太阳高能粒子在三维行星际磁场中传播的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过理论模型、数值模拟和飞船观测相结合的方法研究了太阳高能粒子(SEP)在三维行星际磁场中的传播过程,重点讨论了横向扩散机制在SEP传播过程中的作用.主要研究结果如下:
     1.源的特性对太阳高能粒子在三维行星际磁场中传播的影响.我们从不同的方面,即位置,经、纬跨度,空间演化函数,研究了粒子源对SEP在三维行星际磁场中传播过程的影响.我们计算了日球层不同观测点的粒子通量和各向异性.通过大量数值计算和理论分析,我们得到如下结果:(1)垂直扩散机制在SEP的传播中扮演了一个相当重要的角色.垂直扩散机制可以用于解释许多观测现象,特别是当飞船没有通过行星际磁力线与太阳上的源直接相连时.(2)SEP源的位置对于观测到的SEP通量和各向异性曲线具有最强的作用.观测者的行星际磁足点距离源区位置越远,观测到的粒子通量将越小,SEP事件到达观测者的时间越晚,SEP通量峰值出现的时间也越晚.位于观测者磁足点东边和西边的源产生的粒子在传播中的表现不一样,具有东―西非对称性,即使它们相对于观测者磁足点的经度距离以及其他的源特征完全一样.这种作用来自于Parker行星际磁场的方位角非对称性.当观测者的行星际磁足点与源区具有很远的经度距离时,例如,60?及以上时,第一批到达观测者的SEPs可以为朝向太阳运动.这是由于粒子首先沿着磁力线流到大的径向距离处,然后通过扩散作用横越磁力线到达连接观测者的磁力线上,进行投掷角散射,最后从外面回到观测者处. (3)源区的经、纬度范围对于SEP的通量和各向异性曲线具有较大的影响.来自较宽的源区的粒子具有较大的通量.当观测者的行星际磁力线足点位于SEP源区的中心时,对于具有不同经、纬度范围的源区,飞船处观测到的SEP事件到达时间和通量峰值时间几乎一样.但是,当观测者的行星际磁力线足点不位于源区时,较宽的源区范围将引起更早的SEP事件到达时间和通量峰值时间. (4)将SEP源区粒子注入的不同空间变化经过归一化处理之后,如果所有其他的源区特征一样,则在各种空间变化情形下,SEP的通量和各向异性曲线几乎一样.这意味着源区空间变化的具体形式在影响SEP通量和各向异性方面并不十分重要,除非源区空间分布相当奇异.
     2.确定太阳高能粒子平均自由程的解析方法. SEP的平均自由程是空间天气学中一个非常重要的物理参数,它由太阳风和SEP的物理特性决定.为了精确地得到一个太阳事件中SEP的平均自由程,必须用到一种所谓的数值模拟方法,即将SEP传播过程的数值模拟结果与飞船观测得到的通量和各向异性进行比对,进而确定SEP的平均自由程.但是,这种比对与模拟需要大量的计算资源,即使运用现代超级计算机也是非常耗时与低效的.因此,有必要找到一种更好的方法以便更快地得到SEP的平均自由程,尤其是在空间天气预报工作中.最近,Shalchi et al.为计算脉冲事件SEP的各向异性提供了一个近似的解析公式,其为一个关于SEP平均自由程的函数.基于此,我们引入了一种确定SEP平均自由程的所谓的解析方法,即通过将Shalchi et al.的各向异性解析公式与飞船观测进行比对以确定SEP的平均自由程.另外,我们比较了传统的数值模拟方法和新的解析方法得到的平均自由程,结果显示,经过修正之后的解析方法能够快速、较准确地得到脉冲事件的SEP平均自由程.
     3.反向流动粒子束数值模拟研究.最近,Tan et al.研究了Wind飞船在1AU处观测到的2001年9月24日SEP事件,发现在事件初始阶段于90?投掷角处具有通量“低谷”的反向流动粒子束现象.他们认为这是由于1 AU之外某处的一个反射边界作用的结果.当行星际磁场具有某种特定结构时,这种情形是可能存在的.在这个工作中,我们对于这种现象提供了另外一种可能的解释.我们通过数值求解带有垂直扩散效应的五维聚焦传播方程模拟了这个SEP事件的40 keV电子.我们发现在一个SEP事件的初始阶段,于90?投掷角处具有通量“低谷”的反向流动粒子束可以在未与太阳主要粒子源直接相连的Parker型磁力线上形成.邻近磁力线上的大量粒子首先通过平行扩散传播到大的径向距离处,与此同时,通过垂直扩散跨越磁力线传播,然后受到散射回到1 AU处,在那里与直接来自太阳的粒子结合在一起,最终形成了反向流动粒子束.
In this dissertation, we have studied the propagation of solar energetic par-ticles (SEPs) in three-dimensional interplanetary magnetic fields with combina-tion of theoretical models, numerical simulations and spacecraft observations.We have mainly discussed the effects of perpendicular diffusion on propagationof SEPs. The main research results are as follows:
     1. Effects of sources on propagation of SEPs in three-dimensional inter-planetary magnetic fields. By investigating source locations, coverage of latitudeand longitude, and spatial variations with calculation of SEP ffux and anisotropyprofiles at different observation locations in heliosphere, we study the effects ofsources on propagation of SEPs. The following are main conclusions in thiswork: (1) Perpendicular diffusion mechanism plays a very important role in SEPpropagation. It can be used to explain many observational phenomena, partic-ularly when a spacecraft is not directly connected to the solar source by theinterplanetary magnetic field (IMF) lines. (2) The location of SEP source hasthe greatest effects on observed SEP ffux and anisotropy profiles. The fartherthe IMF footpoint of the observer is away from the source, the smaller the par-ticle ffux will be observed, and the later the onset and the peak of SEP ffux willappear. Particles from a source on east side or west side relative to the IMFfootpoint of the spacecraft will appear differently, even though the longitudinalseparation and other source characteristics are the same. This effect results fromthe azimuthal asymmetry of the Parker interplanetary magnetic field. When theIMF footpoint of the observer is very far away from the source in longitude, e.g.,by as large as 60 degrees, the first arriving SEPs could be moving towards thesun. These are the particles that first stream out along field lines to large radialdistances, diffuse across field lines onto the line that connects the observer, getscattered in pitch angle and then come back to the observer from outside. (3)The coverage of source in latitude and longitude also has large effects on the SEPffux and anisotropy profiles. Particles coming from a wider source tends to have large ffuxes. When the IMF footpoint of the observer is at the centers of theSEP sources, the onset and the peak ffuxes are almost the same for sources ofdifferent coverages in longitude and latitude. However, when the IMF footpointof the observer is not located inside the source region, a wider source coveragewill result in an earlier onset and peak ffux. (4) The ffux and anisotropy profilesin the cases with different normalized spatial variation of SEP source injectionappear almost the same if all the other conditions remain the same. It indicatethat the form of spatial variation is not very important in affecting the SEP ffuxand anisotropy, unless its distribution is extremely strange.
     2. An analytical method to determine SEPs’mean free path. SEPs’meanfree path, determined by physical properties of SEPs as well as those of solar wind,is a very important physical parameter in space weather. To accurately obtainthe mean free path of SEPs for a solar event, a so-called simulation method byfitting time-profiles of both ffux and anisotropy between spacecraft observationsand numerical simulations of SEPs transport process has to be used. However,such kind of fitting and simulations need a large amount of calculation resources,so they are time-consuming even with modern super-computers. It is necessaryto find a better way to get mean free path of SEPs quickly, especially in spaceweather forecast. Recently, Shalchi et al. provided an approximate analyticalformula of SEPs’anisotropy time-profile as a function of particles’mean freepath for impulsive events. In this work, we use a so-called analytical method todetermine SEPs’mean free path by fitting the anisotropy time-profiles betweenthe Shalchi et al.’s analytical formula and spacecraft observations. In addition,we compare the mean free path obtained with the traditional simulation methodwith that obtained with the new analytical method to show that the analyticalmethod, with some modifications, can give us a good approximation of SEPs’mean free path quickly for impulsive events.
     3. The simulation study on counter-streaming particle beam. Recently, Tanet al. studied the 2001 September 24 SEP event observed by the Wind space-craft at 1 AU and found that there is a counter-streaming particle beam witha deep depression of ffux at 90-degree pitch angle during the beginning of theevent. They suggested that it is a result of a reffecting boundary at some distance outside of 1 AU. While this scenario could be true under some specific config-uration of interplanetary magnetic field, in this work, we offer another possibleexplanation to it. We simulated the SEP event by solving the five-dimensionalfocused transport equation numerically for 40 keV electrons with perpendiculardiffusion. We find that a counter-streaming particle beam with deep depressionat 90-degree pitch angle can form on Parker magnetic field lines that do notdirectly connect to the main particle source on the sun in the beginning of anSEP event. It can happen when a significant number of observed particles comefrom adjacent field lines through parallel transport to large radial distance first,hopping across field lines through perpendicular diffusion, and then getting scat-tered back to 1 AU, where they combine the particles directly coming from thesun to form a counter-streaming particle beam.
引文
涂传诒等,日地空间物理学,科学出版社, 1988.
    魏奉思,空间天气学的基本问题,中国基础科学, 7, 9–13, 2000.
    魏奉思,于晟,空间天气科学成为国际科技活动热点,科学时报, 2009.
    刘振兴等,太空物理学,哈尔滨工业大学出版社, 2005.
    王水,李波,赵寄昆日冕物质抛射,天文学进展, 18(3), 192, 2000.
    王水,魏奉思,中国空间天气研究进展,地球物理学进展, 22(4), 1025–1029,2007.
    王水,空间天气研究的主要科学问题,中国科学技术大学学报, 37(8), 807–812,2007.
    王赤,空间物理和空间天气探测与研究,中国工程科学, 10(6), 41–45, 2008.
    曹晋滨等译,太空物理学导论,科学出版社, 2001
    方成等,太阳活动区物理,南京大学出版社, 2008
    林元章,太阳物理导论,科学出版社, 2000
    焦维新,空间天气学,气象出版社, 2003
    左平兵,太阳风中中小尺度结构的观测研究,博士学位论文,中国科学院研究生院, 2008
    Balogh, A., L. J. Lanzerotti, and S. T. Suess, The Heliosphere through the SolarActivity Cycle, Springer-Praxis Books and Springer Science+Business Media,2008.
    Beeck, J., and G. Wibberenz, Pitch angle distributions of solar energetic parti-cles and the local scattering properties of the interplanetary medium, Astrophys.J., 311, 437–450, 1986.
    Bieber, J. W., W. Dr¨oge, P. A. Evenson, R. Pyle, D. Ru?olo, U. Pinsook, P.Tooprakai, M. Rujiwarodom, T. Khumlumlert, and S. Krucker, Energetic Par-ticle Observations during the 2000 July 14 Solar Event, Astrophys. J., 567,622–634, 2002.
    Bieber, J. W., W. H. Matthaeus, C. W. Smith, W. Wanner, M.-B. Kallenrode,and G. Wibberenz, Proton and electron mean free paths: The Palmer consensusrevisited, Astrophys. J., 420, 294–306, 1994.
    Burlaga, L. F., F. B. McDonald, N. F. Ness, R. Schwenn, A. J. Lazarus, and F.Mariani, Interplanetary ?ow systems associated with cosmic ray modulation in1977-1980, J. Geophys. Res., 89, 6579–6587, 1984.
    Burlaga, L. F., M. L. Goldstein, F. B. McDonald, and A. J. Lazarus, Cosmicray modulation and turbulent interaction regions near 11 AU, J. Geophys. Res.,90, 12027, 1985.
    Cane, H. V., D. V. Reames, and T. T. von Rosenvinge, The role of interplanetaryshocks in the longitude distribution of solar energetic particles, J. Geophys. Res.,93, 9555–9567, 1988.
    Cane, H. V., I. G. Richardson, and O. C. S. Cyr, Coronal mass ejections, inter-planetary ejecta and geomagnetic storms, Geophys. Res. Lett., 27, 3591–3594,2000.
    Cane, H. V., and I. G. Richardson, Interplanetary coronal mass ejections inthe near-Earth solar wind during 1996-2002, Journal of Geophysical Research(Space Physics), 108, 1156, 2003.
    Cliver, E. W., and H. V. Cane, The last word, EOS Transactions, 83, 61, 2002.
    Dalla, S., A. Balogh, S. Krucker, A. Posner, R. Mu¨ller-Mellin, J. D. Anglin,M. Y. Hofer, R. G. Marsden, T. R. Sanderson, B. Heber, M. Zhang, and R. B.McKibben, Delay in solar energetic particle onsets at high heliographic latitudes,Annales Geophysicae, 21, 1367–1375, 2003.
    Dr¨oge, W., Transport of solar energetic particles, Astrophys. J. Suppl. Ser., 90,567–576, 1994.
    Dr¨oge, W., Particle Scattering by Magnetic Fields, Space Sci. Rev., 93, 121–151,2000.
    Dr¨oge, W., Probing heliospheric di(?)usion coe(?)cients with solar energetic par-ticles, Adv. Space Res., 35, 532–542, 2005.
    Dr¨oge, W., and Y. Y. Kartavykh, Testing Transport Theories with Solar Ener-getic Particles, Astrophys. J., 693, 69–74, 2009.
    Dwyer, J. R., G. M. Mason, J. E. Mazur, J. R. Jokipii, T. T. von Rosenvinge, andR. P. Lepping, Perpendicular Transport of Low-Energy Corotating InteractionRegion–associated Nuclei, Astrophys. J. Lett., 490, L115, 1997.
    Earl, J. A., The di(?)usive idealization of charged-particle transport in randommagnetic fields, Astrophys. J., 193, 231–242, 1974.
    Earl, J. A., The e(?)ect of adiabatic focusing upon charged-particle propagationin random magnetic fields, Astrophys. J., 205, 900–919, 1976.
    Fisk, L. A., Motion of the footpoints of heliospheric magnetic field lines at theSun: Implications for recurrent energetic particle events at high heliographiclatitudes, J. Geophys. Res., 101, 15547–15554, 1996.
    Freidlin, M., Functional Integration and Partial Di(?)erential Equations, Prince-ton: Princeton Univ. Press, 1985.
    Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry, andthe Natural Sciences, Berlin: Springer, 1983.
    Giacalone, J., The global transport of energetic particles in the heliosphericmagnetic field, AGU Fall Meeting Abstracts, B2, 2002.
    Giacalone, J., and J. R. Jokipii, The Transport of Cosmic Rays across a Tur-bulent Magnetic Field, Astrophys. J., 520, 204–214, 1999.
    Giacalone, J., J. R. Jokipii, and M. Zhang, The propagation of solar-energeticparticles to high heliographic latitudes, AGU Spring Meeting Abstracts, 61,2001.
    Giacalone, J., and M. Neugebauer, The Energy Spectrum of Energetic ParticlesDownstream of Turbulent Collisionless Shocks, Astrophys. J., 673, 629–636,2008.
    Hasselmann, K., and G. Wibberenz, Scattering of charged particles by randomelectromagnetic field, Z. Geophys., 34, 353, 1968.
    Hasselmann, K., and G. Wibberenz, A Note on the Parallel Di(?)usion Coe(?)cient,Astrophys. J., 162, 1049, 1970.
    He, H.-Q., C.-M. Chen, and D. Xu, Global Behavior of Second Order SpatiallySemi-discrete Di(?)erence Scheme for a Partial Integro-di(?)erential Equation, ActaMathematicae Applicatae Sinica, 32(3), 514, 2009.
    He, H.-Q., and G. Qin, A Simple Analytical Method to Determine Solar Ener-getic Particles’Mean Free Path, Astrophys. J., 730, 46, 2011.
    He, H.-Q., G. Qin, and M. Zhang, Propagation of Solar Energetic Particles inThree-dimensional Interplanetary Magnetic Fields: In View of Characteristicsof Sources, Astrophys. J., 734, 74, 2011.
    Heras, A. M., B. Sanahuja, T. R. Sanderson, R. G. Marsden, and K. Wenzel,Observational signatures of the in(?)uence of the interplanetary shocks on theassociated low-energy particle events, J. Geophys. Res., 99, 43–51, 1994.
    Heras, A. M., B. Sanahuja, D. Lario, Z. K. Smith, T. Detman, and M. Dryer,Three low-energy particle events: Modeling the in(?)uence of the parent inter-planetary shock, Astrophys. J., 445, 497–508, 1995.
    Hundhausen, A. J., Sizes and locations of coronal mass ejections - SMM obser-vations from 1980 and 1984-1989, J. Geophys. Res., 98, 13177, 1993.
    Hurford, G. J., S. Krucker, R. P. Lin, R. A. Schwartz, G. H. Share, and D.M. Smith, Gamma-Ray Imaging of the 2003 October/November Solar Flares,Astrophys. J. Lett., 644, L93–L96, 2006.
    Isenberg, P. A., A hemispherical model of anisotropic interstellar pickup ions,J. Geophys. Res., 102, 4719–4724, 1997.
    Jokipii, J. R., Cosmic-Ray Propagation. I. Charged Particles in a RandomMagnetic Field, Astrophys. J., 146, 480, 1966.
    Kallenrode, M.-B., Particle propagation in the inner heliosphere, J. Geophys.Res., 98, 19037, 1993.
    Kallenrode, M.-B., and G. Wibberenz, Propagation of particles injected frominterplanetary shocks: A black box model and its consequences for accelerationtheory and data interpretation, J. Geophys. Res., 102, 22311–22334, 1997.
    Kocharov, L., R. Vainio, G. A. Kovaltsov, and J. Torsti, Adiabatic Decelera-tion of Solar Energetic Particles as Deduced from Monte Carlo Simulations ofInterplanetary Transport, Sol. Phys., 182, 195–215, 1998.
    K′ota, J., and J.R. Jokipii, Energy Changes of Particles Moving along FieldLines, Proc. 25th Int. Cosmic Rays Conf., editors: M. S. Potgieter, C. Rauben-heimer, and D. J. van der Walt, 1, 213, 1997.
    Lario, D., E. C. Roelof, R. B. Decker, and D. B. Reisenfeld, Solar maximumlow-energy particle observations at heliographic latitudes above 75 degrees, Adv.Space Res., 32, 579–584, 2003.
    Lee, M. A., Coupled Hydromagnetic Wave Excitation and Ion Accelerationat an Evolving Coronal/Interplanetary Shock, Astrophys. J. Suppl. Ser., 158,38–67, 2005.
    Li, G., G. P. Zank, and W. K. M. Rice, Energetic particle acceleration and trans-port at coronal mass ejection-driven shocks, Journal of Geophysical Research(Space Physics), 108, 1082, 2003.
    Li, G., B. Miao, Q. Hu, and G. Qin, E(?)ect of Current Sheets on the Solar WindMagnetic Field Power Spectrum from the Ulysses Observation: From Kraichnanto Kolmogorov Scaling, Physical Review Letters, 106, 125001, 2011.
    Lin, R. P., K. A. Anderson, S. Ashford, C. Carlson, D. Curtis, R. Ergun, D.Larson, J. McFadden, M. McCarthy, G. K. Parks, H. R`eme, J. M. Bosqued, J.Coutelier, F. Cotin, C. D’Uston, K.-P. Wenzel, T. R. Sanderson, J. Henrion, J.C. Ronnet, and G. Paschmann, A Three-Dimensional Plasma and EnergeticParticle Investigation for the Wind Spacecraft, Space Sci. Rev., 71, 125–153,1995.
    Maclennan, C. G., L. J. Lanzerotti, R. B. Decker, S. M. Krimigis, M. R. Collier,and D. C. Hamilton, Helioradius Dependence of Interplanetary Carbon andOxygen Abundances during 1991 Solar Activity, Astrophys. J. Lett., 468, L123,1996.
    Maclennan, C. G., L. J. Lanzerotti, and R. E. Gold, Oxygen and Iron Ions atHigh Heliolatitudes, Space Sci. Rev., 97, 281–284, 2001.
    Maia, D., M. Pick, S. E. Hawkins, III, V. V. Fomichev, and K. Jiˇriˇcka, 14 July2000, a near-global coronal event and its association with energetic electronevents detected in the interplanetary medium, Sol. Phys., 204, 197–212, 2001.
    Matthaeus, W. H., M. L. Goldstein, and D. A. Roberts, Evidence for the pres-ence of quasi-two-dimensional nearly incompressible (?)uctuations in the solarwind, J. Geophys. Res., 95, 20673–20683, 1990.
    Matthaeus, W. H., G. Qin, J. W. Bieber, and G. P. Zank, Nonlinear CollisionlessPerpendicular Di(?)usion of Charged Particles, Astrophys. J. Lett., 590, L53–L56,2003.
    McComas, D. J., and N. A. Schwadron, An explanation of the Voyager paradox:Particle acceleration at a blunt termination shock, Geophys. Res. Lett., 33,L04102, 2006.
    McCracken, K. G., and U. R. Rao, Solar Cosmic Ray Phenomena, Space Sci.Rev., 11, 155–233, 1970.
    McKibben, R. B., Azimuthal propagation of low-energy solar-(?)are protons asobserved from spacecraft very widely separated in solar azimuth, J. Geophys.Res., 77, 3957–3984, 1972.
    McKibben, R. B., Ulysses COSPIN observations of the energy and charge de-pendence of the propagation of solar energetic particles to the Sun’s south polarregions, International Cosmic Ray Conf., 3281, 2001.
    McKibben, R. B., J. J. Connell, C. Lopate, M. Zhang, J. D. Anglin, A. Balogh,S. Dalla, T. R. Sanderson, R. G. Marsden, M. Y. Hofer, H. Kunow, A. Posner,and B. Heber, Ulysses COSPIN observations of cosmic rays and solar ener-getic particles from the South Pole to the North Pole of the Sun during solarmaximum, Ann. Geophys., 21, 1217–1288, 2003.
    Mursula, K., and I. Usoskin, Heliospheric Physics and Cosmic Rays, Universityof Oulu, Finland, 2003.
    Ng, C. K., and D. V. Reames, Focused interplanetary transport of approximately1 MeV solar energetic protons through self-generated Alfven waves, Astrophys.J., 424, 1032–1048, 1994.
    Ng, C. K., D. V. Reames, and A. J. Tylka, E(?)ect of proton-amplified waves onthe evolution of solar energetic particle composition in gradual events, Geophys.Res. Lett., 26, 2145–2148, 1999.
    Ng, C. K., D. V. Reames, and A. J. Tylka, Modeling Shock-accelerated SolarEnergetic Particles Coupled to Interplanetary Alfv′en Waves, Astrophys. J., 591,461–485, 2003.
    Ng, C. K., and K. Y. Wong, Solar Particle Propagation Under the In(?)uenceof Pitch-Angle Di(?)usion and Collimation in the Interplanetary Magnetic Field,Proc. 16th Internat. Cosmic Ray Conf., 5, 252, 1979.
    Oksendal, B. K., Stochastic Di(?)erential Equations: An Introduction with Ap-plications, New York: Springer, New York, 1992.
    Palmer, I. D., Transport coe(?)cients of low-energy cosmic rays in interplanetaryspace, Reviews of Geophysics and Space Physics, 20, 335–351, 1982.
    Parker, E. N., Interplanetary Dynamic Processes, New York: Interscience, 1963.Parker, E. N., The passage of energetic charged particles through interplanetaryspace, Planet. Space Sci., 13, 9, 1965.
    Qin, G., Charged particle transport in magnetic field turbulence and study of trimsimulation and SSX experiment, PhD thesis, UNIVERSITY OF DELAWARE,2002.
    Qin, G., Nonlinear Parallel Di(?)usion of Charged Particles: Extension to theNonlinear Guiding Center Theory, Astrophys. J., 656, 217–221, 2007.
    Qin, G., W. H. Matthaeus, and J. W. Bieber, Perpendicular Transport ofCharged Particles in Composite Model Turbulence: Recovery of Di(?)usion, As-trophys. J. Lett., 578, L117–L120, 2002.
    Qin, G., W. H. Matthaeus, and J. W. Bieber, Parallel Di(?)usion of ChargedParticles in Strong Two-dimensional Turbulence, Astrophys. J. Lett., 640, L103–L106, 2006.
    Qin, G., and A. Shalchi, Pitch-Angle Di(?)usion Coe(?)cients of Charged Particlesfrom Computer Simulations, Astrophys. J., 707, 61–66, 2009.
    Qin, G., M. Zhang, and J. R. Dwyer, E(?)ect of adiabatic cooling on the fittedparallel mean free path of solar energetic particles, Journal of GeophysicalResearch (Space Physics), 111, 8101, 2006.
    Qin, G., M. Zhang, J. R. Dwyer, and H. K. Rassoul, Interplanetary TransportMechanisms of Solar Energetic Particles, Astrophys. J., 609, 1076–1081, 2004.Qin, G., M. Zhang, J. R. Dwyer, H. K. Rassoul, and G. M. Mason, The ModelDependence of Solar Energetic Particle Mean Free Paths under Weak Scattering,Astrophys. J., 627, 562–566, 2005.
    Qin, G., M. Zhang, and H. K. Rassoul, Prediction of the shock arrival timewith SEP observations, Journal of Geophysical Research (Space Physics), 114,A09104, 2009.
    Qin, G., H.-Q. He, and M. Zhang, An E(?)ect of Perpendicular Di(?)usion on theAnisotropy of Solar Energetic Particles from Unconnected Sources, Astrophys.J., in press, 2011.
    Reames, D. V., Solar energetic particles: A paradigm shift, Reviews of Geo-physics, 33, 585–590, 1995.
    Reames, D. V., L. M. Barbier, and C. K. Ng, The Spatial Distribution of Par-ticles Accelerated by Coronal Mass Ejection–driven Shocks, Astrophys. J., 466,473, 1996.
    Reames, D. V., Particle acceleration at the Sun and in the heliosphere, SpaceSci. Rev., 90, 413–491, 1999.
    Reames, D. V., S. W. Kahler, and C. K. Ng, Spatial and Temporal Invariancein the Spectra of Energetic Particles in Gradual Solar Events, Astrophys. J.,491, 414, 1997.
    Reames, D. V., and C. K. Ng, Angular Distributions of Fe/O from Wind: NewInsight into Solar Energetic Particle Transport, Astrophys. J. Lett., 577, L59–L62, 2002.
    Reid, G. C., A Di(?)usive Model for the Initial Phase of a Solar Proton Event,J. Geophys. Res., 69, 2659–2667, 1964.
    Rice, W. K. M., G. P. Zank, and G. Li, Particle acceleration and coronal massejection driven shocks: Shocks of arbitrary strength, Journal of GeophysicalResearch (Space Physics), 108, 1369, 2003.
    Roelof, E. C., Propagation of Solar Cosmic Rays in the Interplanetary MagneticField, In Lectures in High-Energy Astrophysics, editors: H. O¨gelman & J. R.Wayland, pages 111, 1969.
    Roelof, E. C., R. E. Gold, G. M. Simnett, S. J. Tappin, T. P. Armstrong, andL. J. Lanzerotti, Low-energy solar electrons and ions observed at ULYSSESFebruary-April, 1991 - The inner heliosphere as a particle reservoir, Geophys.Res. Lett., 19, 1243–1246, 1992.
    Ru(?)olo, D., Interplanetary transport of decay protons from solar (?)are neutrons,Astrophys. J., 382, 688–698, 1991.
    Ru(?)olo, D., E(?)ect of adiabatic deceleration on the focused transport of solarcosmic rays, Astrophys. J., 442, 861–874, 1995.
    Sanderson, T. R., Propagation of energetic particles to high latitudes, in TheSun and the Heliosphere as an Integrated System , Kluwer Academic, Dordrecht,The Netherlands, 113–145, 2004.
    Schlickeiser, R., Cosmic Ray Astrophysics, Astronomy and Astrophysics Li-brary, Berlin: Springer, 2002.
    Schlueter, W., The numerical treatment of solar particle di(?)usion in the mag-netic fields of interplanetary space, PhD thesis, Kiel Univ. (Germany, F.R.).,1985.
    Shalchi, A., Cosmic ray transport in strong turbulence, Mon. Not. R. Astron.Soc., 363, 107–111, 2005.
    Shalchi, A., Second-order quasilinear theory of cosmic ray transport, Phys.Plasmas, 12(5), 052905, 2005.
    Shalchi, A., Analytical investigation of the two-dimensional cosmic ray Fokker-Planck equation, Astron. & Astrophys., 448, 809–816, 2006.
    Shalchi, A., Time-dependent test-particle scattering perpendicular to a meanmagnetic field: the four transport regimes and validity of the FLRW limit,Plasma Physics and Controlled Fusion, 50(5), 055001, 2008.
    Shalchi, A., Nonlinear Cosmic Ray Di(?)usion Theories, Astrophysics and SpaceScience Library, Vol. 362; Berlin: Springer, 2009.
    Shalchi, A., J. W. Bieber, W. H. Matthaeus, and G. Qin, Nonlinear Paral-lel and Perpendicular Di(?)usion of Charged Cosmic Rays in Weak Turbulence,Astrophys. J., 616, 617–629, 2004.
    Shalchi, A., T. A(?). Koda, R. C. Tautz, and R. Schlickeiser, Analytical descriptionof nonlinear cosmic ray scattering: isotropic and quasilinear regimes of pitch-angle di(?)usion, Astron. & Astrophys., 507, 589–597, 2009.
    Skilling, J., Cosmic Rays in the Galaxy: Convection or Di(?)usion(?), Astrophys.J., 170, 265, 1971.
    Tan, L. C., G. M. Mason, M. A. Lee, B. Klecker, and F. M. Ipavich, Focusedtransport of energetic particles along magnetic field lines draped around a coro-nal mass ejection, J. Geophys. Res., 97, 1597–1607, 1992.
    Tan, L. C., D. V. Reames, and C. K. Ng, Bulk Flow Velocity and First-Order Anisotropy of Solar Energetic Particles Observed on the Wind Spacecraft:Overview of Three“Gradual”Particle Events, Astrophys. J., 661, 1297–1310,2007.
    Tan, L. C., D. V. Reames, and C. K. Ng, Ion Anisotropy and High-EnergyVariability of Large Solar Particle Events: A Comparative Study, Astrophys.J., 678, 1471–1479, 2008.
    Tan, L. C., D. V. Reames, C. K. Ng, O. Saloniemi, and L. Wang, ObservationalEvidence on the Presence of an Outer Re(?)ecting Boundary in Solar EnergeticParticle Events, Astrophys. J., 701, 1753–1764, 2009.
    Wang, Y. M., P. Z. Ye, S. Wang, G. P. Zhou, and J. X. Wang, A statistical studyon the geoe(?)ectiveness of Earth-directed coronal mass ejections from March 1997to December 2000, Journal of Geophysical Research (Space Physics), 107, 1340,2002.
    Wang, Y.-M., M. Pick, and G. M. Mason, Coronal Holes, Jets, and the Originof 3He-rich Particle Events, Astrophys. J., 639, 495–509, 2006.
    Wang, C., New Chains of Space Weather Monitoring Stations in China, SpaceWeather, 8, S08001, 2010.
    Wei, F. S., G. Yang, and G. L. Zhang, Study of Three-Dimensional PropagationProperties of the Flare-Associated Interplanetary Shock Wave with ObservedIPS Data, Acta Astrophysica Sinica, 5, 214, 1985.
    Wei, F. S., and X.-D. Deng, North-south asymmetric propagation of (?)are-associated interplanetaryshock waves, Acta Geophys. Sinica, 30, 443-449, 1987.
    Zank, G. P., W. K. M. Rice, and C. C. Wu, Particle acceleration and coronalmass ejection driven shocks: A theoretical model, J. Geophys. Res., 105, 25079–25096, 2000.
    Zhang, J., K. P. Dere, R. A. Howard, and V. Bothmer, Identification of SolarSources of Major Geomagnetic Storms between 1996 and 2000, Astrophys. J.,582, 520-533, 2003.
    Zhang, M., A Markov Stochastic Process Theory of Cosmic-Ray Modulation,Astrophys. J., 513, 409–420, 1999.
    Zhang, M., Theory of energetic particle transport in the magnetosphere: Anoncanonical approach, Journal of Geophysical Research (Space Physics), 111,4208, 2006.
    Zhang, M., J. R. Jokipii, and R. B. McKibben, Perpendicular Transport ofSolar Energetic Particles in Heliospheric Magnetic Fields, Astrophys. J., 595,493–499, 2003.
    Zhang, M., G. Qin, and H. Rassoul, Propagation of Solar Energetic Particles inThree-Dimensional Interplanetary Magnetic Fields, Astrophys. J., 692, 109–132,2009.
    Zhao, X., X. Feng, and C.-C. Wu, Characteristics of solar (?)ares associatedwith interplanetary shock or nonshock events at Earth, Journal of GeophysicalResearch (Space Physics), 111, A09103, 2006.
    Zhao, X., X. Feng, and C.-C. Wu, In(?)uence of solar (?)are’s location and he-liospheric current sheet on the associated shock’s arrival at Earth, Journal ofGeophysical Research (Space Physics), 112, A06107, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700