are also used to avoid the negative action of the ER effects which have been induced by the decomposition of polar molecules.
     In this thesis, a series of ER materials, such as the BTO composites which have been modified by trace polyaniline (PAn), the chromium doped barium titanyl oxalate (BCTO) particles with nano-sandwich morphology, the silica/barium titanyl oxalate (SiO2/BTO) core/shell particles, have been prepared. The structure of these materials is characterized by X-ray diffraction (XRD), fourier transform infrared (FTIR), scanning electron micrscopy(SEM) etc, respectively. The ER and dielectric properties of the ER fluids based on these particles dispersed in methylsilicone oil have been investigated by a modified ARES 2000 rheometer and an impedance analyzer. The major experimental results are given as follows:
     1. PAn/BTO composites have been prepared by situ oxidation trace aniline. The measurement results of FTIR and TG-DSC show that aniline has been oxidized into polyaniline, which modifies well on the surface of BTO particles and decreases the water adsorbed on the surface of BTO particles. With the increasing of the dosage of PAn, the contact angle between the PAn/BTO composites and methylsilicone oil decreases while their wettability increases. At the same time, the ER activities for the PAn/BTO composites ER fluids first increase with increasing the dosage of PAn and then decrease. When the dosage of PAn increases up 1.7%(An/BTO=1.7 mol%), the PAn/BTO composites ER fluid shows the best ER properties and its maximal shear stress reaches 54.5 kPa (E=3.5 kV/mm), which is 3.3 times higher than that of pure BTO particles ER fluid. Compared with the pure BTO particles ER fluid, the dynamic shear stress and ER efficiency of the 1.7% PAn/BTO composites ER fluid have also been enhanced. The results of dielectric tests show that the enhancement of ER properties of 1.7% PAn/BTO composites ER fluid originates from the improving interfacial polarization of ER fluid and wettability between the particles and silicone oil, which have been attributed to the PAn modification. When the times of repeated treating on the ER fluids by the electric field increases, the ER effect of the ER fluid based on pure BTO particles decreases gradually while that of the 1.7% PAn/BTO composites keeps stable. The FTIR spectra of the particles before and after repeatedly treated by electric field are investigated, the results show that the hydrogen bond between the pure BTO particles is formed under the repeated treatment by electric field, which changes the dispersion state of BTO particles in methylsilicone oil and decreases its ER properties, so the stability of the ER properties for BTO particles is not well. There is no distinct change for the 1.7% PAn/BTO composites ER fluid before and after repeatedly treated by electric field, so it can keep stable ER properties.
     2. On the based of the conventional oxalate co-precipitation method, chromium doped barium titanyl oxalate (BCTO) particles with different morphologies have been prepared through adding acrylamide as a capping agent in the reaction system. With the increasing of the concentration of acrylamide, the morphology of the synthesized BCTO changes from an irregular shape via sandwich-like structure to congeries of blocks. When the concentration of acrylamide increase up 5.16 g/L, the nano-sandwich BCTO particles, which are composed of regularly aggregated nano-flakes of about 70 nm in thickness through layers by layers, have been synthesized. The structure of particles is characterized by FTIR and XRD. The results imply that the basical reason for formation of nano-sandwich particles is the selective adsorption of acrylamide on the different facets of BCTO primal particles. Compared with BCTO particles with other morphologies, the nano-sandwich BCTO particles show the best ER properties and its shear stress is up to 65.3 kPa (E= 5kV/mm), which is more 10 times higher than that of block-shaped particles. Through measuring the dielectric properties of BCTO particles ER fluids, we find that the ER properties of BCTO particles are mainly controlled by the morphologies and specific surface area of BCTO particles, and acrylamide molecules adsorbing on the surface of particles play a minor role for enhancement of the BCTO particles ER effect.
     3. In order to obtain SiO2/BTO core-shell composites, first Ba2+ ions are adsorbed on the surface silica nano-particles through electrostatic interaction, then TiO(C2O4)22" anions with high purity are also prepared, at last the SiO2/BTO core-shell composites are synthesized through the reaction between Ba2+ and TiO(C2O4)22- ions on the surface silica particles. The structure of particles is characterized by XRD, FTIR and SEM. The results show that the BTO coats on the surface of silica particles and form core/shell composites, whose shell is less than 10 nm in thickness. The shear stress of the SiO2/BTO composites ER fluid reach 21.5 kPa (E=4 kV/mm), which is 4.2 times higher than that of pure BTO particles ER fluid at the same condition. Dielectric analysis indicates that the structure of core/shell is the main reason to improve the ER properties and interfacial polarization of ER fluid.
引文
[1]Winslow W.M. Induced fibration of suspensions[J]. J. Appl. Phys.,1949,20:1137-1140
    [2]Sun J.M., Tao R. Shear flow of one-component polarization fluid in a strong electric field[J]. Phys. Rev. E,1996,53:3732-3737
    [3]Halsey, T.C., Martin, J.E., Adolf D. Rheology of electro-rheological fluids[J]. Phys. Rev. Lett.,1992,68:1519-1522
    [4]Block H., Pattay P. Recent development in electrorheology[A]. New York: Plenum Press, 1995,19-42
    [5]Ginder M., Davis L.C., Ceccio S.L. Progress in electrorheology[A]. New York: Plenum Press,1995,281
    [6]Block K.H., Kelly J.P. Electrorheology[J]. J. Phys. D: Appl. Phys.,1988,21:1661-1677
    [7]郝田,陈一泓,徐懋.电流变学简介[J].化学通报,1994,8:30-33
    [8]尹剑波.一种新型材料-电流变液的研究现状及应用[J].江苏化工,2000,7:19-22
    [9]Duff A.T. The viscosity of polarized dielectrics[J]. Phys. Rev.,1896,4:23-28
    [10]Andrade E.N., Dodd C. Effect of an electric field on the viscosity of liquids[J]. Nature. 1939,143(3610):26-27
    [11]Onsager L., Fuoss R.M. Irreversible processes in electrolytes[J]. J. Phys. Chem.,1932,36: 2689-2694
    [12]Smoluchowski M. Von. Kolloid-Z,1916,18:190-195
    [13]Block H., Kelly J.P. GB Patent 1985,2170510
    [14]Block H., Kelly J.P. Electrorheology[J]. J. Phys. D:Appl. Phys.,1988,21:1661-1667
    [15]Strongroom J.E. Brit. Patent 1980,1570234
    [16]Wen W.J., Huang X.X., Yang S.H., et al. The giant electrorheological effect in suspensions of nanoparticles[J]. Nat. Mater.,2003,2:727-730
    [17]Wen W.J., Huang X.X., Sheng P. Particles Size Scaling of the Giant Electrorheological Effect [J]. Appl. Phys. Lett.2004,85(2):299-301
    [18]Shen R.,Wang X.Z.,Wen W.J., et al. TiO2 based electrorheological fluid with high yield stress[J]. Ed by K.Q. Lu, Proceeding of 9th international conference on ER fluids and MR suspensions, ERMR04, Beijing,2004,42-46
    [19]Yin J.B., Zhao X.P. Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer[J]. Chem. Phys. Lett.2004,398: 393-399
    [20]Niu X., Wen W.J., Lee Y.K. Micro valves using nanoparticle-based giant electrorheological fluid[J]. The 13th Inter. Conf. on Solid-State Sensons, Actuators and Microsysterms, Seoul, Korea, June 5-9,2005
    [21]Stangroom J.E., Harness I. GB Patent.1985,2153372
    [22]Petrzhik G.G., Chertkova O.A., Trapeznikov A.A. Electrorheological effect in nonaqueous dispersions of various compositions in relation to the electric field parameters[J]. Dokl. Akad. Nauk SSSR,1980,253:173-178
    [23]Kanbara M., Tomizawa H. European Patent 1990,0361931
    [24]陆坤权,沈容,王学昭,等.极性分子性电流变液[J].物理,2007,10:742-749
    [25]田煜,孟永钢,温诗铸.基于NaY沸石和硅油的电流变液的动态响应实验研究[J].功能材料,2002,33(2):180-182
    [26]Tian Y., Meng Y.G., Wen S.Z. ER fluid based on zeolite and silicone oil with high strength[J]. Mater. Lett.,2001,50:120-123
    [27]Fillisko F.E., Radzilowski L.H. An instrinstric mechanism for the activety of alumino-silicate based electrorheological materials [J]. J. Rheol.,1990,34:539-550
    [28]田煜,孟永钢,温诗铸.体积分数对基于沸石和硅油德悬浮液德电流变性能德影响[J].摩擦学学报,2002,22(4):377-380
    [29]Tian Y., Meng Y.G., Wen S.Z. Electrorheology fazeolite/silicone oil suspension under dc field[J]. J. Appl. Phys.,2001,90(1):493-496
    [30]尹剑波,赵晓鹏.稀土改性二氧化钛电流变液的剪切强度随温度变化关系[J].复合材料学报,2002,19(1):64-68
    [31]Choi H.J., Cho M.S., To K. Electrorheological and dielectric characteristics of semiconductive polyaniline-silicone suspensions[J]. Physica A,1998,254:272-279
    [32]吴水珠,沈家瑞.聚合物电流变体[J].高分子通报,1995,3:170-173
    [33]Blood H. with Proc R.4th Int. Conf. on ER fluids-mechanisms, properties, structure, Technology and applications. Edited by Tao R. and Rov G, D. World Scientific Singapor 1993,67
    [34]Quadrat O., Stejskal J., Klason C., et al. Electrical properties of polyaniline suspensions[J]. Synthetic Metals,1998,97:37-42
    [35]官建国,谢洪泉,过俊石.聚合条件对聚甲基丙烯酸盐体系ER效应的影响[J].高等学校化学学报,1995,16(9):1457-1461
    [36]魏建红,石兢,官建国,等.聚苯胺材料的表面改性[J].物理化学学报,2003,19(7):657-660
    [37]Sung B.H., Choi U.S., Jang H.G., et al. Novel approach to enhance the dispersion stability of ER fluids based on hollow polyaniline sphere particles[J]. Colloids surfaces A: Physicochem. Eng. Aspects,2006,274:37-42
    [38]Block H., Chapples J., Watson T. U.S. Patent 1992,5108639
    [39]Jun J.B., Lee C.H., Kim J.W., et al. Synthesis and characterizations of monodispersed micro-sized polyaniline composite particles for electrorheological fluid materials[J]. Colloid Polymer Sci.,2002,280:744-750
    [40]Sung B.H., Choi U.S., Jang H.G., et al. Novel approach to enhance the dispersion stability of ER fluids based on hollow polyaniline sphere particle[J]. Colloids Surfaces A:Eng. Aspects,2006,274:37-42
    [41]Sun Y.P., Cho M.S., Kim C.A., et al. Polyaniline microsphere encapsulated by poly(methylmethaerylate) and investigation of its electrorheological properties[J]. Colloid Polym. Sci.,2003,282:198-202
    [42]官建国,马永梅,王长胜,等.用共混及共聚法改性聚苯胺及其电流变液的研究[J].高分子学报,1997,3:277-252
    [43]Xie H.Q., Guan J.G., Guo J.S. three ways to improve electrorheological properties of polyaniline-based suspensions[J]. Appl. Polym. Sci.,1997,64(9):1641-1647
    [44]官建国,谢洪泉,过俊石.高活性聚苯胺电流变液的制备及性能的研究[J].高等学校化学学报,1996,17(6):965-967
    [45]Jan T., Otakar Q., Jaroslav S., et al. Electrical and electrorheological behavior of Poly(aniline-co-Phenylenediamine) suspensions[J]. European Polymer Journal,2000,36: 2313-2319
    [46]Choi H.J., Kim J.W., To K. Synthesis and electrorheological behavior of semiconducting Poly(aniline-co-ethoxyaniline) [J]. Synth. Met.,1999,101:697-698
    [47]Liu Y.J., Du H.J., Wang D.F. ER fluid based on inorganic/polymer blend particles and its adaptive viscolastic properties[J]. Colloids and supfaces A:Physicochemical and Engineering Aspects,2001,189:203-210
    [48]Kim J.W., Kim S.G., Choi H.J., et al. Synthesis and electrorheological properties of polyaniline-Na+-montmorillonite suspensions[J]. Macromol. Rapid Commun.,1999,20: 450-452
    [49]Conrad H., Sprecher A.F. Characteristics and mechanisms of electrorheological fluids[J]. J. Stat. Phys.,1991,64:1073-1091
    [50]Wu C.W., Conrad H. Influence of a surface film on the particles on the electrorheological response[J]. J. Appl. Phys.,1997,81(1):383-389
    [51]Wang Y.R. The interaction between two spheres in silicone oil under electric field, in Proc. the 6th Int. Conf. on ERF, MR suspensions and their Applications, ed. By M. Nakano and K. Koyama(world Scientific, Singapore,1998), P115
    [52]Bloodworth R., Wendt E. Materials for ER Fluids, in Proc. the 5th Int. Conf. on ERF, MR suspensions and their Applications, ed. By W.A. Bullough (World Scientific, Singapore, 1996), P118
    [53]Saito T., et al. ER Particles composed of polymer core with controlled diameter and electro-conductive/nonconductive double shell, in Proc. the 6th Int. Conf. on ERF, MR suspensions and their Applications, ed. By M. Nakano and K. Koyama(World Scientific, Singapore,1998), P19
    [54]Kawai A., Ide Y., Inoue A. Electrorheology of miscible blended liquid crystalline polymer: A dielectric property approach[J]. J. Chem, Phys.,1998,11:4587-4591
    [55]Young C.I., Jung D.H., In J.C. Molecular dynamics and rheological properties of liquid crystalline polymer in an electric field[J]. J. Polymer.,1990,22(4):295-303
    [56]Inoue A, Manawa S. Properties of ER fluids comprised of liquid crystalline polymers[J]. J. Appl. Polym. Sci.,1995,55:113-118
    [57]Inoue A., Manawa S. Properties of ER fluids composed of liquid crystalline polymers[J]. J. Appl. Polym. Sci.,1995,55-113
    [58]葛树琴,冷波.聚硅氧烷侧链高分子液晶电流变液体的性能研究[J].精细化工,2002,19(2):90-92
    [59]Kawai A., Ide Y, Inoue A., et al. Electrorheology of miscible blended liquid crystalline polymer: A dielectric property approach[J]. J. Chem. Phys.,1998,109(11):4587-4591
    [60]Negita K. Electrorheological effect in the nematic phase of 4-n-pentyl-cyanobiphenyl[J]. J. Phys. Chem.,1996,105:7837-7841
    [61]Tajiri K., Orihara H., Tshibashi Y, et al. Transient response of an immiscrible polymer blend ER fluids to a step electric field[J]. Polym. Prepr.,1994,35(2):383-387
    [62]Wen W.J., Huang X.X., Sheng P. Electrorheological fluids:structures and mechanisms[J]. Soft mater.,2008,4:200-210
    [63]Huang X.X., Wen W.J., Yang S.H., et al. Mechanisms of the giant electrorheological effect[J]. Solid state communications,2006,139:581-588
    [64]Lu K.Q., Shen R., Wang X.Z., et al. Poalr molecule dominted electrorheological effect [J]. Chin. Phys.,2006,15(11):2476-2480
    [65]路阳,王学昭,王凤平,等.电流变液研究新进展[J].材料导报,2009,23(2):6-10
    [66]Tao R., Sun J.M. Three-dimensional structure of induced electrorheological solid[J]. Phys. Rev. Lett.,1991,67:389-401
    [67]Chen T., Zitter R.N. Laser Diffraction of the crystalline structure of an ER Fluids[J]. Rev. Lett.,1992,68(16):6181-6184
    [68]Gast A.P., Zukoski C.F. Electrorheological fluids as colloidal suspensions[J]. Adv. Colloid Interface Sci.,1989,30:153-202
    [69]Klass D.L., Martinek T.W. Electroviscous fluids Ⅰ:Rheological properties[J]. J. Appl. Phys., 1967,38:67-74
    [70]Klass D.L., Martinek T.W. Electrical properties Ⅱ:Electriccal properties[J]. J. Appl. Phys., 1967,38:75-80
    [71]Deinega Y.F., Vinogradov G.V. Electric fields in the rheology of disperse systems[J]. Rheol. Acta.,1984,23:636-651
    [72]Uejima H. Dielectric mechanism and theological properties of Electro-fluids[J]. Jpn. J. Appl. Phys.,1972,11:319-326
    [73]Stangroom J.E. Electro-rheological fluids[J]. Phys. Techn.,1983,14:290-296
    [74]Uejima H. Dielectric mechanism and rheological properties of electro-fluids[J]. JPn. J. Appl. Phys.,1972,11:319-326
    [75]Parthasarathy M., Klingenberg D.J. Electrorheology: mechanism and models[J]. Mater. Sci., 1996,17:57-103
    [76]Adriani P.M., Gast A.P. A microscopic model of electrorheology[J]. Phys. Fluid,1988, 31:2757-2768
    [77]Klingenberg D.J., Frank S.V., Zukoski C.F. The small shear rate response of electrorheological suspensions: simulation in the point-dipole limit[J]. J. Chem. Phys.,1991, 94:6160-6169
    [78]Anderson R.A. Electrostatic forces in an ideal spherical-particle electrorheological fluid[J]. Langmuir,1994,10:2917-2928
    [79]Davis L.C. Finite-element analysis of particle-particles in electrorheological fluids[J]. Appl. Phys. Lett.,1992,60:319-321
    [80]Davis L.C. Polarization forces and conductivity effects in electrorheological fluids[J]. Appl. Phys. Lett.,1992,72:1334-40
    [81]Zukoski C.F. Material properties and electrorheological response[J]. Annu. Rev. Mater. Sci., 1993,23:45-78
    [82]Atten P., Foulc J. N., Felici N. A conduction model of the electrorheological effect[J]. Int. J. Mod. Phys. B,1994,8:2731-2745
    [83]Foulc J. N., Atten P., Felici N. Macroscopic model of interaction between particles in an electrorheological fluid[J]. J. Electrostatic,1994,33:103-112
    [84]Tang X., Wu C., Conrad H. On the conductivity model for the electrorheological effect[J]. J. .Rheol.,1995,39:1059-1073
    [85]Wu C., Conrad H. A modified conduction model for the electrorheological effect[J]. J. Phys. D:Appl. Phys.,1996,29:3147-3153
    [86]Trlica J., Quadrat Q., Bradna P., et al. An anomalous electrorheological behaviour of magnesium hydroxide suspensions in silicone oil[J]. J. Rheol.,1996,40:943-946
    [87]Hao T., Kawai A., Ikazaki F. Mechanism of the electrorheological effect: Evidence from the conductive, dielectric, and surface characteristic of water-free electrorheological fluids[J]. Langmuir,1998,14:1256-1262
    [88]Hao T., Kawai A., Ikazaki F. Dielectric criteria for the electrorheological effect[J]. Langmuir,1999,15:918-921
    [89]Hao T., Kawai A., Ikazaki F. The yield stress equation for electrorheological fluids[J]. Langmuir,2000,16:3058-3066
    [90]Block H., Kelley J.P., Qin A., et al. Materials and mechanisms in electrorheology[J]. Langmuir,1990,6:6-14
    [91]Marshall L., Zukoski C.F., Goodwin J.W. Effects of electric fields on the rheology of non-aqueous concentrated suspensions[J]. J. Chem. Soc. Faraday trans.,1989,85: 2785-2795
    [92]Klingenberg D.J., Zukoski C.F. Studies on the steady-shear behavior of electrorheological suspensions[J]. Langmuir,1990,6:15-24
    [93]温维佳,黄先祥,杨世和,等.巨电流变效应及其机理[J].物理,2003,32(12):777-779
    [94]Davis L.C., Time-dependent and nonlinear effects in electrorheological fluids[J]. J. Appl. Phys.,1997,81:1985-1991
    [95]王学昭,沈容,温维佳,等.钛酸钙体系电流变液的研究[J].功能材料,2006,(05):681-683
    [96]Shen C., Wen W.J., Sheng P. Wetting-induced electrorheological effect[J]. J. Appl. Phys., 2006,99:106104-1-106104-3
    [97]Wang B.X., Zhao X.P., Zhao Y., et al. Titanium oxide nanoparticles modified with chromium ion and its giant electrorheological activity[J]. Composites Science and Technology,2007,67:3031-3038
    [98]Qiao Y.P., Yin J.B., Zhao X.P. Oleophilicity and the strong electrorheological effect of surface-modified titanium oxide nano-particles[J]. Smart Mater. Struct.,2007,16:332-339
    [99]Wang B.X., Zhao Y., Zhao X.P. The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles[J]. Colloids and surfaces A:Physicochem. Eng. Aspects,2006,322:14-18
    [100]Wang B.X., Zhao X.P. Wettability of bionic nanopapilla particles and their high electrorheological activity[J]. Adv. Funct. Mater.,2005,15:1815-1820
    [101]乔荫颇,尹剑波,赵晓鹏.表面改性纳米氧化钛的强电流变效应[J].材料研究学报,2006,20(4):417-421
    [102]Gong X.Q., Wu J.B., Huang X.X., et al. Influence of liquid phase on nanoparticle-based giant electrorheological fluid[J]. Nanotechnology,2008,19:165602-1-165602-7
    [103]Stanway R., Sproston J.L. EI-Wahed A.K. Applications of Electro-rheological fluids in vibration control:A survey[J]. Smart Mater. Struct.,1996,5(4):464-482
    [104]Choi S., Kim W. Vibration control of a semiactive suspension featuring Electrorheological fluid dampers[J]. Journal of sound and vibration 2000,234(3): 537-546
    [105]Coulter J.P., Weiss K.D., Carlson J.D. Engineering Applications of Electrorheological fluids[J]. J. Intell. Mater. Syst. Struct.,1993,4(2):248-259
    [106]纪宏,田煜,孟永刚.电流变液及电流变液联轴器的实验研究[J].润滑与密封,2002,2:39-43
    [107]温诗铸,田煜,孟永刚.电流变技术研究及展望[J].机械工程学报,2003,10:36-42
    [108]Tang H., Zhao X.P., Liu S. Design and performance research of an adaptive damper composed of ER fluid and piezoelectric ceramic[J]. Smart Mater. Struct.,2003,12(3): 347-354
    [109]赵晓鹏,唐宏.锲型施力的自适应阻尼器.中国,CN 9623642616[P]1999-05-12
    [110]赵晓鹏,唐宏.电流变液与压电陶瓷复合的自适应阻尼器.中国CN 9623614513[P]1999-05-12
    [111]Zhao X.P. A new kind of self-coupled electrorheological damper and its vibration character[J]. J. Intell. Mater. Syst. Struct.,2005,16(1):57-65
    [112]Tian Y, Ji H., Meng Y. Investigation of characteristic soft electrorheological fluid couplings[C]. Proceeding of the international conference on mechanical transmissions. Chongqing, China: Chinese Machine Press,2001,661-663
    [113]Tan K.P. A simple one dimensional robot joint based on the ER linear reversing mechanism[J]. J. Intell. Mater. Syst. Struct.,2002,13(7-8):533-537
    [114]Johnson A.R. Electrorheological clutches for a robotics application: dynamic, operational and control considerations[J]. Proceedings of SPIE-The international society for optical engineering,2003,5056:432-443
    [115]Tan K.P., Stanway R., Bullough W.A. Shear mode ER transfer function for robotic applications[J]. Journal of Physics D; Appl. Phys.,2005,38(11):1832-1852
    [116]Niu X.Z., Wen W.J., Lee Y.K. Electrorheologivcal fluid based microvavles[J] Appl. Phys. Lett.,2005,87:243501
    [117]Choi S.B. Control performance of an electrorheological valve based vehicle anti-lock brake system, considering the braking force distribution[J]. Smart Mater. Struct.,2005, 14(6):1483-1492
    [118]Yablonovitch E. Inhibited spontaneous emission in solid state physics and electronics[J]. Phys. Rev. Lett.,1987,58(20):2059-2062
    [119]Shepher T.J. Photonic band gap materials[J]. Proceeding of SPIE-the international society for optical engineering,2001,4347:235-252
    [120]Busch K., John S. Liquid crystal photonic band gap materials:the tunable electromagnetic Vacuum [J]. Phys. Rev. Lett.,1999,83(5):967-970
    [121]Simoda Y., Ozaki M., Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal[J]. Appl. Phys. Lett., 2001,79(22):3627
    [122]Hou B., Xu G., Wong H.K., et al. Tuning of photonic bandgaps by a field-induced structural change of fractal materials[J]. Optics Express,2005,13(23):9149-9154
    [123]刘桂兰,官建国,刘秧生等.电场处理对纳米粒子电流变液性能的影响[J].压电与声光,2007,29(4):445-447
    [124]商艳丽.电流变材料的设计合成与性能研究[D].河北师范大学硕士学位论文,2005.
    [125]Hou J.X., Shi L., Zhu Q.R. Electrorheological properties and structure of (BaTiO(C2O4)2/NH2CONH2) [J]. J. Solid State Chem.,2006,179:1874-1878
    [126]Clabaugh W.S., Swiggard E.M., Gilchrist R. Lagrangian modeling and simulation of effect of vibration on cohesive particle movement in a fluidized bed[J]. J. Res. Natl. Bur. Stand.1956,56:289-291
    [127]Bhattacharjee S., Paria M. K., Maiti H.S. Preparation of amorphous and crystalline forms of barium titanyl oxalate[J]. Ceram. Inter.,1990,16:211-214
    [128]Stockenhuber M., Mayer H., Lercher J.A. Preparation of barium titanates fron oxalates[J]. J. Am. Ceram. Soc.,1993,76(5):1185-1190
    [129]Yamamura H., Wataabe A., Shirasaki S., et al. Preparation of barium titanates by oxalate method in ethanol solution[J]. Ceram. Inter.,1985,11:17-22
    [130]Yen F.U., Chang C.T., Chang Y.H. characterization of barium titanyl oxalate tetrahydrate[J]. J. Am. Ceram. Soc.,1990,73(11):3422-3427
    [131]Louer D., Boultif A., Gotor F.J., et al. J. M. Powder Diffr.,1990,5:162-164
    [132]Rhine W.E., Hallock R.B., Davis W.M., et al. Synthesis and crystal structure of barium titanyl oxalate, BaTiO(C2O4)2·5H2O:A molecular Precursor for BaTiO3[J]. Chem. Mater.,1992,4:1208-1216
    [133]Strishkov B.V., Lapitskii A.V., Vlasov L.G. J. Appl. Chem. USSR(Engl. Trans) 1960, 33:1986-1990
    [134]Gopalakrishmurthy H.S., Subba Rao, Narayanan K., et al. Thermal decomposition of titanyl oxalates-:Barium titanyl oxalate[J]. J. Inorg. Nucl. Chem.1975,37:891-898
    [135]范福康,周全,莫绍芬.化学共沉淀法制备草酸氧钛钡的研究[J].硅酸盐通报,1996,6:17-21
    [136]顾达,夏勇,何碧等.电子陶瓷粉BaTiO3的液相合成技术Ⅰ.前驱体草酸氧钛钡形成机理及制备技术研究[J].硅酸盐通报,1993,3:14-19
    [137]Khollam Y.B., Potdar H.S., Deshpande S.B., et al. Synthesis of star shaped Ba1-xSrxTiO3 (BST) powders[J]. Mater. Chem. Phys.,2006,97:295-300
    [138]Li M.L., Xu M.X. Preparation of cauliflower-like shaped Ba0.6Sr0.4TiO3 powders by modified oxalate co-precipition method[J]. Journal of alloys and compounds,2009,474: 311-315
    [139]Li M.L., Xu M.X. Effect of dispersant on preparation of barium-strontium titanate powders through oxalate co-precipitation method[J]. Mater. Res. Bull.,2009,44: 937-942
    [140]Cho M.S., Cho Y.H., Choi H.J., et al. Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere:size effect[J]. Langmuir, 2003,19:5875-5881
    [141]Cao J.G., Shen M., Zhou L.W. Preparation and electrorheological properties of triethanolamine-modified TiO2[J]. J. Solid State Chem.,2006,179:1565-1568
    [142]龚秀清,江万权,陈祖耀,等.纳米二氧化钛、钛酸钡的有机化学修饰及其电流变效应[J].功能材料,2006,37(05):693-696
    [143]向礼琴,赵晓鹏.蒙脱土/二氧化钛复合颗粒电流变液材料的制备及其性能[J].化学学报,2003,61(11):1867-1871
    [144]Wei J.H., Guan J.G., Yuan R.Z. Electrorheological particles composed of polyaniline core and BaTiO3 layer Shell[J]. J. Wuhan Univ. Tech. Mater. Sei.,2002,17(1):30-33
    [145]Gopalkrishnamurthy H.S., Subba R.M., Kutty T. Thermal decomposition of titanyl oxalates-Ⅰ:Barium titanyl oxalate[J]. J. Inorg Nucl Chem.,1975:37(4):891-898
    [146]武克忠,王新东,邓庚风,等.导电高分子聚苯胺热寿命及变温红外光谱的测定[J].北京科技大学学报,2005,27(5):593-595
    [147]Quadrat Q., Stejskal J. Electrical conductivity of flowing polyaniline suspensions[J]. J. Rheol.,1998,42(1):380-384
    [148]Monkman G.J. The electrorheological effect under compressive stress[J]. J. Phys. D: Appl. Phys.,1995,28:588-593
    [149]Gow C.J., Zukosi C.F. The electrorheological properties of polyaniline suspensions[J]. J. Colloid Interface Sci.,1990,136:175-188
    [150]Block H., Pattay P., in: Havelka K.O., Filisko F.E.(Eds) Progress in Electrorheology, Plenum Press, New York,1995, P 191
    [151]Delamarche E., Bernard A., Schmid A., et al. Patterned delivery of immunoglobulins to surfaces using microfluidic networks[J].Science,1997,276:779-781
    [152]Shiu J.Y., Kuo C.W., Chen P.L, et al. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J]. Chem. Mater.,2004,16:561-564
    [153]刘丹,袁永朝,曹红宝.红外光谱研究聚氨酯脲氢键[J].化学推进剂与高分子材料,2009,7(6):60-63
    [154]谢孟峡,刘嫒.芳香胺氢键的红外光谱[J].研究现代仪器,2002,1:31-34
    [155]Zhao X.P., Yin J.B. Synthesis and electrorheological characteristics of rear-earth-doped TiO2 suspensions[J]. Chem. Mater.,2002,14:2258-2263
    [156]Yin J.B., Zhao X.P. Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2[J]. Chem. Mater.,2002,14:4633-4640
    [157]Shang Y.L., Jia Y.L., Liao F.H., et al. Preparation, microstructure and electrorheological property of nano-sized TiO2 particle materials doped with metal oxides [J]. J. Mater. Sci.,2007,42:2586-2590
    [158]Kang S.O., Park B.H., Kim Y. I. Growth mechanism of shape-controlled Barium titanate nanostructure through soft chemical reaction[J]. Crystal Growth Design,2008,8(9): 3180-3186
    [159]Lieber C.M., Wang Z.M. Functional nanowire[J]. MRS. Bull.,2007,32:99-104
    [160]Liang G.D., Xu J.T., Wang X.S. Synthesis and characterization of organometallic coordination polyer nanoshells of pressian blue using miniemulsion periphery polymerization (MEPP)[J]. J. Am. Chem. Soc.,2009,131(15):5378-5379
    [161]Sun Y.G., Xia Y.N. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002,298:2176-2179
    [162]Wang D.A., Guo Z.G., Chen Y.M., et al. In situ hydrothermal synthesis of nanolamellate with controllable structure and wettability[J]. Inorg. Chem.,2007,46(19):7707-7709
    [163]Park Z.H., Shin H.S., Lee B.S., et al. Particle size control of barium titanate prepared from barium titanyl oxalate[J]. J. Am. Ceram. Soc.,1997,80(6):1599-1604
    [164]Xiang L.Q., Zhao X.P. Preparation of montmorillonite/titania nanocomposite and enhanced electrorheological activity[J]. J. Colloid Interface Sci.,2006,296:131-140
    [165]Wei J.H., Shi J., Liu Z.Y., et al. The conductivity and temperature dependence of BaTiO3 coated-PAN based electrorheological fluids[J]. Inter. J. Modern Phys. B,2005,19(7): 1423-142
    [166]Chen H.W., Yang C.R., Fu C.L., et al. Effects of interface on the dielectric properties of Bao.6Sro.4TiO3 thin film capacitors[J]. Appl. Surface Sci.,2008,254:3175-3179
    [167]Kim S.S., Kim H.S., Kim S.G., et al. Effect of electrolyte additives on sol-precipitated nano silica particles[J]. Ceram. Inter.,2004,30:171-175
    [168]Rahman I.A., Vejayakumaran P., Sipaut C.S., et al. Effect of anion electrolytes on the formation of silica nanoparticles via the sol-gel process[J].Ceram. Inter.,2006,32: 691-699
    [169]王挺,蒋新.SiO2表面制备纳米TiO2中含水量对TiO2含量和形貌的影响[J].硅酸盐学报.2005,33(11):1356-1361
    [170]Zhu M.W., Qian G.D., Hong Z.L., et al. Preparation and characterization of silica-silver core-shell structural submicrometer spheres[J]. J. Phys. Chem. Solids,2005,66: 748-752
    [171]Khollam Y.B., Deshpande S.B., Potdar H.S., et al. Simple oxalate precursor route for the preparation of barium-strontium titanate: Ba1-xSrxTi03 powders[J]. Mater. Char.,2005, 54:63-74
    [172]Potdar H.S., Deshpande S.B., Deshpande A.S., et al. Simplified chemical route for the synthesis of barium titanyl oxalate[J]. Inter. J. Inor. Mater.,2001,3:613-623
    [173]Belza T., Pavlinek V., Saha P., et al. Electrorheological properties of suspensions of silica nanoparticles modified by urea and N,N-dimethylformide[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,297:142-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700