直线对撞机上四体末态过程的QCD修正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前标准模型虽然已经取得了巨大的成功,但是其理论上还存在诸如等级差问题等许多问题,从而我们相信标准模型只是一个更基本理论在较低能量下的近似。不幸的是标准模型中给予规范玻色子和费米子质量的Higgs玻色子迄今为止也还没有在实验上观测到。而这些问题的解决都需要依靠更高能量下对撞机上的实验。未来的国际直线对撞机(ILC)被设计为一个在TeV能标下能运行正-负电子、光子-光子和电子-光子等对撞模式的对撞机。与即将运行的大型强子对撞机(LHC)相比,它能提供更加干净的信号。所以在ILC上能够精确的验证标准模型理论和寻找新物理现象。
     由于Higgs玻色子还没有被发现,所以Higgs粒子的直接观测是ILC上最重要目标之一。而top夸克由于其具有巨大的质量,一些与top夸克有关的物理现象对新物理十分敏感,所以ILC上top物理的研究是另一个重要的工作。在本论文中,我们研究了ILC上t(?)b(?)和W+W-b(?)产生过程。t(?)b(?)产生事例中包含了探测Yukawa耦合的重要过程t(?)H产生过程的信号和本底,而W+W-b(?)产生过程中包含了HZ信号,t(?)对信号以及其它本底。这两个过程对于Higgs物理和top物理的研究都具有重要意义。我们计算了这两个过程的领头阶和QCD次领头阶的贡献。
     本论文研究中的主要的创新之处如下:
     ●在高对撞能量下,未来对撞机上许多物理过程都会有大的s道压低效应,这些过程的主要贡献就会来自于t道或u道。据我们所知,一般的计算四体相空间积分的Monte Carlo程序都是采用反复使用因子化公式将四体相空间因子化为多个两体相空间的乘积的方法来进行积分,这种方法可以很好的处理s道占优的情况,但是对于t道或u道占优的过程来说就不是很有效。对于后一种情况,我们建立了一种新的四体末态相空间Monte Carlo积分的方法来计算t道或u道占优的过程。
     ●在我们完整的四体末态过程的单圈修正计算中会遇到六点标量和张量积分函数的计算。在此之前只有德国的A.Denner等人给出过包含三阶以下六点函数的计算。我们将其结果扩展到了六点四阶函数,同时还独立的推导出了另一个六点标量和一阶到四阶张量函数的计算公式,并将两种方法相互做了检验,其结果是一致的。最终我们针对相空间中不同区域,结合两种方法开发了完整的六点标量和张量(一阶到四阶)函数计算程序。
     ●在多体末态(n>2)过程计算中,人们经常会遇到不稳定粒子的共振问题。对于不稳定粒子的共振的处理传统上有许多方法比如有效拉氏量方法和窄宽度近似等等。但是在包含次领头阶贡献的计算中如果直接采用这些处理方法就不能够保汪规范不变性。所以我们在计算中采用了能在单圈阶上保证规范不变性的复质量方案(CMS)来处理不稳定粒子的共振问题。并且我们根据CMS方案的需要将单圈积分函数表达式解析延拓到了复质量平面,并开发了计算包含复质量的单圈积分函数的程序。
Although the Standard Model(SM)has got a great success,it still has many theoretical problems,such as the hierarchy problem.We believe that the SM is only a lower energy approximation of a more basic theory.Unfortunately,the Higgs boson,which gives masses to gauge bosons and fermions in the SM,has not been directly observed in experiment until now.The solution of these problems requires the future experiments operated in the machines with more higher colliding energy.The future International Linear Collider (ILC)is designed as a TeV scale collider machine operating with electron-positron, photon-photon,electron-photon colliding modes.Compared with the Large Hardron Collider (LHC),it can provide much more clean signals.Therefore,it is possible to probe the SM theory in high precision and search for new physics by using the ILC.
     Since the Higgs boson has not yet been discovered by now,one of the most important physics goal at the ILC is to directly discover the Higgs boson.The study of top physics is another important task at the ILC,since the phenomena involving top quark is sensitive to the new physics due to its huge mass.In this thesis,I present the study the processes of t(?)b(?)and W+W-b(?)production at ILC.The t(?)b(?)production events contains the signals and background of the t(?)H production process,which is important for probing Yukawa coupling.The W+W-b(?)production process includes the HZ,t(?)-pair production events and their backgrounds.Both the HZ,t(?)-pair production processes are all important for the research of the Higgs physics and the top physics.Our calculations of these two processes are implemented up to QCD next-to-leading order.
     The main innovations in this thesis are listed below:
     ●In the very high collision energy,many physical processes at the future colliders have large s-channel suppression effect.Their main contributions are always from t- or u-channel.As we know,the general Monte Carlo program for four-body phase space integral,which is implemented by repeatedly factorizing four-body phase space as several two-body phase spaces,works well for process dominated by schannel, but is not efficient for the process donainated by t- or u-channel.For the later case,we create a new four-body space Monte Carlo integral method to calculate process dominated by t- or u-channel.
     ●Scalar and tensor 6-point integral functions are present during our calculations of complete NLO corrections for the processes with tour final particles.Before our works,only A.Denner et al.had provided the calculations involving only the tensor 6-point integral functions up to three-rank.We extend their expressions to four-rank tensor integral functions and use another method to derive the scalar and tensor 6-point functions up to four-rank independently.We have done cross check by using both two expressions,and got a good agreement.Finally,we combine both methods to create program codes for calculating the complete scalar and tensor(up to fourrank) 6-point integral functions in different phase space regions.
     ●In calculating of the processes with final multi-particles(n>2),people always suffer from the trouble due to unstable particle(resonance).There are some traditional methods to deal with the resonance problem,such as effective theory,narrow-width approximation and etc.Since these methods cannot guarantee to preserve the gauge invariance,they cannot be adopted directly to the calculation for the processes up to NLO,especially when the concerned process has several resonance channels.So we use the complex mass scheme(CMS)method which can preserve the gauge invariance in the calculations up to one-loop order to deal with the resonance problem. In this work we extend the expressions for calculating one-loop integral functions to the complex mass plane according to the requirement of the CMS method and develop the program codes for calculating one-loop integrals with complex masses.
引文
[1] H. Haber, G. Kane. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493-532.
    [2] H. Haber, G. Kane, The search for supersymmetry: Probing physics beyond the standard model, Phys. Rep. 117(1985)75-263.
    [3] J. Wess, J. Bagger, Supersymmetry and Supergravity, Princeton University press, 1983.
    [4] S. Gate, M.Grisaru, M. Rocek, W. Siegel, Superspace or one thousand and one lessons in Supersymmetry, Vol. 58, Benjiamin/Cummings, 1983.
    [5] H. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep. 110 (1984) 1-162.
    [6] A. Lahanas, D. Nanopoulos, The road to no-scale supergravity, Phys. Rep. 145 (1987) 1-139.
    [7] N. Arkani-Hamed, S. Dimopolous, G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263-272.
    [8] L. Randall, R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370-3373.
    [9] L. Randall, R. Sundrum, An alternative to compactih'cation, Phys. Rev. Lett. 83 (1999) 4690-4693.
    [10] N. Arkani-hamed, A. Cohen, H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232-240.
    [11] N. Arkani-hamed, A. Cohen, J. Jacker, Phenomenology of electroweak symmetry breaking from theory space, J. High Energy Phys. 0208 (020).
    [12] I. Low, W. Skiba, D. Smith, Little higgs bosons from an antisymmetric condensate, Phys. Rev. D 66 (072001).
    [13] C. Yang, R. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954)191-195.
    [14] P. Higgs, Broken symmetries, massless particlees and gauge fields, Phys. Rev. Lett. 12 (1964) 132-133.
    [15] G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13(1964)585-588.
    [16] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264-1266.
    [17]S.Glashow,Partial symmetries of weak interactions,Nucl.Phys.22(1961)579-588.
    [18]A.Salam,in Proceedings of the 8th Nobel Symposium,N.Svartholm(Almqvist and Wiksells,Stockholm),1968.
    [19]H.Fritzsch,M.Gell-Mann,Current algebra:Quarks and what else?,Proceedings of the ⅩⅥInternational Conference on High Energy Physics 2(1972)135.
    [20]Y.Nambu,Axial vector current conservation in weak interactions,Phys.Rev.Lett.4(1960)380-382.
    [21]J.Goldstone,Field theories with 'superconductor' solutions,Nuovo Cim.19(1961)154-164.
    [22]J.Goldstone,A.Salam,S.Weinberg,Broken symmetries,Phys.Rev.127(1962)965-970.
    [23]P.W.Higgs,Broken symmetries,massless particles and gauge fields,Phys.Lett.12(1964)132-133.
    [24]F.Englert,R.Brout,Broken symmetry and the mass of gauge vector mesons,Phys.Rev.Lett.13(1964)321-322.
    [25]G,S.Guralnik,C.R.Hagen,T.W.B.Kibble,Global conservation laws and massless particles,Phys.Rev.Lett.13(1964)585-587.
    [26]P.W.Higgs,Spontaneous symmetry breakdown without massless bosons,Phys.Rev.145(1966)1156-1163.
    [27]T.W.B.Kibble,Symmetry breaking in non-abelian gauge theories,Phys.Rev.155(1967)1554-1561.
    [28]G.'t Hooft,Renormalization of massless Yang-Mills fields,Nucl.Phys.B33(1971)173-199.
    [29]G.'t Hooft,Renormalizable lagrangians for massive Yang-Mills fields,Nucl.Phys.B35(1971)167-188.
    [30]法捷耶夫,规范场的量子理论导引,华中工学院出版社,1982.
    [31]O.Greenberg,Spin and unitary-spin independence in a paraquark model of baryons and mesons,Phys.Rev.Lett.13 598-602.
    [32]M.Han,Y.Nambu,Three-triplet model with double SU(3)symmetry,Phys.Rev.139(1965)B1006-B(?)0.
    [33]G.Goldhanber,in Proceedings of the International Conference on the Production of Particles with New Quantum Numbers,Madison,1976.
    [34]B.Wiik,G.Wolf,Electron-positron interactions,DESY(77/01).##原图像不清晰
    [35]E.Lohrman,in Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies,Gutbrod,1977.
    [36]裘忠平,现代量子场论,华中师大出版社,1992.
    [37]M.Kobayashi,T.Maskawa,CP violation in the renormalizable theory of weak interaction,Prog.Theor.Phys.49(1973)652-657.
    [38]E.Witten,Dynamical breaking of supersymmetry,Nucl.Phys.B 188(1981)513.
    [39]M.Chen,C.Dionisi,M.Martinez,X.Tata,Signals from nonstrongly interacting supersymmetric particles at lep energies,Phys.Rept.159(1988)201.
    [40]D.E.Groom,et al.,Review of particle physics,Eur.Phys.J.C15(2000)1-878.
    [41]T.Kinoshita,Mass singularities of feynman amplitudes,J.Math.Phys.3(1962)650.
    [42]T.D.Lee,M.Nauenberg,Degenerate systems and mass singularities,Phys.Rev.133(1964)B1549-B1562.
    [43]J.C.Collins,D.E.Soper,G.Sterman,Factorization for short distance hadron-hadron scattering,Nucl.Phys.B 261(1985)104-142.
    [44]G.T.Bodwin,Factorization of the Drell-Yan cross section in perturbation theory,Phys.Rev.D 31(1986)2616-2642.
    [45]S.Dittmaier,Separation of soft and collinear singularities from one-loop N-point integrals,Nucl.Phys.B 675(2003)447-466.
    [46]G.van Oldenborgh,FF a package to evaluate one-loop Feynman diagram.
    [47]B.Harris,J.Owens,Two cutoff phase space slicing method,Phys.Rev.D 65(094032).
    [48]W.Beenakker,S.Dittmaier,M.Kramer,B.Plümper,M.Spira,R M.Zerwas,NLO QCD corrections to ttH production in hadron collisions,Nucl.Phys.B 653(2003)51-203.
    [49]S.Catani,M.H.Seymour,A general algorithm for calculating jet cross sections in NLO QCD,Nucl.Phys.B 485(1997)291-419.
    [50]S.Catani,S.Dittmaier,M.H.Seymour,Z.Trócsányi,The dipole formalism for next-to-leading order QCD calculations with massive partons,Nucl.Phys.B 627(2002)189-265.
    [51]W.Beenakker,H.Kuijf,,W.L.van Neerven,J.Smith,QCD corrections to heavy-quark production in pp collisions,Phys.Rev.D 40(1989)54-82.
    [52]W.L.V.Neerven,Dimensional regularization of mass and infrared singularities in two-loop on-shell vertex functions,Nucl.Phys.B 268(1986)453-488.
    [53] J. Smith, D. Thomas, W. L. van Neerven, QCD corrections to the reaction p + p|-—W+γ+X Z.Phys.C 44 (1989) 267-290.
    
    [54] B. W. Harris, J. Smith, Heavy-quark correlations in deep-inelastic electroproduction, Nucl. Phys.B 452 (1995) 109-160.
    
    [55] G. Altarelli, G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298—318.
    
    [56] L. Reina, S. Dawson, D. Wackeroth, QCD corrections to associated tt|-H production at the Teva- tron, Phys. Rev. D 65 (053017).
    
    [571 ILC home, http://www.linearcollider.org/cms/.
    
    [58] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo, V. I. Telnov, Production of high-energy colliding gamma gamma and gamma e beams with a high luminosity at VLEPP accelerators, JETP Lett. 34(1981)491-495.
    
    [59] R. H. Milburn, Electron scattering by an intense polarized photon field, Phys. Rev. Lett. 10 (1963)75.
    
    [60] T. E. W. G. (for the CDF, D. Collaborations), Combination of CDF and DO results on the mass of the top quark (Fermilab-TM-2347-E, TEVEWWG/top 2006/01, CDF-8162, D0-5064, hep- ex/0603039).
    
    [61] I. Bigi, H. Krasemann, Weak decays of heavy vector mesons toponium and open top, Z. Phys. C7 (1981) 127.
    
    [62] J. Kuhn, Acta.-Phys.-Austr. (Suppl.) XXIV (1982) 203.
    
    [63] I. Bigi, Y. Dokshitzer, V. Khoze, J. Kuhn, P. Zerwas, Production and decay properties of ultra- heavy quarks, Phys. Lett. B 181 (1986) 157.
    
    [64] V. Fadin, V. Khoze, T. Sjostrand, On the threshold behaviour of heavy top production, Z. Phys. C48 (1990)613-621.
    
    [65] M. Strassler, M. Peskin, Threshold production of heavy top quarks: QCD and the Higgs boson, Phys. Rev. D 43 (1991) 1500-1514.
    
    [66] W. Kwong, Threshold production of tt|- pairs by e~+e~- collisions, Phys. Rev. D 43 (1991) 1488- 1499.
    
    [67] Y. Sumino, K. Fujii, K. Hagiwara, H. Murayama, C.-K. Ng, Top-quark pair production near threshold, Phys. Rev. D 47 (1993) 56-81.
    
    [68] F. J. Yndurain, On the evaluation of threshold effects in processes involving heavy quarks, Phy. Lett. B 321 (1994) 400-406.
    [69]Parameters for Linear Collider,http://www.fnal.gov/directorate/icfa/LC_parameters.pdf.
    [70]H.Chen,W.-G.Ma,R.-Y.Zhang,P.-J.Zhou,H.-S.Hou,Y.-B.Sun,O(α_s)QCD and O(α_(ew))electroweak corrections to image production in γγ collision,Nucl.Phys.B 683(2004)196-218.
    [71]W.Beenakker,F.A.Berends,A.P.Chapovsky,Radiative corrections to pair production of unstable particles:Results for e~+e~→4 fermions,Nucl.Phys.B 548(1999)3-59.
    [72]A.Denner,S.Dittmaier,Reduction schemes for one-loop tensor integrals,Nucl.Phys.B 734(2006)62-115.
    [73]T.Binoth,G.Heinrich,N.Kauer,A numerical evaluation of the scalar hexagon integral in the physical region,Nucl.Phys.B 654(2003)277-300.
    [74]A.Denner,S.Dittmaier,M.Roth,L.Wieders,Electroweak corrections to charged-current e~+e~→4 fermion processes:Technical details and further results,Nucl.Phys.B 724(2005)247-294.
    [75]G.Passarino,M.Veltman,One-loop corrections for e~+e~- annihilation into μ~+μ~- in the Weinberg model,Nucl.Phys.B 160(1979)151-207.
    [76]G.'t Hooft,M.Veltman,Scalar one-loop integrals,Nucl.Phys.B 153(1979)365-401.
    [77]D.Melrose,Reduction of feynman diagrams,Nuovo Cimento XL A 40(1965)181-213.
    [78]A.Denner,Techniques for the calculation of electroweak radiative corrections at the one-loop level and results for W-physics at LEP200,Fortschr.Phys.41(1993)4.
    [79]R.Eden,P.Landshoff,D.Olive,J.Polkinghorne,The Analytic S Matrix,Cambrigde University Press,1966.
    [80]A.Denner,U.Nierste,R.Scharf,A compact expression for the scalar one-loop four-point function,Nucl.Phys.B 367(1991)637-656.
    [81]A.Denner,S.Dittmaier,Reduction of one-loop tensor 5-point integrals,Nucl.Phys.Lett.658(2003)175-202.
    [82]T.Hahn,M.Perez-Victoria,Automatized one-loop calculations in 4 and D dimensions,Comput.Phys.Commun.118(1999)153-165.
    [83]Y.You,W.-G.Ma,H.Chen,R.-Y.Zhang,Y.-B.Sun,H.-S.Hou,Electroweak radiative corrections to e~+e~-→tth at linear colliders,Phys.Lett.B 571(2003)85-91.
    [84]R.-Y.Zhang,W.-G.Ma,H.Chen,Y.-B.Sun,H.-S.Hou,Full O(α_(ew))electroweak corrections to e~+e~-→HHZ,Phys.Lett.B 578(2004)349-358.
    [85] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Com-mun. 140(2001)418-431.
    [86] S. Weinzierl, Introduction to monte carlo methods (NIKHEF-00-012, hep-ph/0002269).
    [87] E. Byckling, K. Kajantie, Particle Kinematics, John Wiley and Sons, 1973.
    [88] J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, M. Kuroda, Y. Kurihara, Y. Shimizu, H. Tanaka, GRACE/SUSY: Automatic generation of tree amplitudes in the minimal supersymmetric standard model, Comput. Phys. Commun. 153 (2003) 106-134.
    [89] e. a. T. Ishikawa, Y. Kawabata, GRACE User's Manual.
    [90] W.-M. Y. et al, Review of Particle Physics, Vol. 33, Institute of Physics, 2006.
    [91] F. Jegerlehner, The effective fine structure constant at TESLA energies (hep-ph/0105283).
    [92] R. Barate, et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61-75.
    [93] T. L. C. A. Collaboration, D. Collaboration, L. Collaboration, O. Collaboration, the LEP Elec-troweak Working Group, Precision electroweak measurements and constraints on the standard model (arxiv:0712.0929 and LEPEWWG/2007-01).
    [94] C. R. 91 -02, Proceeding of the Workshop on "High Liminosities at LEP ", Genvea, Switzerland, 1991.
    [95] A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56-74.
    [96] R. Kleiss, W. J. Stirling, Top quark production at hadron colliders: Some useful formulae, Z. Phys. C 40 (1988) 419-423.
    [97] J. Jersak, E. Laermann, P. M. Zerwas, Electroweak production of heavy quarks in e~+e~~ annihilation, Phys. Rev. D 25 (1980) 1218-1228.
    [98] J. Kuhn, P. Zerwas, The toponium scenario, Phys. Rep. 167 (1988) 321-403.
    [99] H. Inazawa, T. Morii, Ultra heavy fermion bound states via Higgs exchange, Phys. Lett. B 203 (1988)179.
    [100] K. Hagiwara, K. Kato, A. Martin, C.-K. Ng, Properties of heavy quarkonia and related states, Nucl. Phys. B 344 (1991) 1-32.
    [101] J. Feigenbaum, Study of toponium production including the effects of Higgs-boson exchange, Phys. Rev. D 43 (1991) 264-267.
    [102]J.Kühn,in:F.A.Harris,S.Olsen,S.Pakvasa,X.(Eds.),Proceedings of the Workshop on Physics and Experiments with Linear e~+e~- Colliders,Waikoloa,Hawaii,1993.
    [103]W.eenakker,S.van der Marck,W.Hollik,e~+e~- annihilation into heavy fermion pairs at highenergy colliders,Nucl.Phys.B 365(1991)24-78.
    [104]A.Akhundov,D.Bardin,A.Leike,Qed radiative corrections to massive fermion production in e~+e~- annihilation,Phys.Lett.B 261(1991)321-325.
    [105]A.Arbuzov,D.Bardin,A.Leike,Analytic final state corrections with cut for e~+e~-→massive fermions,Mod.Phys.Lett.A7(1992)2029-2038.
    [106]A.Arbuzov,D.Bardin,A.Leike,Errata:"analytic final state corrections with cut for e~+e~-→massive fermions",Mod.Phys.Lett.A 9(1994)1515-1516.
    [107]A.Denner,T.Sack,The top width,Nucl.Phys.B 358(1991)46-58.
    [108]S.Güsken,J.Kühn,R Zerwas,Threshold behaviour of top production in e~+e~- annihilation,Phys.Lett.B 155(1985)185-191.
    [109]W.Beenakker,W.Hollik,Higgs boson effects in e~+e~→tt close to the threshold,Phys.Lett.B 269(1991)425.
    [110]A.Signer,A theoretical update on tt production near threshold(hep-ph/0604032).
    [111]A.H.Hoang,Top threshold physics(hep-ph/0604185).
    [112]Y.Kiyo,Third order coulomb correction to ttbar threshold cross section(hep-ph/0602064).
    [113]Y.K.F.Yuasa,S.Kawabata,e~+e~-→bbudμ~-v_mu with a tt production,Phys.Lett.B 414(1997)178-186.
    [114]E.Accomando,A.Ballestrero,M.Pizzio,Semileptonic six fermion processes at future e~+e~-colliders:signal and irreducible background for top and WWZ physics,Nucl.Phys.B 512(1998)19-41.
    [115]F.Gangemi,G.Montagna,M.Moretti,O.Nicrosini,F.Piccinini,Top-quark physics in sixquark final states at the next linear collider,Nucl.Phys.B 559(1999)3-16.
    [116]S.Dittmaier,M.Roth,LUSIFER:a LUcid approach to SIx-FERmion production,Nucl.Phys.B 642(2002)307-343.
    [117]A.Ballestrero,E.Maina,S.Moretti,e~+e~-→bbw~+w~- at the next linear collider,top-pairs and Higgs production,Phys.Lett.B 333(1994)434-444.
    [118]W.Kilian,M.Kramer,P.M.Zerwas,Higgs-strahlung and WW fusion in e~+e~- collisions,Phys.Lett.B 373(1996)135-140.
    [119] M. Beneke, A. Chapovsky, A. Signer, G. Zanderighi, Effective theory approach to unstable particle production, Phys. Rev. Lett. 93 (011602).
    [120] M. Beneke, A. Chapovsky, A. Signer, G. Zanderighi, Effective theory calculation of resonant high-energy scattering, Nucl. Phys. B 686 (2004) 205-247.
    [121] A. Aeppli, F. Cuypers, G. J. van Oldenborgh, (?)(T) corrections to W pair production in e~+e~ and γγ collisions, Phys. Lett. B 314 (1993) 413-420.
    [122] A. Aeppli, G. J. van Oldenborgh, D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126-146.
    [123] A. Denner, S. Dittmaier, M. Roth, M. M. Weber, Electroweak radiative corrections to e~+e~- → vv|-H, Nucl. Phys. B 660 (2003) 343-361.
    [124] S. A. Denner, Dittmaier, M. Roth, D. Wackeroth, Predictions for all processes e~+e~-→ fermions + γ, Nucl. Phys. B 560 (1999) 33-65.
    [125] R. E. Cutkosky, Singularities and discontinuities of feynman amplitudes, J. Math. Phys. 1 (1960) 429.
    [126] A. Denner, S. Dittmaier, G. Weiglein, Application of the background-field method to the electroweak standard model, Nucl. Phys. B 440 (1995) 95-128.
    [127] R. G. Stuart, Gauge invariance, analyticity and physical observables at the Z~0 resonance, Phys. Lett. B 262 (1991) 113-119.
    [128] A. Denner, T. Hahn, Radiative corrections to W~+W~- → W~+W~- in the electroweak standard model, Nucl. Phys. B 525 (1998) 27-50.
    [129] A.Bredenstein, S.Dittmaier, M.Roth, Four-fermion production at gamma gamma colliders: 2. radiative corrections in double-pole approximation, Eur. Phys. J. C 44 (2005) 27-49.
    [130] W. Beenakker, A. Denner, S. Dittmaier, J. Hoogland, R. Kleiss, G. van Oldenborgh, C. Pa- padopoulos, G. Passarino, The fermion-loop scheme for finite-width effects in e~+e~- annihilation into four fermions, Nucl. Phys. B 500 (1997) 255-298.
    [131] E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, A. Sherstnev, CompHEP 4.4 - automatic computations from lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250-259.
    [132] M. Jezabek, J. Kiihn, QCD corrections to semileptonic decays of heavy quarks, Nucl. Phys. B 314(1989)1-6.
    [133] E. L. Berger, M. Klasen, T. M. P. Tait, Next-to-leading order supersymmetric QCD predictions for associated production of gauginos and gluinos, Phys. Rev. D 62 (095014).
    [134] M. Weber, Tests of supersymmetric coouplings at high energy colliders, Ph.D Thesis.
    
    [135] S. Catani, M. H. Seymour, The dipole formalism for the calculation of QCD jet cross sections at next-to-leading ord, Phys. Lett. B 378 (1996) 287-301.
    
    [136] G. P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978)192-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700